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Forecasting electricity spot market prices with a

k-factor GIGARCH process.

Abdou Kâ Diongue∗, Dominique Guégan†, Bertrand Vignal‡

Abstract

In this article, we investigate conditional mean and conditional vari-

ance forecasts using a dynamic model following a k-factor GIGARCH

process. Particularly, we provide the analytical expression of the con-

ditional variance of the prediction error. We apply this method to the

German electricity price market for the period August 15, 2000 - De-

cember 31, 2002 and we test spot prices forecasts until one month ahead

forecast. The forecasting performance of the model is compared with

a SARIMA-GARCH benchmark model using the year 2003 as the out-

of-sample. The proposed model outperforms clearly the benchmark

model. We conclude that the k-factor GIGARCH process is a suitable

tool to forecast spot prices, using the classical RMSE criteria.
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1 Introduction

In finance, commodity price forecasting is a crucial issue, in particular for

electricity. Indeed, price forecasts can help evaluating bilateral contracts.

For such a commodity, price forecasts can be based on a spot price analysis.

Since electricity spot prices have a behavior which presents specific features,

the price forecasts problem can be complex. In another hand, electricity

price volatility has a marked variability in time. We observe both high and

low periods of price reaction. Recently spot price volatility has been stud-

ied and modelled using a volatility model depending on time. Using such a

model, Benini, Maracini, Pelacchi and Venturini (2002) investigate several

markets. In addition, electricity spot prices exhibit long memory behavior

combined with a periodic behavior. Recent works have taken into account

these last features using related ARFIMA models, see Koopman, Ooms and

Carnero (2007) or Diongue and Guégan (2008).

After modelling these electricity prices, the forecasting problem arises. In

the literature, two approaches have been considered: parametric models us-

ing AR, ARX, AR-GARCH, ARX-GARCH and Regime switching models,

Misiorek, Truek and Weron (2006); and non parametric methods like the

neuronal nets for instance, Ramsay and Wang (1997) and Conejo, Contr-

eras, Espinola and Plazas (2005).

In this paper, in order to provide robust forecasts for spot electricity prices,

we propose a new approach based on the k-factor GIGARCH process, (Gué-

gan, 2000), which allows taking into account a lot of stylized facts observed

on the electricity spot prices, in particular stochastic volatility, long memory

and periodic behaviors. The investigation of this model is done in Guégan

(2003). Diongue and Guégan (2004) introduced the parameter estimation of

the k-factor GIGARCH process. Here, we provide new developments which
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concern the expression of the forecasts using the k-factor GIGARCH process

and we give their properties. We apply these results on the German electric-

ity prices market providing forecasting prices up until a one month-ahead.

These results are totally new in the sense that, in most published papers,

the previsions concern mostly the one day-ahead horizon and here we are in-

terested by long term prediction. For comparison purpose, we compare our

approach with a benchmark model in terms of forecasting, using the RMSE

criteria.

This paper is organized as follows. The next Section presents the data and

contains the main empirical findings. In Section 3, we specify some notations,

define the k-factor GIGARCH process along with new theoretical results

on forecasting in mean and in variance. In the fourth Section, we provide

forecasts for the German spot prices data set. The last section is dedicated

to conclusions.

2 The data set

We consider the hourly series of the EEX spot prices, denoted (St)t=1,··· ,N ,

from August 15, 2000 to December 31, 2003, which yields N = 29616 hourly

observations. For this electricity spot market, the prices are fixed each day,

for each of the 24 hours of the next day. This spot market has two particular

interests. On the one hand, it allows a buyer (seller) to supply their bid

(load) on an hourly basis (physical market) and on the other hand, the spot

market could correspond to the price reference for the contracts. In order

to make the series (St)t=1,··· ,N stationary, we take its logarithmic form and

define (Xt)t such that, ∀t = 1, · · · , N , Xt = log (St). We build two subsets

from the original series. The first one, from August 15, 2000 to December

31, 2002 (figure 1) and containing T = 20856 observations, is used for the

parameter estimation procedure and the second one, from January 1, 2003
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to December 31, 2003, is used for validation. In figure 1, we observe that

there are periods of low volatility (Figure 1, Regions 1) following by periods

of high volatility (Figure 1, Regions 2). Figure 2 provides a zoom on the

evolution of the spot prices, in its logarithmic scale, from October 14, 2000

to October 27, 2000 (two weeks). We observe that the series exhibit two

kinds of seasonality: daily and weekly seasonalities.

Insert Figures 1 and 2

Table 1 gives the summary statistics of the log electricity spot prices. The

mean and the standard deviation are quite small, while the estimated mea-

sure of skewness, −2.6, is significantly negative, indicating that the log elec-

tricity spot prices has non-symmetric distribution. Furthermore, the large

value of the kurtosis statistic, 29.67, suggests that the underlying data are

leptokurtic, or fat-tailed and sharply peaked around the mean when com-

pared with the standard Normal distribution (Figure 3). The results of the

non-Normality test agree with previous literature concerning this kind of be-

havior for these log electricity spot prices data, Misiorek, Trueck and Weron

(2003). The Box-Pierce Q-tests of up to twenty-fourth order serial corre-

lation for the levels and squares of the mean-corrected log electricity spot

prices (Q (24) and Q2 (24)) are both significant. In summary, the diagnos-

tics suggest that a GARCH-class model would be appropriate to explain the

evolution of the log electricity spot prices, along with an error distribution

that allows for greater kurtosis than the Gaussian distribution.

Insert Table 1 and Figure 3

The autocorrelation function of the EEX spot prices (Figure 4) exhibits a

slow decay pattern at two seasonality lags corresponding to daily and weekly

seasonalities. The autocorrelation function does not converge exponentially

to zero in covariance sense, (Guégan, 2005, for discussions on this concept),
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thus we assume that the series has a long range dependence behavior. More-

over, the spectral density represented by the periodogram (Figure 5), is un-

bounded at three frequencies corresponding respectively, to the daily, weekly

and half daily seasonalities.

Insert Figures 4 and 5

Thus, this empirical and statistical analysis highly justifies the use of the

k-factor Gegenbauer process with time varying conditional variance errors

to model the data set (Xt)t.

3 The k-factor GIGARCH process

3.1 Notations and model

Assume that (ξt)t∈Z
is a white noise process with unit variance and mean

zero. Let (Xt)t∈Z
be a k-factor GIGARCH process defined by the following

equations:

Φ(B)
k

∏

i=1

(

I − 2νiB +B2
)di (Xt − µ) = Θ (B) εt, (3.1)

where

εt =
√

htξt with ht = a0 +
r

∑

i=1

aiε
2
t−i +

s
∑

j=1

bjht−j . (3.2)

In the relationship (3.1)-(3.2), µ represents the mean of the process (Xt)t∈Z
,

d = (d1, · · · , dk), the memory parameters and ν = (ν1, · · · , νk) the frequency

location parameters with, 0 < di <
1
2 if |νi| < 1, and 0 < di <

1
4 if |νi| = 1 for

i = 1, · · · , k, with k a nonnegative integer. Φ(B) and Θ (B) are the autore-

gressive and the moving average polynomials in B (BnXt = Xt−n, n ≥ 0),

defined by Φ(B) = I −
∑p

i=1 φiB
i and Θ (B) = I −

∑q
j=1 θjB

j , where

p and q are nonnegative integers. We suppose that all the roots of the

polynomials Φ(B) and Θ (B) are outside the unit circle. We assume that

a0 > 0, a1, . . . , ar, b1, . . . , bs ≥ 0, and
∑r

i=1 ai +
∑s

j=1 bj < 1. The k-factor
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GIGARCH process (3.1)-(3.2) under the previous assumptions is well de-

fined. We can use it to forecast electricity spot prices. The interest of such

a heteroskedastic model is that it allows emphasizing the optimal predictor

for conditional variance. A basic property for the k-factor GARMA process

with time varying innovations following a GARCH(r, s) model is that the

long memory part provides a way to model the conditional mean whereas the

heteroscedastic part provides a way to model the conditional variance. From

a forecasting point of view, the k-factor GIGARCH model (Guégan, 2000)

and the k-factor GARMA model (Giraitis and leipus, 1995) will give the

same optimal predictor for the conditional mean and the difference between

their respective forecasts appears mainly in the building of the confidence

interval.

3.2 Forecasting equation for the k-factor GIGARCH process

In this section, we provide new results concerning the predictions based on

a strong white noise (ξt)t∈Z
.

In a first step, we provide the expression of the forecasts in mean. Observing

X1, · · · , XT , using the stationary and invertible k-factor GIGARCH process

defined by equations (3.1)-(3.2), we compute the h-time-step-ahead least

square predictor, denoted X̂t (h) , h > 0. The predictor is obtained by min-

imizing the mean squared error between forecasts and observations and our

approach follows the work of Ferrara and Guégan (2001). We assume that

the parameters of the model (3.1)-(3.2) have been estimated using Whittle

method, see Diongue and Guégan (2004). Under the regular conditions spec-

ified in section 3.1, this model can be rewritten in its infinite moving average

form:

Xt =
∞

∑

j=0

β̂j

(

d̂, ν̂, γ̂
)

εt−j , (3.3)
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where the weights
(

β̂j

(

d̂, ν̂, γ̂
))

j∈Z

follow the expression:

β̂j

(

d̂, ν̂, γ̂
)

= ψ̂j

(

d̂, ν̂
)

+

min(j,p)
∑

i=1

φ̂iβ̂j−i

(

d̂, ν̂
)

−

min(j,q)
∑

i=1

θ̂iψ̂j−i

(

d̂, ν̂, γ̂
)

,

(3.4)

and

ψ̂j

(

d̂, ν̂
)

=
∑

0≤l1,··· ,lk≤j,
l1+···+lk=j

Cl1

(

d̂1, ν̂1

)

· · ·Clk

(

d̂k, ν̂k

)

. (3.5)

The weights
(

Cli

(

d̂, ν̂
))

li∈Z

are the Gegenbauer polynomials. Denoting the

vectorial parameters d̂ =
(

d̂1, · · · , d̂k

)

, γ̂ =
(

φ̂1, · · · , φ̂p, θ̂1, · · · , θ̂q

)

, and

ω̂ =
(

â0, â1, · · · , âr, b̂1, · · · , b̂s

)

, we can derive the h-time-step-ahead least

square predictor, X̂t (h), given by the following expression:

X̂t (h) =
∞

∑

j≥h

β̂j

(

d̂, ν̂, γ̂
)

εt+h−j , (3.6)

which can be rewritten as

X̂t (h) =
∞

∑

j≥0

β̂j+h

(

d̂, ν̂, γ̂
)

εt−j . (3.7)

Unfortunately, in practice, the process (εt)t∈Z
cannot be observed, thus this

latter expression cannot be used to obtain the forecasts in mean from the

process. Therefore, we need to investigate an autoregressive form of the k-

factor GIGARCH process. Following Proposition 4 in Ferrara and Guégan

(2001), it is straightforward to show that a useful and easy formula to update,

for computing the least-squares predictor X̂t (h), is given by

X̂t (h) = −
h−1
∑

j=1

α̂j

(

d̂, ν̂, γ̂
)

X̂t (h− j) −
∑

j≥0

α̂j+h

(

d̂, ν̂, γ̂
)

Xt−j , (3.8)

where the weights
(

α̂j

(

d̂, ν̂, γ̂
))

j∈Z

are defined by

α̂j

(

d̂, ν̂, γ̂
)

= π̂j

(

d̂, ν̂
)

−

min(j,p)
∑

i=1

φ̂iπ̂j−i

(

d̂, ν̂
)

+

min(j,q)
∑

i=1

θ̂iα̂j−i

(

d̂, ν̂, γ̂
)

,

(3.9)
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and π̂j

(

d̂, ν̂
)

= ψ̂j

(

−d̂, ν̂
)

. In practice, we use the expression (3.8) to get

the forecasts.

Now, we provide the expression for the variance’s errors for the forecasts. The

h-time-step-ahead prediction error for the predictor X̂t (h) given in (3.8) is

denoted et,h for h > 0, and is equal to:

êt,h = Xt+h − X̂t (h)

=

h−1
∑

j=0

β̂j

(

d̂, ν̂, γ̂
)

εt+h−j . (3.10)

The conditional mean squared error for this predictor has the following ex-

pression:

E
(

ê2t,h | Ft

)

=
h−1
∑

j=0

β̂2
j

(

d̂, ν̂, γ̂
)

E
(

ε2t+h−j | Ft

)

, (3.11)

where Ft is the σ-algebra generated by ε0, · · · , εt, (the noise which appears in

(3.1) - (3.2)). We remark that the conditional mean squared error depends

on the future conditional variance of the innovation process
(

ε2t
)

t∈Z
. Its

expression, denoted vart (êt,h), is given by

vart (êt,h) =
h

∑

i=1

β̂2
h−i

(

d̂, ν̂, γ̂
)

ω̂i

+
h

∑

k=1

β̂2
h−k

(

d̂, ν̂, γ̂
)

[

s−1
∑

i=0

δ̂i,kht−i +
m−1
∑

i=0

ρ̂i,kε
2
t−i

]

, (3.12)

withm = max (r, s), ω̂h = e
′

1

(

I + Γ + · · · + Γh−1
)

e1â0, δ̂j,h = −e
′

1Γ
hem+j+1

if j = 0, · · · , s − 1, ρ̂j,h = e
′

1Γ
h (ej+1 + em+j+1) if j = 0, · · · , s − 1, ρ̂j,h =

e
′

1Γ
hej+1 if j = s, · · · ,m− 1.

Here {ej}
m+s
j=1 is the standard base of R

m+s and the matrix Γ is defined

such that its first row is equal to
(

â1 + b̂1, · · · , âm + b̂m,−b̂1, · · · ,−b̂s

)

, and

the other elements are all equal to zero, except the first one under diagonal

elements which are all equal to one. We use the expression (3.12) to build

the confidence interval around X̂t (h).
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4 A real case study

In this section, we investigate the German Energy EXchange market (EEX)

corresponding to the Wholesale spot electricity market and the associated

spot prices. The German spot prices have several key features such as:

long memory persistence with seasonality and non-constant volatility. These

stylized facts strongly suggest to use a GIGARCH process in order to make

forecast. Thus, we adjust several k-factor GIGARCH processes on this data

set and compare their forecasting performances with a benchmark model, a

SARIMA-GARCH model.

4.1 Estimated models

In this subsection, we compare competitively three different modelling ap-

proaches in order to forecast this hourly series for different forecast horizons,

starting from the first of January 2003. The first model is the SARIMA

model of Box and Jenkins (1976) with conditional heteroskedastic noise. We

denote it M1. The second model is a 3-factor GIGARCH model denoted

M2. Lastly, the third one is a 1-factor GIGARCH process estimated after

removing the weekly seasonality by applying the filter 1 − B168 to the data

set. We denote it M3
1. Below, the values given in brackets correspond to

the standard deviation of the estimated parameters.

4.1.1 The model M1

The autocorrelation function of the EEX spot prices (Figure 4) exhibits

an exponential rate at the daily lag. Then, using the Akaike Information

Criterion (AIC) and Bayesian Information Criterion (BIC), we investigate,

in that sense, the best SARIMA(p, d, q) × (P,D,Q)24-GARCH(1, 1) model.

1The results of this model are available from authors upon request.
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The selected model M1 is defined by:

(I −B)
(

I −B24
)

φ(1) (B) Φ(1)
(

B24
)

(Xt − 2.97) = θ(1) (B)Θ(1)
(

B24
)

εt,

(4.1)

where,

φ(1) (B) = I − φ̂
(1)
1 B,

with φ̂
(1)
1 = 0.648(7.425 × 10−4), and

Φ(1)
(

B24
)

= I − φ̂
(1)
24 B

24 − φ̂
(1)
48 B

48,

φ̂
(1)
24 = 0.1221(5.756 × 10−5), φ̂

(1)
48 = −0.0579(5.5707 × 10−5). We also get

θ(1) (B) = I − θ̂
(1)
1 B,

with θ̂
(1)
1 = 0.7479(5.6393 × 10−4), and

Θ(1)
(

B24
)

= I − θ̂
(1)
24 B

24 − θ̂
(1)
168B

168,

with θ̂
(1)
24 = 0.9184(1.0618 × 10−5), θ̂

(1)
168 = 0.851, (0.303). Finally

εt =

√

h
(1)
t ηt, with h

(1)
t = â

(1)
0 + â

(1)
1 ε2t−1 + b̂

(1)
1 h

(1)
t−1, (4.2)

with â
(1)
0 = 0.00872(6.6668×10−9), â

(1)
1 = 0.3799(1.8223×10−5), and b̂

(1)
1 =

0.4867(1.9028 × 10−5).

4.1.2 Model M2

The periodogram of the EEX spot prices is unbounded at three frequencies,

thus we consider that the series (Xt)t∈Z
can be modelled using a 3-factor

GIGARCH process. The observed prices (Xt)t, in their logarithmic scale,

have the following representation:

Φ(2) (B)

3
∏

i=1

(

I − 2ν̂
(2)
i B +B2

)d̂
(2)
i

(Xt − 2.97) = Θ(2) (B) ζt, (4.3)
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where d̂
(2)
1 = 0.135(0.009), d̂

(2)
2 = 0.214(0.006) and d̂

(2)
3 = 0.141(0.015). The

polynomials Φ(2) (B) and Θ(2) (B) are respectively equal to:

Φ(2) (B) = I − φ̂
(2)
24 B

24 − φ̂
(2)
168B

168,

where φ̂24 = 0.863(0.179), φ̂168 = 0.951(0.221) and

Θ(2) (B) = I − θ̂
(2)
24 B

24 − θ̂
(2)
168B

168,

with θ̂
(2)
24 = 0.720(0.331), θ̂

(2)
168 = 0.794(0.298). Finally,

ζt =

√

h
(2)
t ξt, with h

(2)
t = â0

(2) + â1
(2)ζ2

t−1, (4.4)

where â0
(2) = 0.0141(3.39.10−4) and â1

(2) = 0.756(0.365). Here, we have

retained three different G-frequencies for which the spectral density func-

tion is unbounded: ν̂
(2)
1 = cos

(

2π×869
20856

)

, ν̂
(2)
2 = cos

(

2π×124
20856

)

and ν̂
(2)
3 =

cos
(

2π×1738
20856

)

.

4.1.3 Forecasting results

To evaluate the capability of the models (4.1)-(4.2) and (4.3)-(4.4) to forecast

electricity German prices, we use the forecasting method developed in Section

3. The period from January 1, 2003 to December 31, 2003 is considered as

the out-of sample forecasts period. We assess the predictive ability of the

two models by considering the Root Mean Squared Error (RMSE) of the

forecasts defined by

RMSE =

√

√

√

√

1

M

M
∑

i=1

(

Xt+i − X̂t (i)
)2
, (4.5)

where M is the size of the out-of-sample forecast period and X̂t (i) is the

predicted value of Xt+i. We use this criteria because we are interested in

the measure of the variation between the observed data and the forecast data.
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For each model, forecasts are computed for h = 1, · · · , 720 hours (from one

hour to one month). As we use the prices in a logarithmic scale, we need

to compute the exponentials of these log-forecastings. In order to get these

forecasts, we assume the Gaussianity of the white noise (ξt)t∈Z
in equation

(3.2). Then, the forecasts for the spot prices at time T can be computed

using the following expression

ŜT (h) = exp

{

X̂T (h) +
1

2
var [êT,h]

}

. (4.6)

Using two particular weeks, on Figures 6-7, we illustrate the seven step ahead

forecasting performance of the M2 model (3-factor GIGARCH model) and

the benchmark M1 model (SARIMA-GARCH). The first week goes from

March 16, 2003 to March 22, 2003 while the second goes from September 8,

2003 to September 14, 2003. We notice that the forecasts from the 3-factor

GIGARCH model (model M2) are closer to the observed prices values than

those obtained from the benchmark model (model M1), with respect to the

RMSE, see Table 2.

Insert Figures 6 and 7

In Table 2, we provide errors for the thirty days ahead, for models (M1),

(M2) and (M3), for some specific hours. We notice that the model (M2)

outperforms the benchmark model (M1), even for short-term prediction. In

addition, we empirically prove that, with a well specified nonlinear long-

memory model, the predictions are more accurate than with a misspecified

linear long-memory model. This kind of misspecification and its disastrous

consequences for long range forecasting have already been pointed out by

Ray (1993) through a simulation study. We also perform forecast-accuracy

comparisons in order to evaluate if the accuracy of the SARIMA-GARCH

and 3-factor GIGARCH models are equal. Visual inspection of the sample

autocorrelation function of the loss differential series in Figure 8 is sugges-

tive of long-range dependence behaviour. Moreover, the Box-Pierce Q-test of
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up to twenty five order, Q (25) = 5.6558 × 103, is highly significant relative

to its asymptotic null distribution of χ2
25. According to this latter result,

the simple F test, Morgan-Granger-Newbold test and Meese-Rogoof test

are not applicable.Therefore, we perform the comparing predictive accuracy

test proposed by Diebold and Mariano (1995). For the SARIMA-GARCH

and the 3-factor GIGARCH models’ forecasts, the estimated S1 statistic2,

S1 = −2.3546 implying a p value of 0.0185, is well above the critical value

at the 5% level of significance, thereby rejecting the null hypothesis of equal

forecast roots expected square error. However, when considering the 3-factor

GIGARCH and 1-factor GIGARCH models, we obtain S1 = −1.6216, im-

plying a p value of 0.1049. In this latter case, we do not reject at 5% levels

the null hypothesis of equal roots expected square error. Thus, these com-

parative predictive accuracy tests proposed by Diebold and Mariano (1995)

confirm the supremacy of model M3 for forecasting this electricity data set.

Insert Table 2

5 Conclusion

In this paper we have investigated forecasting’s method using a stochastic

model such as a k-factor GIGARCH process. We derive a least square pre-

dictor and its properties and we characterize the conditional variance error

of this predictor. The results provided in section 3.2 are new and permit

to obtain close form expressions for predictions using a k-factor GIGARCH

process.

2The estimated statistic S1 for testing the null hypothesis of equal forecast accuracy

is d̄/

√

2πf̂d (0) /T , where d̄ is the sample mean loss-differential and f̂d (0) is a constant

estimate of fd (0) given by 2πf̂d (0) =
∑

T−1
τ=−(T−1) 1 (τ/S (d)) γ̂d (τ), with γ̂d is the sample

autocovariance of d, 1 (τ/S (d)) is the uniform lag window, S (T ) is the lag truncation and

T the sample size of the loss differential series.
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This forecasting method is applied to the German hourly electricity spot

market prices. We adjust three different models on this data set: a SARIMA-

GARCH model as a benchmark, a 1-factor GIGARCH model and a 3-factor

GIGARCH model. The forecasting results for the year 2003 with the esti-

mated models are highly convening in the sense of RMSE criteria. The model

M2 (3-factor GIGARCH process) provides better forecasts in the sense of

RMSE criteria than model M1 (SARIMA-GARCH process) and model M3

(1-factor GIGARCH process), when modelling EEX prices on the period un-

der study. In addition, the comparing predictive accuracy test from Diebold

and Mariano (1995) suggest that the expected square error for the models

forecasts are not equal, confirming the fact that this new modelling improves

the forecasts for this kind of data set.

Thanks to this study, we have detected presence of seasonal long memory

and heteroskedascity in electricity spot prices and provide interesting mod-

elling to take them into account. Note that these features appear frequently

inside the European electricity market.

Acknowledgments: We wisk to thank the two referees as well as the editor

for helpful comments and suggestions, which have permittedto improve the

presentation of this paper.
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Figure 1: Evolution of the EEX spot

market prices in its logarithmic scale from

15/08/2000 to 31/12/2002.
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Figure 2: Two weeks zoom concerning the

evolution of the EEX spot market prices in

its logarithmic scale from october 14, 2000 to

october 27, 2000.
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Figure 3: Non-parametric density of the log electricity spot prices (solid line)

and probability density function of the Normal distribution (dotted line)
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Figure 4: Autocorrelation function for the

EEX spot market prices in its logarithmic

scale from 15/08/2000 to 31/12/2002.
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Figure 5: Periodogram of the EEX spot

market prices in its logarithmic scale from

15/08/2000 to 31/12/2002.

0 20 40 60 80 100 120 140 160 180
5

10

15

20

25

30

35

40

45

50

Hours

S
p

o
t 
p

ri
c
e

s

Observed
SARIMA
GIGARCH

Figure 6: Seven days ahead spot prices fore-

cast for EEX spot market, for both the model

M1 and M2, from March 16, 2003 to March

22, 2003.
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Figure 7: Seven days ahead spot prices

forecast for EEX spot market, for both the

model M1 and M2, from September 8, 2003

to September 14, 2003.
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Figure 8: Autocorrelation function for the loss-differential series.

Table 1: Statistics of daily log returns of the S&P 500 stock market index.

Number of observations 20856 Skewness -2.6

Mean 2.97 Kurtosis 29.67

Standard deviation 0.6241 Jarque-Bera test 7.3098×105

Minimum -4.6052 Q (24) 8.4597×104

Maximum 6.5387 Q2 (24) 3.7156×104

The Jarque-Bera test critical value at significance level of 5% is 5.85423.

Q and Q2 are the Box Pierce statistics for the levels and square of the log

electricity spot prices, respectively, using 24 lags. The critical value at level

5% is 36.4150.
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Steps ahead 1 h 3 h 5 h 11 h 17 h 22 h 23 h 00 h

1 day 3.94 3.77 3.84 27.30 10.62 6.88 6.58 4.99

3.63 3.72 3.76 15.29 8.47 5.38 5.63 4.48

5.39 4.44 4.68 16.17 8.97 5.61 5.45 4.16

10 days 10.21 7.93 7.60 33.69 17.99 14.47 14.18 11.30

5.37 5.35 5.23 16.98 8.87 6.27 6.20 5.21

5.55 5.68 5.43 17.59 19.22 6.48 6.33 5.32

20 days 17.68 11.53 10.59 37.72 24.61 21.60 24.01 18.69

5.63 5.58 5.51 16.83 8.82 6.34 6.24 5.43

5.85 5.79 5.75 17.55 9.34 6.81 6.60 5.77

30 days 32.56 18.27 16.68 60.34 47.85 43.22 49.67 37.19

5.99 6.02 6.01 17.94 9.62 6.95 6.82 5.90

6.26 6.24 6.16 18.73 10.07 7.54 7.25 6.20

Table 2: RMSE of the two models associated to the spot prices at some hours each

day from one day-ahead to one month-ahead spot prices forecasts (the bold numbers are

RMSE provided by model M2 while the italic are from model M3).
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