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Which arithmeticisation for which logicism? Russell on
relations and quantities in The Principles of

Mathematics

Sébastien Gandon

MSH Clermont, PHIER, Université Clermont-Ferrand II, 4 rue Ledru, 63000
Clermont-Ferrand, FRANCE

This article aims first at showing that Russell’s general doctrine according to which all mathematics is

deducible ‘by logical principles from logical principles’ does not require a preliminary reduction of all mathematics

to arithmetic. In the Principles, mechanics (part VII), geometry (part VI), analysis (part IV-V), magnitude theory

(part III) are to be all directly derived from the theory of relations, without being first reduced to arithmetic

(part II). The epistemological importance of this point cannot be overestimated: Russell’s logicism does not only

contain the claim that mathematics is no more than logic, it also contains the claim that the differences between

the various mathematical sciences can be logically justified – and thus, that, contrary to the arithmeticisation

stance, analysis, geometry, mechanics are not merely outgrowths of arithmetic.

The second aim of this article is to set out the neglected Russellian theory of quantity. The topic is obviously

linked with the first, since the mere existence of a doctrine of magnitude, in a work dated from 1903, is a sign

of a distrust vis-à-vis the arithmeticisation program. After having showed that, despite the works of Cantor,

Dedekind and Weierstrass, many mathematicians at the end of the XIXth Century elaborated various axiomatic

theories of the magnitude, I will try to define the peculiarity of the Russellian approach. I will lay stress on the

continuity of the logicist’s thought on this point: Whitehead, in the Principia, deepens and generalizes the first

Russellian 1903 theory.

1 Introduction

Is Russell’s logicism to be taken as an extension of the arithmeticisation of mathematics?
Worded as it is, the question calls for only one answer: an unambiguous yes. The German
mathematician Christian Felix Klein, who is usually credited for having introduced the phrase
‘arithmeticisation of mathematics’ in a lecture delivered at the Royal Academy of Sciences of
Göttingen in November 1895 (an English translation of which was published as early as 1896),
regarded Weierstrass as the chief exponent of this mathematical tendency. He explained that
the ‘Weierstrassian method’ consisted mainly of always demanding a logical justification where
space intuition was formerly used in the proof:

Gauss, taking for granted the continuity of space, unhesitatingly used space intuition
as a basis for his proofs; but closer investigation showed not only that many special
points still needed proof, but also that space intuition had led to the hasty assumption
of the generality of certain theorems which are by no means general. Hence arose the
demand for exclusively arithmetical methods of proof.1

1[Klein, 1896] p. 966.
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Such a claim finds an echo in many passages of the Principles, where Russell explains at length
the reason why his philosophy of mathematics is opposed to Kant’s. For example, let us quote
the very beginning of [Russell, 1903]:

Not only the Aristotelian syllogistic theory, but also the modern doctrines of Symbolic
Logic were [...] inadequate to mathematical reasoning [...]. In this fact lay the
strength of the Kantian view, which asserted that mathematical reasoning is not
strictly formal, but always uses intuitions, i.e. the à priori knowledge of space and
time. Thanks to the progress of Symbolic Logic, especially as treated by Professor
Peano, this part of Kantian philosophy is now capable of a final and irrevocable
refutation.2

A parallel can thus be drawn between the two mathematicians, Weierstrass and Gauss, and
the two philosophers, Russell and Kant. Gauss thought, as Kant did, that space intuition
was essential to mathematics — Weierstrass showed, as Russell did, that space intuition must
be rejected and replaced by logical argument. This distrust of any use of spatial intuition in
mathematics, combined with the stress put on the logical structure of the proof, is enough to
number Russell among the proponents of the arithmeticisation program. Moreover, in the very
same article, Klein refers to Peano as a follower of the Weierstrassian method.3 Given the close
relationship between Russell and Peano, it is thus very difficult to exclude Russell’s logicism from
this movement.

But which program are we talking about exactly? Even at the time, many different methods
could be characterised by a common stress put on logical proof and by a distrust of spatial
intuition. Just before referring to the works of Peano, Klein, for instance, alludes to Kronecker’s
approach: ‘we can introduce further refinements [to the Weierstrassian method] if still stricter
limitations are placed on the association of the quantities [and] this is exemplified in Kronecker’s
refusal to employ irrational numbers’. Here, Klein counts Kronecker as an arithmetiser, among
Cantor, Peano and Weierstrass! Given the great diversity of the mathematical and epistemolog-
ical approaches developed by these three men, a program which gathers them all can only be
very weak and very vague.

In fact, it seems that we can distinguish three different components of the arithmeticisation
program, as it is described by Klein:

1) ‘arithmeticisation of mathematics’ can designate the purely negative effort to expel in-
tuition from mathematics. In this very broad sense, the Lagrangian definition of differential
coefficients in terms of the coefficients of the Taylor series associated with a function, for ex-
ample, can be seen as belonging to this program, even if the approach of Cauchy was initially
opposed to it.4 This view, which undoubtely is an important constituent in the arithmeticisation
movement, can be labelled the anti-Kantian standpoint, because Kant regarded intuition as an
essential component of any mathematical thought.

2[Russell, 1903] p. 4; see [Russell, 1903] pp. 456-461 as well.
3Klein explains that in the ‘efforts made to introduce symbols for the different logical processes, in order to get

rid of the association of ideas’, a ‘special mention must be made of an Italian mathematician, Peano, of Turin’;
see [Klein, 1896] p. 967.

4As I. Grattan-Guinness has shown [Grattan-Guinness, 2000], Lagrange’s influence has been considerable,
especially in England, throughout the XIXth Century — it has shaped the revival of the logical thought in the
works of Peacock, De Morgan and the others, who make the most of the formal and algebraic aspect of Lagrangian
thought.
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2) More positively, ‘arithmeticisation of mathematics’ can refer to the concern about the
logical structure of mathematical proof. All the ‘arithmetisers’ lay stress on the necessity to
have gapless arguments. Of course, this preoccupation may be linked with the first one. But it
does not have to be. Pasch, for example, who is credited as having been the first to completely
axiomatize a geometry, was actually an empiricist, and regarded the points of his elementary
geometry as some very small physical entities. Here, a stress put on rigour is backed up with a
regulated use of intuition.5 This component of the arithmeticisation movement, maybe its most
well-known part, can be named the standpoint of the rigorization.

3) But there is another meaning of the phrase ‘arithmeticisation of mathematics’, which oc-
curs in several different places in the Klein’s article — for example, when he mentions Kronecker.
The movement can be seen as a genetic approach, which aims at reducing mathematics to the
theory of whole numbers, i.e. to arithmetic. Here, the demand is not only to come back to
‘arithmetical methods of proof’, but to come back to the theory of whole numbers, which is a
much stronger requirement. For instance, Hilbert’s axiomatization of geometry satisfies the first
two conditions, but not the last one: a numerical model of the structure can of course be found,
but Euclidean geometry is not about numbers and is not defined as an extension of arithmetic
in [Hilbert, 1899]. I will call this last claim the genetic view.

We said above that Russell’s logicism should be taken as an extension of the arithmeticisation
of mathematics. But the brief analysis of Klein’s seminal article showed us that the latter phrase
has several different meanings, so that another question arises: to which arithmeticisation must
Russell’s logicism be related? In the Principles as in the Principia, Russell undoubtedly shares
the first two claims: no spatial or temporal intuition must intervene in mathematics and every
proof can and must be made logically rigorous. But did he share the third claim? Did Russell
maintain in 1903 that all mathematics is founded on arithmetic?

We could be tempted to give, once more, a positive answer. Weierstrass, Cantor and Dedekind
are famous for having constructed, each in their own way, the real field and real analysis from
elementary arithmetic. Russell, after Frege, would have added his contribution to the construc-
tion, in defining whole numbers as sets of equinumerous sets and in founding therefore arithmetic
on set theory. According to Russell, we would have not only this schema:

Real analysis and real numbers
Arithmetic and whole numbers

but also this stronger one:

Real analysis and real numbers
Arithmetic and whole numbers

Logic and set theory

The ‘arithmetisers’ succeeded in going from the second to the third level; Russell (after Frege)
would have claimed to have pushed the reduction one step further and to have based the second
level on the first one. Such an account is made by Russell himself at the beginning of his
Introduction to Mathematical Philosophy (p. 5):

5And the converse is also true: the endeavour to get rid of intuitions can coexist with the use of loose arguments.
Cauchy, for instance, objected to Lagrange for having used series without first investigating their convergence.
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Having reduced all traditional pure mathematics to the theory of the natural numbers,
the next step in logical analysis was to reduce this theory itself to the smallest set of
premisses and undefined terms from which it could be derived.

In spite of this passage, I would like here to qualify this standard presentation. In the sequel,
I will set out some elements which tend to show that the genetic point of view (i.e. the claim
that all mathematics can be reduced to arithmetic) is not shared by Russell in the Principles.
In order to show that there are reasons to doubt the standard view, in order as well to offset the
effect of the last quotation, let me first quote an unpublished letter from Whitehead6 dated 14
September 1909:

Dear Bertie,

The importance of quantity grows upon further considerations — The modern arith-
meticisation of mathematics is an entire mistake — of course a useful mistake, as
turning attention upon the right points. It amounts to confining the proofs to the
particular arithmetic cases whose deduction from logical premisses forms the existence
theorem. But this limitation of proof leaves the whole theory of applied mathematics
(measurement etc) unproved. Whereas with a true theory of quantity, analysis starts
from the general idea, and the arithmetic entities fall into their place as providing the
existence theorems. To consider them as the sole entities involves in fact complicated
ideas by involving all sorts of irrelevancies — In short the old fashioned algebras
which talked of ‘quantities’ were right, if they had only known what ‘quantities’ were
— which they did not.

The connection between analysis of metrical geometry is immediate — it is in fact
the same thing.

You see in short that I have recovered the simple faith of my angel infancy — I only
hope that it is not a sign of decay of intellect or of approaching death — You will have
to devote some attention to my MS — since their results will come as a shock to the
current orthodoxy. In fact mathematicians will feel much like Scotch Presbyterians
who might find that a theological professor in one of their colleges had dedicated his
work to the Pope.

Yours affectionately, ANW

Whitehead underlines here that ‘the arithmeticisation of analysis is an entire mistake’, and that
‘the old fashioned algebra’ of quantities is a better way of looking at the real numbers. How is
one supposed to reconcile these statements with the conception according to which Russell and
Whitehead’s logicism was a development of the genetic position? If the standard view is correct,
how are we supposed to deal with the content of this letter?

In the face of what appears as a plain contradiction, it could be tempting to minimise the
importance of the document. Is this a letter from Whitehead, and not from Russell? Isn’t it a
private letter, and not an extract from the Principles, or from the Principia? However, as we
will see, the challenge cannot be escaped that way: there is plenty of evidence that Russell, as
early as 1900, agreed with the ideas exposed by Whitehead — what is more, there are plenty of

6The surviving part of the Russell-Whitehead correspondences is available for consultation in the Russell
Archives at McMaster University, Hamilton.
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published passages (not very much studied, to tell the truth) that either foreshadow or take up
these ideas again.

I will here seek to take this Whitehead letter seriously, and try to link it with some more
well-known features of the logicist project. More precisely, I will give three arguments which tend
to show that the standard reading of Russell’s logicism must be qualified. The first one aims to
prove that the ideas developed by Whitehead in 1909 were not as shocking as he feigns to believe.
Contrary to a widespread opinion, many mathematicians at the time were not at all convinced
by the general relevance of the genetic point of view, and tried to algebraize and formalize the old
theory of magnitude. Russell and Whitehead’s position will be better understood, I think, once
placed in this more refined context. The second argument (sections 3 and 4) will concern Russell’s
1903 logicism as a whole. I would like to point out that the denial of the arithmeticisation
program, understood as a genetic approach, is compatible with the logicist stance, according
to which all mathematics are reducible to logic. Indeed, each mathematical discipline can be
reduced independently to logic, without being first reduced to arithmetic. I will hold that this is
exactly what happens in the Principles, where each traditional mathematical branch corresponds
to a specific type of relation. Finally, in the last two sections of this paper, I will focus on the
theories of magnitude elaborated by Russell and Whitehead. I will essentially speak about two
texts. In section 5, I will examine the English version of Sur la Logique des Relations, from 1900
(See [Russell, 1900]), where a theory of groups and of magnitude is worked out. In section 6,
I will briefly introduce the main ideas contained in part VI of the Principia, where Whitehead
deepens the first Russellian theory. This detour by [Russell and Whitehead, 1913] justifies itself
by the fact that it is fundamentally the same single theory that is expounded in 1913 and 1900,
and also by the fact that part VI of the Principia shows that Whitehead’s words in the letters
above, far from being just idle talk, are shared by Russell, who co-authored the work.

2 The axiomatics of magnitude

At the turn of the last century, many important mathematicians (Stolz, Helmholtz, Burali-
Forti, Hölder, Hilbert, Huntington, to mention a few), elaborated various axiomatic systems for
what they called a theory of magnitude.7 These various ‘theories of magnitude’ formed a little
‘genre’ in the mathematical literature of the time. Huntington, for instance, before offering his
own construction in 1902, refered to the previous attempts and thus presented his own work as a
part of a larger movement. All these axiomatics attributed to a certain set of entities (at least) a
structure of a totally ordered semi-group. Sometimes an Archimedean condition was postulated;
sometimes not (as in Stolz’s contribution). For our present purpose, the fundamental point is
that, in these theories, the elements belonging to the underlying set were not supposed to be
numbers; all kinds of entities (segments, areas, volumes, weights, sensorial intensities...) could
then be considered as magnitudes. The mere fact that these various scientists tried to formalise
and precisely define the old notion of quantity shows that, at the time, magnitude was not
universally regarded as a mere outgrowth of arithmetical concepts.

In order to give a more precise idea of what was a theory of magnitude, I list the axioms
(translated in today’s usual notation) given in a Burali-Forti’s article from 1899. This article
is important from our perspective, because it has been attentively read by both Russell and

7See [Stolz, 1885], [Helmholtz, 1887], [Burali-Forti, 1899], [Hölder, 1901], [Hilbert, 1899], [Huntington, 1902].
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Whitehead.8 This is the way Burali-Forti defines a set G of homogeneous magnitudes <G, +>:

1- a, b ∈ G, a+ b = b+ a

2- a, b ∈ G, a+ (b+ c) = (a+ b) + c = a+ b+ c

3- a, b, c ∈ G, (a+ c = b+ c)⇒ a = b

4’- a ∈ G, ∃x ∈ G, a+ x = a

4”- a ∈ G, ∃x ∈ G, a+ x > a

5 - b ∈ G, a ∈ G\{0}, (a+ b) ∈ G\{0} 9

Definition of order: if a, b ∈ G then a > b iff ∃x ∈ G\{0}, a = b+ x

6- a, b ∈ G, a = b ∨ a < b ∨ a > b

7- a ∈ G, ∃x ∈ G\{0}, x < a

8- If U ⊂ G,U 6= ∅,∃x ∈ G,∀y ∈ U, y < x, then:

∃z ∈ G, ∀y ∈ G, (y < z ⇒ ∃w ∈ U, y < w).

Observe that, here, no Archimedean postulate is formulated – but Burali-Forti says that the
Archimedean condition can be derived from the eight axioms.

All these algebraic formalizations of the old Eudoxian theory raise the same question: why are
these authors going back to a notion that the new arithmetical genetical theories have made re-
dundant? It seems we can distinguish two underlying lines of thought. The first one, represented
by Burali-Forti (who, once again, inspired Russell and Whitehead), is a strong philosophical
program, in the sense that it explicitly aims to oppose the arithmeticisation view, according to
which continuous magnitudes can be reduced to the whole numbers. Burali-Forti thus explained:

Chapter I of this book contains the properties of the magnitudes which do not depend
on the idea of number (integer or fraction or irrational). [...] Chapter II contains
the basis of the theory of the whole numbers. The idea of a whole number is logi-
cally derived from the usual and concrete idea of magnitude. Once the sum of two
integers defined, we found that the wholes numbers constitute a homogenous class of
magnitudes; and once checked which are the primitive propositions about magnitudes
which are also true for the integers, we already get an important group of propositions
about the wholes numbers, by replacing the word magnitude by the word integer in
the propositions of Chap. I.

An analogous procedure is followed in chapters III and IV, devoted to the rationals
and the irrationals.

A first conclusion of the method we just exposed is the swiftness with which we
can teach, at school, the formal properties of the algebraic operations, by including
the elements magnitudes and numbers which are usually examined separately. But

8Whitehead alludes to this work in a second letter dated 28/1/1913: ‘As to the preface -– The work on
‘grandeurs’ started with a study of Burali-Forti’s articles in the Rivista and was directed initially to arrive at the
same results. Of course his work is really based on Euclid Bk V — whom I ought also to have studied, but did
not. Thus our antecedents are Euclid and Burali-Forti ; but it should be mentioned that (1) by the introduction
of ‘relations’ and (2) by the keeping of the group idea in the background, and (3) by the separate treatment of
ratio, and (4) by avoiding number and (5) by the introduction of cyclic groups, the subject has been entirely
modified. I think these points should be mentioned somewhere, not to claim novelty, but to show people what to
look for.’.

9Axiom 5 implies that the semi-group <G, +> is strictly positively ordered.
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another much more important conclusion is reached, which consists in making it
possible to obtain the general idea of number in a concrete shape by deriving it from the
concrete usual idea of magnitude, which is essential for the metrical part of geometry
as well. (We italicize).10

The Italian mathematician defined, in the second part of his work, a set of operations on mag-
nitudes which satisfied the famous Peano’s axioms. Burali-Forti took this to mean that the
notion of whole numbers, and thus elementary arithmetic, should be derived from the notion of
magnitude, and not the other way round, as the ‘arithmetisers’ suggested.11

However, many mathematicians who elaborated such a theory did not want to directly conflict
with the genetic approach taken by Cantor, Dedekind and Weierstrass. As Hilbert said in 1900,
the aim was only to supplement (not to refute) the genetic method (which derived R from N),
by an axiomatic one:

If we cast an eye over the numerous works that exist in the literature on the principles
of arithmetic and on the axioms of geometry, and if we compare them with one
another, then, in addition to many analogies and relationships between these two
subjects, we nevertheless notice a difference in the method of investigation.

Let us first recall the manner of introducing the concept of number. Starting from the
concept of the number 1, one usually imagines the further rational positive integers
2, 3, 4, ... as arising through the process of counting, and one develops their laws of
calculation; then by requiring that subtraction be universally applicable, one attains
the negative numbers; next one defines fractions, say as a pair of numbers [...]; and
finally one defines the real number as a cut or a fundamental sequence [...]. We can
call this method of introducing the concept of number the genetical method, because
the most general concept of real number is engendered [erzeugt ] by the successive
extension of the simple concept of number.

One proceeds essentially differently in the construction of geometry. [...] We raise
the question whether the genetical method is in fact the only suitable one for the
study of the concept of number, and the axiomatic method for the foundations of
geometry.12

An axiomatic theory of the real field, taken from sections iii-v of the Grundlagen, is then pre-
sented. Hence, unlike Burali-Forti, Hilbert did not question the legitimacy of the Dedekindian
method. Instead, he just wanted to stress the possibility of using another approach, the ax-
iomatic one, which he had already applied to geometry. The idea seems to be that adopting
the same method to investigate the principles of both arithmetic and geometry can reveal many
otherwise hidden ‘analogies and relationships’ between the two subjects. But why seek to stress
the analogies between arithmetic and geometry?

To understand what appears to be the central tenet of this second line of thought, we must
remind ourselves of the very important development, throughout the XIXth century, of the geo-
metrical calculi. People like Grassmann, Möbius, von Staudt defined operations like addition and
product directly on geometrical entities (points, bipoints, lines ...). The German mathematician

10[Burali-Forti, 1899] p. 34.
11In the same connection, Burali-Forti explained that he did not formulate the Archimedean postulate so as to

keep the notion of magnitude separate from any reference to the whole numbers.
12[Hilbert, 1900] p??.
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Christian von Staudt is here especially important because he was the first to use the algebraic
properties of these operations to define an isomorphism between what we will call today the field
of the real numbers and the points of the projective lines – for him and for his followers (e.g.
Klein, but, among others, Russell as well), this key-result allowed the introduction of coordinates
and numerical quantities in geometry, and thus legitimated, from a synthetical standpoint, the
practice of the analytical geometers.13 In this tradition, geometry and analysis must be kept
apart: numbers and geometrical entities were not regarded as the same thing. But there was an
analogy between the two fields, which explained the reason why numerical magnitudes could be
used in geometrical investigations.

The reference to the ‘many analogies and relationships’ between arithmetic and geometry
Hilbert makes at the beginning of his [Hilbert, 1900] seems precisely to point to the discussions
about the coordinates introduction. Hilbert explicitly bought up the issue of the coordinates
when he presented his segment’s calculus, in the very section from which his Über den Zahlbegriff
is extracted.14 For him, as for the followers of von Staudt, the distinction between geometry and
arithmetic (or analysis) seems to have been taken as a datum, that could not be denied. The
question was then to explain how, given the deep difference between their respective subject-
matters, numbers could be used in geometry. The genetic method, since it denies that there is an
irreducible difference between numbers and magnitudes, appeared to be too strong to carry out
the task; only the axiomatic approach could account for ‘the many analogies and relationships’
between what was still recognised as two different domains.

One of the central issues raised by all this kind of work concerned the nature of the algebraic
structure common to both numerical and geometrical magnitudes. This question was especially
difficult and widely discussed, in view of the fact that the mathematicians who elaborated these
geometrical calculi tended to oppose geometrical to numerical magnitudes, and elaborated their
calculus precisely in order to purify geometry from any ‘numerical taint’ (see [Russell, 1903]
p. 421). Axiomatising the theory of magnitude seems to have constituted a first answer to
this problem. Many things, as different as numbers, segments, bipoints, functions, sensorial
intensities... were, were traditionally called ‘magnitudes’, and this common feature, shared by
all of them, did not prevent them from being recognised as belonging to very distinct kinds of
things. The traditional ‘neutral’, cross-disciplinary character of the idea of magnitude was then
crucial: to say that numbers and segments (for instance) were magnitudes did not amount to
assimilating numbers and segments to a third kind of thing, because magnitudes were not put
on the same footing as numbers or segments. To claim, on the other hand, that segments can
be reduced to numbers was a completely different affair, which led to blurring the traditional
distinctions between the mathematical fields. It seems that for the mathematicians of the second
group, the reasoning of the ‘arithmetisers’ was objectionable precisely on this point. Constructing

13For a modernised presentation of Staudt’s Würfe algebra, see [Coxeter, 1949] pp. 145-158. For an account of
von Staudt’s work in real projective geometry and his influence on M. Pieri (whose research had a big impact on
Russell’s thought), see as well [Marchisotto, 2006].

14On the fundamental role played by the segment calculus in the Grundlagen, see [Rowe, 2000]. Hilbert’s
early project is usually exclusively viewed from the perspective of the later development of the model theory —
in stressing the connection between the Grundlagen and the contemporary foundational research in projective
geometry, Rowe invites us to change the way of looking at this epoch-making book; see [Rowe, 2000] p. 55:
‘Whereas many of Hilbert’s commitments and some of his germinal ideas can be traced back to the turn of the
century, very little of his early work had any direct connections with set theory or logic. [...] A far clearer
picture of Hilbert’s views on foundations emerges, I believe, if we widen our lens a bit by considering how his
“philosophical” leanings and “metamathematical” commitments related to concerns that arose in the context of
Hilbert’s own mathematical research.’
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an axiomatic theory of magnitude represented the means to uncover ‘the many analogies and
relationships’ between the various mathematical branches, without, however, destroying the usual
boundaries between them.

To summarize: unlike Burali-Forti, certain mathematicians who developed axiomatic theories
of magnitude, did not want to reduce numerical to geometrical magnitude; they only wanted
to express the formal relationships between different mathematical areas without loosing the
distinctive features of the mathematical subdisciplines. For the supporters of a purely synthetical
approach of geometry, ‘arithmeticisation’ was a reductive stance, that represented the same kind
of threat as the unrestrained use of the analytical methods, and was exposed to exactly the same
criticism: to introduce inessential foreign elements (numbers) into the topic under investigation.15

Thus, at the time of the writing the Principles, the arithmeticisation of analysis was not the
only available way to think about quantities. The mathematical world was more complex and
less uniform than it is too often thought today, and to take into account the complexity of the
situation is a first step toward a more balanced understanding of Russell’s view. Around 1900,
there was in fact a very deep tension between the arithmeticisation program and the tradition of
synthetical geometry that aimed to expel numbers from the geometrical universe. Considering
their previous commitments in the foundations of geometry, Russell and Whitehead could not
have ignored this important issue. Cantor and Dedekind’s works were far from being the first
and only contact between Russell and the mathematical world. Remember that, in his first book
on the foundations of geometry, Russell sides with Klein and von Staudt against the analytical
(which Russell called Riemannian) conceptions, which regarded space as a numerical manifold.
And likewise, remember as well the intense involvement of Whitehead with the Grassmannian
tradition (Whitehead’s Treatrise of Universal Algebra is a deepening of the Ausdehnungslehre).
This geometrical common background, shared by the two logicists, must be taken into account
when interpreting the Principles.

3 The several distinct uses of the theory of relation (I): the ‘type’ of a relation

I will here leave for a while the topic of quantity in order to confront directly the standard
view, according to which Russell followed Cantor, Weierstrass and Dedekind in founding all
mathematics on arithmetic. The usual interpretation attributes to Russell the following three-
levelled schema (labelled, in the sequel, the ‘umbilical schema’ because arithmetic is presented
there as the only channel through which logic and mathematics interact):

Analysis – Part III-VII
Arithmetic – Part II

Logic: theory of relations, of classes and propositions – Part I

15Today, thanks to the emergence of the purely formal theories of algebraic structure during the 1920s and the
1930s, we do not any longer require the idea of magnitude to analyse the common features between mathematical
theories — magnitude is just, for us, a kind of ordered semi-group, i.e. a very particularised algebraic structure.
But let us remember that at the beginning of the century, the main algebraic concepts (group, field, etc...) were still
regarded as tools that could be used to resolve what was still conceived as arithmetical or geometrical problems.
The investigation of the properties of a structure invariant under some extension or some restriction of the
underlying set was thus not systematically undertaken: algebraic structures were not yet a proper mathematical
object (For more on this topic, see [Corry, 1996] and [Sinaceur, 1999]). At the beginning of the last century, the
old idea of ‘magnitude’ could have been a means (not the only one, for sure) to fill the gap.
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At the first level, we would find logic16 (part I of the Principles); at the second one, arithmetic
(part II of the Principles), and at level three, analysis and the rest of mathematics (all the
remaining parts). According to this view, Russell wished to secularize Kronecker’s words ‘God
made the integers, all else is the work of men’, since in the Principles, it seems as if the theory
of relation and set theory could replace God in creating the natural numbers. But such an
assertion of the power of logic has a drawback: once the whole numbers were ‘created’, nothing
logically interesting seemed to happen in the remaining parts of Russell’s work. This last point
is important. The idea that arithmetic is the umbilical cord between mathematics and logic
induces a certain reading of The Principles. The belief that logic intervenes only in the first two
parts of the [Russell, 1903] seems to imply that the rest of the work constitutes a popularized
summary of already done and well-known deductions — two-thirds of [Russell, 1903] would then
be quite uninteresting, being already completely redundant at the time.17 In other words, in
this interpretation, the true import of the Principles would not be the logicist stance (according
to which mathematics is nothing else than logic), not even the logical definition of the cardinal
numbers in part II (since it has already been done by Frege), but only the realization that logic
itself involves serious difficulties (e.g. the discovery of the paradoxes).

Of course, this reading could find some support from the way Russell directs his subsequent
work (after 1903) exclusively toward logical topics. Nevertheless, it is a fact, which will soon
be documented, that, in the Principles, the theory of relations, i.e the core of the new logic
according to Russell in 1903 (see note 16), is not confined to the first and the second part of
the book, but underlies the whole work. If logic is the Russellian God, it is then a Cartesian
God, which intervenes not only once, but all the time and everywhere. The theory of relations
plays a part in the construction of the finite cardinals; but it intervenes also in the doctrine of
order in part IV and V ; it pushes in as well in part VI, in the definition of the concept of space
as an incidence structure (for more on this point, see section 4 below) ; and, finally, in part
VII, in order to construct the fundamental concept of occupation of a place at a definite time,
Russell needs once again to come back to logic, to guarantee the logical possibility of three-terms
relations.18 This simple remark leads us to put forward an alternative schema (labelled ‘tree
schema’, because the theory of relations appears there like the tree trunk from which all the
various mathematical branches develop themselves):

16 Russell does not in 1903 define precisely what logic is. Part I of the Principles is a collection of various formal
theories: the propositional calculus, the calculus of class, the calculus of relations – and of various (sometimes very
sketchy) ‘doctrines’ about the fundamental logical concepts: the doctrine of denoting, of classes, of propositional
functions... Moreover, Russell does not yet seem to size the bearing of the contradiction up – that is, in 1903, he
does not seek to separate what we would call today the predicate calculus from the theory of class (set theory is
a part of logic for Russell at the time). Of course, this greatly confuses the situation for us. But despite all these
complications, one thing seems clear: the great importance lent to the theory of relation (which Russell claims to
have discovered) for the analysis of mathematics. Thus Russell explains that ‘a careful analysis of mathematical
reasoning shows [...] that types of relations are the true subject-matter discussed’ and, hence, that ‘the logic
of relations has a more immediate bearing on mathematics than that of classes or propositions, and [that] any
theoretically correct and adequate expression of mathematical truth is only possible by its means.’ [Russell, 1903]
pp. 23-24. Since it plays the essential role in logicism, we will in the sequel focus exclusively on the doctrine of
relations.

17The fact that the mathematical parts of [Russell, 1903] are much less analysed than the first two parts of the
book seems to be the direct consequence of the standard ‘umbilical view’.

18See on this point [Russell, 1903] pp. 465-473; and especially, p. 472: ‘We must examine the difficult [but
fundamental, as far as the part VII is concerned (see pp. 465-466)] idea of occupying a place at a time. Here again
we seem to have an irreducible triangular relation. If there is to be motion, we must not analyze the relation into
occupation of a place and occupation of a time.’.
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Arithmetic, II Theory of magnitude, III Analysis, IV-V Geometry, V Mechanics, VI
Logic: theory of relations, of classes and propositions, I

Here, and contrary to the umbilical diagram, we no longer have various disciplines, first
all reduced to arithmetic, and only subsequently reduced to logic. Instead, we have various
mathematical branches, all independently and directly derived from logic. Before precising the
relation between logic and the various mathematical fields in the ‘tree view’, and before presenting
the reasons why we believe that this schema is more faithful to the structure of [Russell, 1903]
than the previous one, let us make a few comments.

Firstly, this last view is still a kind of reductionism. In the ‘tree schema’ as in the ‘umbilical’
approach, all the various mathematical subjects are derived from the same fundamental theory
(the theory of relations and set theory). From both points of view, Russell’s project is a kind
of reductionism. Secondly, only the first view fits well into the genetic arithmetical conception
according to which all mathematics is reducible to arithmetic. Indeed, in the ‘tree schema’, the
boundaries between the mathematical subfields are respected. If all mathematics is certainly
derived from logic, each usual mathematical branch appears different from the other ones. In
particular, arithmetic does not enjoy any special status. The very core of the arithmeticisation
program, which consists in extending the field of arithmetic outside its traditional domain (to-
ward analysis and geometry in particular) is here therefore missing. This is a simple but often
overlooked point. Logicism need not endorse the arithmeticisation program (in its genetic ver-
sion). Claiming that all mathematics can be reduced to logic and claiming that all mathematics
can be reduced to arithmetic are two different assertions, neither of which implies the other.

Even better, and this will constitute my third and last preliminary remark, the ‘tree view’ not
only respects, but in some ways legitimates, the traditional distinctions between mathematical
fields. As we said above, in the Principles, the way in which Russell uses logic in part II, devoted
to cardinal arithmetic, differs from the way he uses it in parts IV and V, dedicated to analysis
— which itself differs again from the way Russell uses it in the part VI, devoted to geometry.
The logic developed in the various parts is each time specific: equivalence relations are the
subject-matter of part II, order relations are analysed in part IV, incidence relations (see below
for more on this topic) in part VI, and three-terms relations in part VII. To each division of the
Principles, that is to each box in the top line of the ‘tree schema’ corresponds a specific branch
of the theory of relations. That is to say, the usual distinctions inside mathematics (between
analysis and arithmetic for example) are, for Russell, based on some deep logical distinctions,
and it would then be a logical mistake to reduce any one of them to some other (for example,
to reduce analysis and order relations to arithmetic and equivalence relations). This point goes
directly against the fundamental tenet of the arithmeticisation standpoint. To overstate, we
could say that, in the ‘tree schema’, it is as if the reduction of mathematics to logic was a means
to restore, against the threat represented by the reduction of all mathematics to arithmetic, the
old boundaries inside mathematics.

Until now, we have only presented two ways of looking at the general structure of Russell’s
Principles (one standard, the other one more unusual), and made some remarks on the signifi-
cance of the second one, without arguing for one interpretation against the other. It is now time
to put forward our reasons to favour the ‘tree view’. I will distinguish two different arguments.
The first one is general, and aims at showing that Russell has got the means, in the Principles,
to logically differentiate the several uses of the theory of relations he makes throughout his book.
The second one, to which section 4 (and in fact, the two last sections as well) is dedicated, is
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more specific: I will try to show that every part of the Principles (except the first one) can be
seen as a theory of a specific kind of relation.

Let us first indicate the general feature that gives some support to the ‘tree approach’. It
is a fact that [Russell, 1903] is organised in accordance with the (at the time) usual division of
mathematics into arithmetic, analysis, geometry and mechanics. The apparent structure of the
Principles is, as a matter of fact, very traditional, and does not seem to support any reductionist
view of mathematics. Compare for example the table of contents of [Russell, 1903] with the
one of the Van der Waerden’s 1930 Algebra: in the latter, a deep and complete upheaval of
the traditional division of the mathematical field (which, by the way, has been said to have
been foreshadowed by Dedekind19) is introduced. There is nothing comparable in the Principles,
whose global structure keeps up the usual architecture of the mathematics, without offering
anything new. In particular, Russell does not follow the genetic conception in presenting all the
mathematical disciplines as some extensions of arithmetic.

But, as important as it is, this sole fact does not prove that Russell regarded the usual
division of the mathematical whole as something that can be logically vindicated. Russell could
just have found it convenient to take up the usual presentation, without being committed to a
particular epistemological position. This interpretation is however ruled out by the introduction,
at the very beginning of ([Russell, 1903], §8), of an important idea, the relational type:

Whenever two sets of terms have mutual relations of the same type, the same form
of deduction will apply to both. For example, the mutual relations of points in a
Euclidean plane are of the same type as those of the complex numbers; hence plane
geometry, considered as a branch of pure mathematics, ought not to decide whether
its variables are points or complex numbers or some other set of entities having the
same type of mutual relations. Speaking generally, we ought to deal in every branch
of mathematics, with any class of entities whose mutual relations are of specified type;
thus the class, as well as the particular relations considered, becomes a variable, and
the only true constants are the types of relations and what they involve. Now a type
of relation is to mean, in this discussion, a class of relations characterized by the
above formal identity of the deductions possible in regard to the various members of
the class; and hence a type of relations, as will appear more fully hereafter, if not
already evident, is always a class definable in terms of logical constants.20

The ‘type’ of a relation does not here designate a kind of variable, as it will do in the
Principia — it has nothing to do with the paradoxes and the type theory. A type, in the sense
of the Principles §8, is a class of relations characterised ‘by some property definable in terms
of logical constants alone’, that is, a class of relations characterized by some formal, purely
logical, property. Thus for example, the equivalence relations (i.e. the symmetrical, reflexive
and transitive relations) and the order relations (i.e. the transitive asymmetrical relations) are
instances of relational types. A purely formal theory of such relations can be constructed, and
Russell actually does present such a theory in part II and part IV of his book.

Now, in the passage just quoted, an explicit connection is made between the relational ‘type’
and the subject-matters of the various mathematical disciplines: ‘speaking generally’, says Rus-
sell, ‘we ought to deal in every branch of mathematics, with any class of entities whose mutual

19On the link between Dedekind and the emergence of the modern algebra in the thirties, see [Sinaceur, 1999].
20[Russell, 1903], pp. 7-8.
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relations are of specified type’. Thus, since ‘the mutual relations of points in a Euclidean plane
are of the same type as those of the complex numbers’, Russell claims that ‘plane geometry, con-
sidered as a branch of pure mathematics, ought not to decide whether its variables are points or
complex numbers’. And indeed, complex numbers are tackled, in [Russell, 1903], in the chapter
xliv of part VI, devoted to geometry. From the same kind of reasoning, it follows as well that the
distinctions between the different branches inside mathematics should be regarded as based on
the differences between various logical types (in the sense of Principles §8): every mathematical
discipline is characterised by a type.21 Therefore, far from being only a convenient means to
present mathematics, the division of the book in as many parts as there are different mathemat-
ical branches must be seen as a very significant feature. It means that the traditional boundaries
between the various areas are turned into fundamental logical distinctions, i.e. into ‘type’ dis-
tinctions (distinction between equivalence and order relations, between order and three-terms
relations, etc...). Thus, as we have suggested before, the logical reductionism of the Principles
is not only compatible with a dismissal of the arithmeticisation program, but represents also a
criticism of it: to base the difference between the mathematical disciplines on some type distinc-
tions appears to preclude reducing any given mathematical doctrine to any other (for example,
geometry to arithmetic). Indeed, such a move would involve a logical mistake, since it amounts
to missing a genuine logical distinction between ‘types’ of relations.

Our first general argument in favour of the ‘tree view’ is thus the following: Russell developed
the means, in his book, to logically differentiate the various mathematical branches. Every
singled out discipline must match, says Russell in the Principles, a particular relational type.
Logic (theory of relation) is thus not only the basis from which all mathematics can be derived
— logic is as well the basis from which all the differences between the traditional mathematical
subject-matters can be derived. The division Russell makes inside mathematics should not then
be regarded only as a superficial and convenient way of presenting the mathematical content,
but as expressing an important philosophical feature of Russell’s 1903 book.22

4 The several distinct uses of the theory of relation (II): Analysis and Geometry
in the Principles

But is Russell’s claim true? Can we really relate every part in [Russell, 1903] (that is, in
order of appearance, arithmetic in part II, theory of quantity in part III, analysis in part IV and

21It should be observed that the logical notion of type is not only defined in the passage just quoted as a class
of relations, but also as a form of deductions. Hence, mathematical branches are distinguished not only by their
primitive terms, but also by the way their proofs proceed — by their method. In other words, Russell seems to
claim that the pursuit of the ‘purity of method’, i.e. the attempt to keep the proofs of a particular area free from
‘foreign’ elements, is a task that is met by his program: a type is a (logical) definition of what makes a specific
branch so peculiar.

22I do not want to suggest here that Russell shared an architectonic view of mathematics, according to which
the division of the mathematical field could be deduced from the theory of relations alone, a bit like, in Kant’s
philosophy, the categories should be deduced from the form of judgement alone. The relational types analyzed in
the Principles are not the only ones possible, and the reasons why Russell chooses to focus on some rather than
others are purely factual: it just happens that mathematics, at the times, puts certain relational types (equivalence
relation, order, incidence, ...) forward, to the detriment of others. It could have been different. For instance, in
the Principles, Russell says only a few words about the relational property of connectivity (see [Russell, 1903]
pp. 239-240). But he does not really work out in detail the theory of such relational type. Why? Because it
just happens that mathematics at the time was not required to develop such a theory. We could think that if
the graph theory (for exemple) had been created, Russell would have built a much more refined doctrine of the
relational connectivity – as in fact Carnap, in his Aufbau, does. The theory of relation does not in itself contain
one particular ‘system’ of relational types. My contention is not that the theory of relation fits in particulary well
with the traditional architecture of the mathematical sciences, but that Russell uses it to uncover the historically
given differences between the mathematical disciplines.
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V, geometry in part VI, mechanics in part VII) to a specific relational type? To answer this
question, we have to leave out the overall structural analysis of the Principles and turn toward
the architecture of each of its parts. We have already suggested that the theory of relations
intervenes everywhere in [Russell, 1903]: in part II, with the doctine of equivalence relations; in
part IV-V, with the order relations; in part VI, in the guise of incidence relations (see above);
and in part VII, with the three-terms relations. These simple statements lead us to propose a
correlation table between branches and relational types:

Arithmetic II Magnitude III Analysis IV-V Geometry V Mechanic VI
Equivalence relation ? Order relation Incidence relation Three-terms relation

To nearly23 each subdiscipline corresponds thus a type of relation. Of course, in order to
prove that this schema is faithful to the actual working of the Principles, a lot of further work
would be needed — we should study each book and verify that the correlations established fit
the fact. Such a work would be a task beyond the limits of this paper, and I cannot hope better
here than to make appear plausible what will remain a rough sketch.

It seems to me that the correspondence made between part II and equivalence relation is
the easiest to vindicate. Furthermore, the relation between part VII and three-terms relation is
explicitly acknowledged by Russell, and in any case, mechanics seem to be less essential to the
logicist program than the other topics. We will then leave aside these two points. Three cases
remain. In this section, I will focus on the relations between analysis and order, and between
geometry and incidence. The last two sections of the paper will be devoted to the remaining
correlation, i.e. to the neglected Russellian analysis of quantity.

Let us first consider analysis and order. The issue is crucial in respect to the arithmeticisation
program, since the main claim of the genetic view is that analysis can be derived from arithmetic
alone. Does Russell support the claim? At first sight, this seems to be the case. Part V of
the Principles is indeed a very long plea for the Cantorian approach of continuity and infinity.
But Russell accompanies these developments with some local criticisms. He is thus very careful
in presenting the notion of continuity as an ordinal, not as a metrical one.24 More generally,
Russell seems very anxious to distinguish between cardinal and ordinal properties. For instance,
contrasting his way to construct N from Dedekind’s one, Russell says in a crucial passage:

It is plain [...] that the logical theory of cardinals is wholly independent of the general
theory of progressions, requiring independent development in order to show that the
cardinals form a progression [...]. If Dedekind’s view were correct, it would have
been a logical error to begin, as this work does, with the theory of cardinal numbers
rather than with order. For my part, I do not hold it an absolute error to begin with
order, since the properties of progressions, and even most of the properties of series
in general, seem to be largely independent of number. But the properties of number
must be capable of proof without appeal to the general properties of progressions,
since cardinal numbers can be independently defined, and must be seen to form a
progression before theorems concerning progressions can be applied to them.25

If the cardinal numbers form a progression, the concept of a progression itself is independent of
the set-theoretical definition of the cardinals. As the definitions of both the order type η of the

23For an explanation of the question mark under ‘Magnitudes’, see section 5 below.
24See for instance [Russell, 1903], chapter xxxvi.
25[Russell, 1903], p. 251.
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rational numbers, and the order type θ of the real numbers, are founded on progressions (see
[Russell, 1903] pp. 296-303), the entire doctrine of continuity is then independent of cardinal
arithmetic. This means that if ‘cardinal numbers can be independently defined’, the properties
of series in general (i.e. the notions of limit, continuity, ...) are ‘largely independent of numbers’.
The idea that analysis, as a theory of order, must not be derived from cardinal arithmetic is then
explicitly vindicated.

Analysis, for Russell, can of course be applied to numbers — but it should not be limited to
this case. What is essential to analysis is the ordinal relations between the elements, not their
nature. Russell repeats exactly the same idea in the Principia. At the beginning of the section
entitled ‘On convergence, and the limits of functions’ and specifically devoted to mathematical
analysis, we found this noteworthy comment:

In the definitions usually given in treatises on analysis, it is assumed that both
the arguments and the values of the functions are numbers of some kind, generally
real numbers, and limits are taken with respect to the order of magnitudes. There
is, however, nothing essential in the definitions to demand so narrow a hypothesis.
What is essential is that the arguments should be given as belonging to a series,
and that the values should also be given as belonging to a series, which need not be
the same series as that to which the arguments belong. In what follows, therefore,
we assume that all the possible arguments to our function, or at any rate all the
arguments which we consider, belong to the field of a certain relation Q, which, in
cases where our definitions are useful, will be a serial relation.26

Here again, Russell emphasizes the idea that the real subject-matter of analysis is order, not
numbers. If analysis can be applied to cardinal numbers, it is only because these numbers form a
certain kind of series. Contrary to what is assumed in the usual treatises, analysis has essentially
nothing to do with numbers qua numbers.

This distinction between two structures, the cardinal and the ordinal one, can be seen as a
blow to the genetic view. Indeed, for Russell in 1903 as in 1912, analysis is not at all an out-
growth of cardinal arithmetic. Quite the contrary: constructing analysis requires an elaboration
of the doctrine of order relations, a doctrine which is not needed to define the cardinal numbers.
Thus, concerning analysis, our hypothesis seems to stand out: analysis appears to deal with a
different type of relation than arithmetic.27

The case of geometry is, at first sight, more intricate. Before entering into the difficulty, let
us note that at least one thing is clear: Russell does not regard space as a numerical manifold,

26[Russell and Whitehead, 1912], pp. 687.
27In order to account for the difference between Russell’s and Dedekind’s definition of N, several scholars

underline the fact that Russell, contrary to Dedekind, wanted to explain how we use numbers outside mathematics.
In [Russell, 1903] p. 241, for example, Russell wrote: ‘it is [the cardinal numbers defined by the equivalence
relations] that are used in daily life, and that are essential to any assertion of numbers. It is the fact that numbers
have these logical properties that makes them important. But it is not these properties that ordinary mathematics
employs, and numbers might be bereft of them without any injury to the truth of Arithmetic and Analysis’. In so
far as arithmetic is here viewed as a theory of ordinals, such a passage seems to go against my argument. However,
even in this case, the essential fact that Russell seeks to differentiate two structures that Dedekind and the others
confused, would still stand. The boundary would run inside arithmetic (which would be divided in a cardinal
arithmetic and in a ordinal, purely mathematical, arithmetic), instead of separating arithmetic from analysis; but
the idea that there is a distinction, overlooked by Dedekind, would still remain. But in fact, despite what Russell
says in the passage just quoted, it is not quite true that arithmetic is, in the Principles, only a theory of ordinal
numbers: addition and multiplication between numbers are defined in part II, and in many texts, Russell speaks
about the cardinal arithmetic as a purely mathematical theory (see for instance [Russell, 1903] pp. 245-253).
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and does not reduce geometry to analytical geometry. This fact is worth emphasizing. Indeed,
it seems that, once the doctrine of continuity is completed, nothing would be lacking to develop
geometry. We thus easily could have thought that Russell, in the Principles, defined the Euclidean
plane as the two-dimensional manifold R2 endowed with the Euclidean metric, and regarded any
point of the Euclidean space as a couple of real numbers. But that is not the case. The
philosopher still sticks to his former opposition to analytical geometry, and still rejects the
analytical methods (see section 2). Part VI of the Principles is thus not the continuation of part
V — space is not defined there as a continuous n-dimensional numerical manifold.

The difficulty arises as soon as we leave this negative stance and try to understand what
is the nature of geometry in the Principles. Russell says that geometry deals with space (see
[Russell, 1903] p. 372); but he does not seem clear about what space is. I think, however, that
a very interesting definition could be extracted from Russell’s remarks.

Russell emphasizes the fundamental importance of the work of Pieri, a v. Staudt follower, on
projective geometry (see [Russell, 1903] pp. 381-392). Now Pieri showed that the whole three-
dimensional projective geometry can be developed solely from the incidence relations between
points, straight lines and planes, and that, in particular, no primitive order relations were required
in the projective framework — more exactly, order relations can be defined from the incidence
relations (see [Pieri, 1898]).28 I argued elsewhere at length29 that Russell takes this result to mean
that projective geometry is only concerned with incidence structures. According to Russell, in
order to have a space, you need neither order, nor continuity (nor even to have a infinite numbers
of points30) — you just need to have some incidence relations between at least two distinct sort
of elements, a (not necessarily infinite) number of straight lines and points. In other words, space
is defined, by Russell, as a multidimensional series, that is as a set of series which can cut each
other.31

Whitehead will give voice to this line of thought in his The axioms of projective geometry
from 1906,32 where he defines geometry as a science of cross-classification, which is his name for
incidence relations:

Geometry, in the widest sense in which it is used by modern mathematicians, is a
department of what in a certain sense may be called the general science of classi-
fication. This general science may be defined thus: given any class of entities K,
the subclasses of K form a new class of classes, the science of classification is the
study of sets of classes selected from this new class so as to posses certain assigned
properties. For example, in the traditional Aristotelian branch of classification by
species and genera, the selected set from the class of subclasses of K are (1) to be
mutually exclusive, and (2) to exhaust K; the subclasses of this set are the genera of
K; then each genus is to be classified according to the above rule, the genera of the
various genera of K being called the various species of K; and so on for subspecies,
etc. [...]

28For more on Pieri, see [Marchisotto, 1995] and [Coxeter, 1949].
29See [Gandon, 2004]; my conclusion is founded not only on Russell’s use of Pieri’s work, but on the analysis

of the diachronic development of Russell’s thought from the Essay to the Principles.
30Russell in 1903 does not allude to the finite geometries; but Whitehead in his 1906, inspired by the Principles,

explicitly does.
31See [Russell, 1903] p. 372: ‘Geometry is the study of series of two or more dimensions’.
32Whitehead refers explicitly to [Russell, 1903] in his preface: ‘For a full consideration of the various logical and

philosophical enquiries suggested by this subject, I must refer to Mr Bertrand Russell’s Principles of Mathematics.’
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Geometry is the science of cross classification. The fundamental class K, is the class
of points; the selected set of subclass of K is the class of (straight) lines. This set of
subclasses is to be such that any two points lie on one and only one line, and that
any line possesses at least three points. These properties of straight lines represent
the properties which are common to all branches of the science which usage terms
Geometrical, when the modern Geometries with finite numbers of points are taken
account of.33

By contrasting the Aristotelian with the geometrical classification, Whitehead seeks to grasp
what is logically essential in incidence relations — in other words (those used by [Russell, 1903]
§8), he tries to uncover the relational type of this kind of relation. At the same time, Whitehead
explicitly characterises geometry as the theory of incidence relations. We thus found explained
here the very conception we attributed above to Russell.

But there is more. In the Principles, Russell differentiated two non-metrical geometries: the
projective theory he favoured (exposed in the chapter xlv), and the descriptive geometry, based
on the works of Pasch (see [Pasch, 1882]) and Peano (see [Peano, 1894]) (exposed in the chapter
xvli). Again following the path, Whitehead adds ibid., p. 6:

In Projective Geometry the subject viewed simply as a study of classification has great
interest. Thus in the foundations of the subject this conception is emphasized, while
the introduction of ‘order’ is defered. The opposite course is taken in Descriptive
Geometry [...].

Here, Whitehead brings out the special connection between projective geometry and geometry
itself. It is because projective theory can be developed as a pure doctrine of incidence that
it expresses the essence of what makes a theory geometrical. We are thus brought back to
a Russellian topic dated from the Essay onward: projective geometry is metageometry, i.e.
it contains what all geometries have in common. But Whitehead explicitly contrasts as well
the projective (Pieri’s theory in [Russell, 1903]) with the descriptive geometry (Pasch’s theory in
[Russell, 1903]), and his remark helps to grasp the meaning and the great significance of Russell’s
complicated reasoning. In effect, from a purely mathematical perspective, projective geometry
could have been founded on order relations. In 1903, Russell based descriptive geometry on
ordinal postulates, and stressed, after Pasch, that projective geometry can be derived from the
descriptive theory alone; see [Russell, 1903] pp. 400-403. If Russell (and Whitehead after him)
chose to favour Pieri’s approach, it was then not for technical reasons (Pieri’s way was not the only
available way to develop projective geometry), but only for epistemological ones: the projective
method was much more closely linked with the nature of space, defined as multidimensional
series, than the descriptive one. In Russell’s Principles as in Whitehead’s Tract, geometry (and
projective geometry) is therefore knowingly set apart from any doctrine of order.

So to sum up: just as analysis, as theory of order, is different from arithmetic (based on
equivalence relation), geometry, as science of cross-classification, is distinct from analysis. Ge-
ometry is not at all viewed in the Principles as an outgrowth of analysis. The logical gap between
part VI and part V reflects the difference between two distinct relational types (in the sense of
[Russell, 1903] §8): order relations and incidence relations.

33[Whitehead, 1906] pp. 4-5.

17



The last two analyses fit the ‘tree view’ well: each mathematical branch seems to really
correspond to a particular logical relational type. Of course, a lot would be needed to rigorously
prove the truth of this contention. But I hope to have made less unlikely the claim that Russell in
1903 did adapt his use of the theory of relation to the specificity of the mathematical discipline
he was defining. And I hope as well to have made more probable the assertion that Russell
did not adhere to the genetic point of view, according to which all mathematics is reducible to
arithmetic.

It could however be objected that arithmetic had nonetheless one peculiar role, which is
related to its use in the proof of existence-theorems. As Russell said:

The existence-theorems of mathematics — i.e. the proofs that the various classes
defined are not null — are almost all obtained from Arithmetic.34

To mention a typical example, Russell proved that the class of the series of type θ is not null by
proving that the ordered set of the cuts on the rational numbers ordered field is a series of type
θ.

There is a great temptation to look at the idea of existence-theorem from the standpoint of
the model theory, still to come at the time. We must, however, resist it. The use of existence-
theorems in the Principles is indeed very idiosyncratic.35 For Russell, existence-theorems are
needed because the logical definitions used in the derivation process are ‘always either the def-
inition of a class, or the definition of the single member of a unit class’ ibid., p. 497. The
existence-theorems proved that ‘the various classes defined are not null’. So in [Russell, 1903],
the notion of existence-theorems is essentially linked with a special theory of definition, and not,
as is more usual today, with the need to prove that a theory is free from contradiction. Further-
more, we should remark that, according to Russell, existence-theorems for cardinal arithmetic has
to be provided ; these theorems are supposed to be obtained from set theory,36 and so, contrary
to what is suggested in the passage just quoted, arithmetic cannot be the only means to obtain
existence-theorems. More generally, the whole issue is, in 1903, surrounded by the threat of the
set theoretical paradoxes and the lack of a definite type theory, so that it is difficult to extract
from the brief passage Russell dedicated to this question (§474) any precise characterisation of
what is a proof of an existence-theorem.

Even if Russell’s reasoning differs greatly from the model theoretical ones, we could use in
both cases the same distinction: to say that a theory has a model (or that a certain class is
not null), is not to say that the model (or the element picked out) is the true subject-matter
of the theory. To single out one element of a certain class is not the same as to reduce the
said class to this element. If, for example, cardinal numbers can be ordered, the very concept
of order, and then analysis, has nothing essential to do with arithmetic. And the same is true
of geometrical spaces. Therefore, the fact that arithmetic is said to play a special role in the
proof of existence-theorems does not in any way contradict the picture of the Principles I have
drawn.37

34[Russell, 1903] p. 497; see as well the letter of Whitehead quoted above.
35In [Russell, 1903], the existence-theorems are put aside from the main development, and confined to the

last paragraph (§474) of the book. What is more, this passage was most probably written in May 1902,
just before Russell sent the book off to the Cambridge University Press ; see on this point [Byrd, 2000] and
[Grattan-Guinness, 1996].

36See for example [Russell, 1903] p. 497: ‘The existence of zero is derived from the fact that the null-class is a
member of it ; the existence of 1 from the fact that zero is a unit-class.’

37It is sometimes said that arithmetic enjoys a special status in [Russell, 1903] because it is the only theory
that would give us access to logical objects. I must confess I do not understand this argument. Progression is,
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5 Theory of magnitude and relative product (I): On the Logic of Relations

The preceding arguments had nothing to do with the concept of magnitude. They only aimed
to show that the arithmetical genetic view, which imputes to Russell a conception according to
which all mathematics can be reduced to arithmetic, misses the fact that Russell’s theory of
relation gives to the traditional boundaries between the mathematical branches a kind of logical
justification. But a more thorough discussion of the Russellian theory of magnitude is needed for
at least two reasons. First, in the ‘tree schema’ of section 4 above, I did not associate the theory of
magnitude with any relational type. This constitutes a lack in the interpretation brought forward,
that we have now to fill. Second, as the letter of Whitehead quoted in introduction shows, one
of the main targets of the arithmetical genetic view was the Greek notion of magnitude, and the
separation it induces between numbers and continuous quantities.38 The sole fact of developing
a theory of magnitude seems then to express a disagreement with the genetic standpoint. In
order to back up our reading, we could thus not avoid, for these two reasons, a direct discussion
of the Russellian theory of quantity.

I will first speak about the English version ([Russell, 1900]) of Sur la Logique des Relations,39

not directly about part III of the Principles. As far as I can see, the doctrine exposed in both
works are the same. But owing to the lack of symbolic notation, the discussion of quantity in
[Russell, 1903] is made very difficult to follow, and the features which I would like to point out
are better displayed in [Russell, 1900].

Briefly said, the project of Russell is to insert Burali-Forti’s axiomatic (see section 2) of
magnitude into his relational framework.40 As Russell changed the symbolism and the definition
of magnitude, Burali-Forti’s theory, in its new guise, is hardly recognizable. Here is the definition
of a kind of distance ∆ (the equivalent of Burali-Forti’s ‘grandeur homogène’) given by Russell:41

∆ = FG ∩ L 3 {x, yελ. ⊃x,y .∃L ∩R 3 (xRy) : Q = RL.

R1, R2, R3εL . R1QR2 . ⊃R1,R2,R3 . R1R2 = R2R1 . R1R3QR2R3}42

But Russell goes on:

This is a definition of a kind of distance, i.e. of a class of distances which are
quantitatively comparable. A kind of distance is a series in which there is a term
between any two, and it is also a group. If any two terms belong to the field of this

for Russell, a logical object (that is a logically defined class of like series) as the number 1 is. And as it is needed
to prove that the class of progression is not null, so it is needed to prove that the class 1 is is not empty.

38Let us quote this passage from the preface of [Dedekind, 1888]: ‘All the more beautiful it appears to me
that without any notion of measurable quantities and simply by a finite system of simple thought-steps man can
advance to the creation of the pure continuous number-domain; and only by this means in my view is it possible
for him to render the notion of continuous space clear and definite.’

39The passages I am interested in have been removed from the French published version. That is the reason
why I consider here only the English original unpublished manuscript.

40A copy of Burali-Forti’s article, annoted by Russell, can be found in the Russell Archives (McMaster Uni-
versity), and many details in the construction evoke Burali-Forti’s approach. However there is one big difference
between the two theories. The Italian mathematician starts with only one indefinable, the additive operation –
order is derived (see section 2). For Russell, on the other hand, order is a primitive term, as addition is in the
case of extensive magnitude. If the difference does not greatly change the shape of the formal structure, it deeply
affects the general meaning of the notion of magnitude. Indeed, for Russell, magnitude in general is primarily
defined by a ‘capacity for the relation of greater and less’, not by a capacity for divisibility (see [Russell, 1903] p.
159).

41F desgnates a dense series, G a group. L is a distance or a magnitude of a specific kind, i.e. as Burali-Forti’s
calls it, an homogenous magnitude. Q is the order relation of the magnitude (Q = RL), and λ is the field of the
magnitude (i.e. the field of the group and of the series).

42[Russell, 1900], p. 609.
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group, there is a relation of the group which holds between them. If Q be the relation
in virtue of which the relations of the group form a series, and if R1, R2 be relations
in the group such that R1QR2, then R1R2 = R2R1, and the relation Q still holds
when both sides are multiplied by any other relation of the group.

A distance (or magnitude) is here defined, as in all theories of magnitude at the time, and
especially as in Burali-Forti’s (see section 2), as a series which is a (semi-)group — as an ordered
(semi-)group. And thus, the true import of the Russellian approach lies elsewhere, in the way
Russell defines the group-structure. In another unpublished passage of the same manuscript
([Russell, 1900] p. 594), the notion of group is defined as a set K of bijective relations having
the same field such that, firstly, if P belongs to K, the converse P̆ belongs to K, and such
that, secondly, if P and R belong to K, the relative product PR belongs to K.43 In other
words, Russell defines a group as a transformation group. Now, there is a well-known theorem
of Cayley, which says that there is an isomorphism between the set of abstract groups and the
set of transformation groups. Russell uses this result to rewrite Burali-Forti’s more natural
presentation. Technically, nothing prevents such a rewording. But what is the use of doing this?

Cayley’s representation theorem allows Russell to present group theory as a development of
the theory of relations. From Russell’s standpoint, what could cause a problem in the group
structure was, in effect, the group operation: how to explain the addition in Burali-Forti’s
axiomatic theory? What is a group operation? A three-terms relation, a combination of a
relation with identity, or a new kind of term?44 Russell’s answer in 1900 is to say that a group
operation is a relative product (a relation of relations) on a special set of relations.

We could go even further here. Just as analysis is defined as the theory of order, and geometry
as the theory of incidence relations, the theory of magnitude seems to correspond, in Russell’s
thought, to a special part of the logic of relations: the doctrine of the relative multiplication.
In part III of the Principles, owing to the fact that Russell emphasizes the order relation (see
[Russell, 1903] pp. 158-159), the doctrine of relative product does not show up as in the English
version of Sur la Logique des Relations — but its presence reveals itself in chapter xxi on
measurement and extensive magnitude (see [Russell, 1903] pp. 176-182), and in part IV, chapter
xxxi on distance (see [Russell, 1903] pp. 252-255). In these two passages, Russell follows closely
the path taken in [Russell, 1900]. The theory of magnitude, which is a kind of algebraic doctrine,
can therefore find a place in Russell’s book and in Russell’s relational logic. I could thus complete
the ‘tree schema’, left unfinished, of the previous section:

Arithmetic II Magnitude III Analysis IV-V Geometry V Mechanic VI
Equivalence relation Relative product Order relation Incidence relation Three-terms relation

Part III of the Principles can be, after all, associated with a logical type — the relational
product singles out the theory of magnitude as a special mathematical branch among the others.
The doctrine of relative product gives to Russell the means to insert the doctrine of magnitude
and the algebraic concept of operation in the logicist framework.

If a connection is made between the additive structure of the ‘extensive’ magnitude and
the relative multiplication, the function assigned to the relational theory of magnitude in the
Principles is difficult to grasp. Russell goes so far as to say that ‘the whole of [part III] —

43The definition of the group is: G = Cls′1→ 1 ∩K 3 {PεK. ⊃P .P̆ εK :
P,RεK. ⊃P,R .PRεK.π = ρ} Df.

44For a discussion of this problem, see [Sackur, 2005] pp. 143-209.
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and it is important to realize this — is a concession to tradition’ ([Russell, 1903] p. 158). It
seems that the philosopher seeks here to deny any intervention of the notion of quantity in the
definition of the reals. Russell then does not follow Burali-Forti in deriving natural, rational and
real numbers from the concept of magnitude. If the doctrine of magnitude can be developed
in the logicist framework as a theory of relative product, it is, in 1903, disregarded by Russell:
real analysis can be developed directly from the theory of order relations. It is however to be
remarked that the notion of magnitude seems to play a quite important, if complicated, role in
relation to metrical geometry in the Principles. But I will leave this topic aside here, preferring
to focus on the account of the magnitude given in the third volume of the Principia. Why turn
toward [Russell and Whitehead, 1913]?

Even if the theory introduced in part VI of the Principia (completely devoted to this issue),
is considerably more general and more abstract than the doctrine exposed in [Russell, 1900],
its main features (especially the connection between addition of quantities and relative product)
remain unchanged. There is thus a noteworthy continuity in the way Russell conceived the idea of
magnitude, and this constitutes a first reason to have a look at the subsequent developments. But
moreover, in [Russell and Whitehead, 1913], the role of magnitude changes: quantity becomes
involved, even if in a very subtle way,45 in the very definition of the rational and real numbers.
The opposition to the genetic standpoint becomes then more apparent than before, and this is
the second reason I have for looking into [Russell and Whitehead, 1913] part VI.

But to jump, as we are going to do, from 1903 to 1913 and from a Russellian book to a
work mainly written by Whitehead46 is of course a very perillous move: what to do with the
intervening years and of the tremendous changes they have brought in Russell’s thought? What
to do with the great epistemological and philosophical differences between Whitehead’s and
Russell’s philosophies?

I do not pretend to offer a panorama of the evolution of Russell from 1903 to 1913,47 nor
do I pretend to give an account of the many differences between Whitehead’s and Russell’s
standpoints.48 But, as we have said, the fact is that there is enough continuity between 1900-
1903 and 1913 theory of quantity to make a local comparison possible. Furthermore, to my
knowledge, no close examination of part VI of the Principia has yet ever been offered.49 Even if
an article wholly devoted to the subject could began to fill the gap, describing the main lines of
the approach exposed in part VI could be, if only for this reason, usefull. I will thus, in the last
section, describe the main lines of the 1913 theory of quantity, and the new function assigned to
it.

6 Theory of magnitude and relative product (II): Principia, part VI.

Whitehead and Russell begin the first section of part VI by defining rational (and real)
numbers as relations between two relations. Two relations R and S have the ratio µ/ν, ‘if,
starting from some [term] x, ν repetitions of R take us to the same point y as we reach by µ

45As it will soon become clear, whole numbers are still not defined as ratios of magnitudes, as was the case for
Burali-Forti.

46Whitehead was supposed to write the volume IV of the Principia, and part VI was, as the last part of volume
III, an introduction to volume IV.

47There are of course plenty of books on this issue: [Hylton, 1990], [Landini, 1998], [Grattan-Guinness, 2000].
48The studies devoted to the topic are much less numerous ; let us quote [Grattan-Guinness, 2002].
49As notable exceptions, we can mention a few paragraphs in Quine’s ‘Whitehead and the Rise of Modern

Logic’ (published in [Quine, 1995]) and in [Quine, 1962], and a few pages in [Grattan-Guinness, 2000].
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repetitions of S, i.e. if xRνy.xSµy’ (see [Russell and Whitehead, 1913] p. 260). The case of
the real numbers, even if not fundamentally different, is more difficult and I will leave it out
here.50 The logicists define then the usual operations, addition and multiplication, on ratios.51

If the axiom of infinity is assumed, both the order relation and the operations have the usual
properties: the rational numbers thus defined form an ordered rational field — and the reals
(< R, <, +, × >), as usual, an Archimedian complete field. Let us remark that this approach
assumes the natural numbers introduced in part II of the Principia, since, in their definition of
the ratio, the two logicists allow themselves to speak about the ‘ν repetitions of R’.

Russell and Whitehead’s reasoning is at first sight very striking. The whole numbers having
been defined, why not introduce the ratios as an equivalence class on the set of couples of whole
numbers, as was usual at the time? Why adopt this very tortuous and contrived approach? In
the case of Burali-Forti, things were different: the Italian mathematician wanted to show that
arithmetic could be constructed on the basis of magnitude’s theory, and was thus compelled to
define numbers as a ratio of magnitudes. But for the logicists, such a project was out of date:
natural numbers are given with the set apparatus, and thus, nothing, for Russell and Whitehead,
seems to prevent the use of the standard definition of the rationals.

To grasp the meaning of this reasoning, we have to look at the last two sections of part
VI. In section B, Russell and Whitehead resume and deepen considerably the sketch exposed in
[Russell, 1900]. Instead of starting with a group (that is with a set of bijective relations on the
same field such that, firstly, the product of any of them belongs to the set, and secondly, the
converse of any of them belongs to the set), Russell and Whitehead start with a much weaker
structure, the so-called vector family. In modern terms, a vector family is any commutative subset
of the semi-group of the injective mapping on a common domain.52 Notice that a vector family
is not necessarily closed by the relative product, that the identity relation does not necessarily
belong to a vector family, and that if a relation belongs to a vector family, it is not always the
case that its converse belongs to it.

The essential point, for us, is that, instead of simply translating Burali-Forti’s theory of
magnitude in the relational framework (as in [Russell, 1900]), the logicists try to generalize it.
It seems as if they wanted to find the most general sets of relations (more precisely: the most
general vector families) which could be regarded as measurable ‘magnitudes’, in a very specific
sense of the term.

At the beginning of section C, Russell and Whitehead specify this sense, and list the necessary
and sufficient three conditions for a vector family to be a measurable magnitude:

1) ‘No two members of a family must have two different ratios’ and ‘all ratios [except 0 and

50Put briefly, Whitehead and Russell introduce the reals, firstly, in the usual way, as segments of ratios; secondly,
in order to enhance the link with measurement, as relations of relations that have the same type as the ratios. The
trick is the following: ‘instead of taking the series of the segments as constituting the real numbers, it is possible
to take the series of their relational sums’. A real number is thus no more conceived of as a set of relations of
relations, that is as a set of sets of couples of relations, but directly as a relation of relations, that is as the set
of couples of relations which is the relational sum of the previous set. For more on this, see [Quine, 1962] pp.
127-130.

51The ratio a/b+ c/d is the set of relations R and S such that R((a+ c)/b)S; the ratio a/b× c/d is the set of
relations P and Q such that P (ac/bd)Q.

52The semi-group Φ of the injective mapping on a common domain κ is:

Φ = {f : κ→ κ | f is an injective mapping}

We note that we have f , g ∈ Φ ⇒ f.g ∈ Φ, and f , g, h ∈ Φ ⇒ (f.g).h = f.(g.h). Of course, because one deals
here with injective (not necessarily bijective) mappings, one has to generalize the definition of the composition
and of the inverse of a function.
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∞] must be one-one relations when limited to a single family’;
2) ‘The relative product of two applied ratios ought to be equal to the arithmetical product of

the corresponding pure ratios with its field limited [to a single family]’, that is to say ‘two-thirds
of half a pound of cheese ought to be (2/3× 1/2) of a pound of cheese’;

3) If X, Y are ratios, and T , R and S are members of the family κ such that RXT and
SY T , we ought to have RS(X + Y )T , that is ‘two-thirds of a pound of cheese together with
half a pound of cheese ought to be (2/3 + 1/2) of a pound of cheese, and similarly in any other
instance’.53

When these conditions are all satisfied, vector families become measurable magnitudes, and
ratios (restricted to the given vector family) become ‘applied ratios’.54 The underlying idea is
that, in such a situation (and in such a situation only), arithmetic computations are mirroring the
properties of the relative product between relations. In this restricted context, the arithmetic
laws are not only logically valid — they express the structural relations, that is the formal
properties of the relative product, between the elements (the relations) of the vector families
under consideration.

We now have enough cards to answer our initial question: why Whitehead and Russell
introduce, in 1913, the rationals as a relation between relations instead of defining them as an
equivalence class on the set of couples of natural numbers? The logicists seek to explain why
numbers can be used to measure magnitudes. As Whitehead says in the letter quoted at the
beginning, the arithmetic definition of the real ‘leaves the whole theory of applied mathematics
(measurement etc) unproved’, and the logicists want to fill this gap.55 To embark on such a task
is however a very dangerous undertaking for the logicists, because the most natural answer to
this question is Burali-Forti’s: numbers can measure quantities, because numbers are ratio of
magnitudes, i.e. are derived from magnitudes. But now, in order to warrant the existence of all
the real numbers, one has to postulate the existence of a sufficiently rich set of magnitudes.56

But, as we all know, for Russell and Whitehead, arithmetical truths, and computation with
rational and irrational numbers as well, do not depend on any empirical fact (we ignore here
the issue raised by the axiom of infinity). That there are enough magnitudes is nevertheless an
empirical fact, which seems thus completely foreign to mathematics. Therefore, Burali-Forti’s
answer cannot be sustained. But then, in avoiding the Scylla of empiricism, one falls again on
the Charybde of the abstractness: the link between numbers and measures, in the arithmetical
genetic approach is lost. How to explain the use of numbers in measurement without endorsing
a kind of mathematical empiricism?

The neat logicist answer to this double peril is roughly the following: magnitudes can be

53see [Russell and Whitehead, 1913], p. 407.
54Russell and Whitehead prove (see [Russell, 1903] pp. 412-422) that every family connected, open and sub-

multipliable is measurable. Translated in a more modern terminology, = being a vector family defined on a basic
set κ:
= is connected iff ∃xεκ,∀yεκ,∃fε=, fx = y;
= is submultipliable iff ∀fε=, ∀nεN, ∃gε=, f = gn;
= is open iff ∀xεκ,∀nεN, ∀g, hε=, g−1h 6= Id⇒ (g−1h)n(x) 6= x.
55As Lebesgue puts it very nicely in [Lebesgue, 1975] p. 190: ‘Les irrationnels se définissent à partir du continu

géométrique grâce à la mesure des segments ; on peut aussi les définir à partir du continu arithmétique au moyen
de la considération des coupures, par exemple. Chacun de ces modes de définition a ses avantages. La première
est en quelque sorte concrète ; la seconde est abstraite. C’est pour cela que la première se raccorde bien, et elle
seule, aux considérations de la géométrie élémentaire, dont elle découle presque inévitablement. La seconde [. . . ]
rappelle ces ballets sans rapports avec l’action, que l’on trouve dans tant d’opéras.’

56Frege develops the same kind of approach, which gives rise to the same kind of objections; see [Hale, 2000]
and [Batitsky, 2002].
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regarded as special sets of relations (as special vector families), and numbers can be defined as
relations of relations. Defining rational or real numbers as relations of relations allows us to base
the whole arithmetic on safe ground (once the axiom of infinity is admitted): all arithmetical laws
can be derived from the logical primitive propositions. But, at the same time, if some constraints
are put on the underlying set of relations, it can be shown that the arithmetical laws reflect the
relations between the elements of the underlying set: to each couple of relations corresponds one
and only one ratio; the relative product of two applied ratios is the arithmetical product of the
corresponding two ratios; and the ratio of the relative product of two relations to a third one is
the sum of the arithmetical ratios that each of the two relations have to the third one.

So we have here a very subtle two-levelled reasoning. At the first level, the relational defi-
nition guarantees the validity of the usual arithmetical laws. But at the second stage, the very
same definition allows us to explain why, in certain circumstances, these laws can be applied to
represent the relations between some elements in a given structure. To define rational numbers
as relations of relations appears cumbersome only when one reduces, as the ‘arithmizers’ do, the
foundational task to the justification of the usual arithmetical laws. But when, like Whitehead,
one does not want to leave ‘the whole theory of applied mathematics (measurement etc) un-
proved’, what appeared, at first sight, as a superfluous detour, reveals itself as a neat device to
logically explain the use of numbers in measurement. The true force of the relational theory of
ratios lies in the fact that it explains the connection between numbers and magnitudes without
endorsing any kind of empiricism. One again, this amazing feat is grounded on the notions of
relation and of relative product.

We have here favoured the comparison between the logicist approach and Burali-Forti’s one.
But it would be interesting to compare the Principia, part VI, with the modern theory of mea-
surement, developed by Suppes and others.57 One point seems especially worth noticing. In the
modern approach, measurement is defined as an assignation of numbers, so that the question:
how it is that numbers are specially fitted to measurements? — cannot there even be asked. The
link between numbers and measurement, being postulated, is here as well left unexplained. In
other words, measurement theory does not answer the question: why is measurement, i.e. assig-
nation of numbers, so important? In this regard, the logicist theory seems to be more ambitious:
it is because rational and real numbers are relations of relations that they can represent so easily
the relations between magnitudes (which are, for Russell and Whitehead, relations).58

So, to sum up: from the very beginning, Russell has inserted the theory of magnitude in
his logical relational framework, and this trend has not disappeared in the Principia. Quite the
reverse, in fact: Whitehead has strengthened the meaning of a doctrine that he explicitly opposes,
in his letter dated 1909, to the arithmeticisation program. So it seems as if, in the logicism of
Russell and Whitehead, the theory of magnitude gained more and more philosophical weight as
the years went by. Of course, as we have said, this conclusion does not take into account the
differences between Whitehead and Russell’s epistemological and philosophical conceptions. And
it is likeley that Whitehead’s own idiosyncratic opinions have paved the way for a strengthening
of the role played by the Greek concept of magnitude in the logicist account of the rational and
real numbers. But it remains that the theory exposed in 1913 does constitute an extension of
the doctrine presented in 1900-1903 — that Russell was informed of the changes (as the letter

57See for example [Krantz et al., 1971].
58For Russell and Whitehead, the problem raised by the measurement (why is measurement so important?) is

neither metaphysical, nor anthropological. A genuine logical answer to this question can be articulated.
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quoted shows) and that, since the published preface of part VI repeats roughly the same ideas,
he did not disapprove of them.

7 Conclusion

After having distinguished three different meanings of the arithmeticisation program, I have
claimed here that, contrary to a widespread view, the 1903 version of Russell’s logicism should not
be seen as an extension of the genetic arithmetical program, according to which all mathematics
is reducible to arithmetic.

My first point (section 2) consisted in underlining a renewed interest, at the end of the XIXth

century, in the old Eudoxian theory of magnitude. Russell and Whitehead were not alone in
criticizing the genetic conception; quite the contrary, the same critical stance was shared by
almost all the mathematicians who were involved in the development of the various geometrical
calculi.

My second point (sections 3 and 4) aimed at showing that Russell’s logical reductionism goes
hand in hand with a conservative conception of mathematics and of its overall structure. Far
from seeking to reduce mathematics to arithmetic, Russell, in the Principles, used the theory
of relation, especially the key-concept of relational type, to restore the traditional separation
between the mathematical disciplines.

In the last two sections (5 and 6), I showed how Russell and Whitehead inserted the theory
of magnitude in their relational framework. The mere persistence of a doctrine of quantity is
already a reason to cast doubt on the standard interpretation. But there is more. In 1913, the
two logicists criticized the arithmeticisation program for leaving unexplained the relation between
numbers and measurements — the raison d’être of the theory of magnitude was precisely to fill
this gap, without falling into the empiricist trap.

In other words, Russell was not alone in the mathematical world, at this time, in opposing
the arithmeticisation movement; moreover, he used logic, not only as a means to derive all the
mathematical content, but also as a a means to justify the traditional distinctions inside this
content; at last, he and Whitehead addressed in 1913 an issue (the connection between numbers
and measurement) that is not even raised by the advocates of the arithmeticisation (in its genetic
version). All these points lead me to conclude that the standard view, according to which Russell
extended in 1903 the genetic arithmetical program, had to be qualified.

But, all this being granted, how are we now supposed to deal with the numerous texts where
Russell explicitly introduces his logical reductionism as a deepening of the genetic view?59 If
Russell did not share the belief that all mathematics is reducible to arithmetic, why did he
sometimes behave as if he did? This is a difficult question. It has first to be noted that, in the
Principles themselves, no such oversimplified presentation of his program can be found.60 We
could thus be tempted to answer that we are facing here a not too unusual situation with Russell:
it would not be the only time where the philosopher refused to do full justice to his early views.
But in this case, there may be a more precise explanation.

59For an instance of such a text, see my introduction.
60See for example [Russell, 1903] p. 157-158, where Russell, in order to explain the reason why quantity is

no longer an indefinable object, refers to two opposite mathematical developments: the ‘purist’ Weierstrassian
reform of course, but also another trend, in which Russell puts all the mathematical theories that did not deal
with numbers (‘Logical Calculus, Projective Geometry, and – in its essence – the Theory of Groups’). See as well
Ibid., p. 381. It is to be noticed that the same idea is repeated in the last chapter of [Russell, 1921].
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Russell used to divide his work into two parts: ‘first, to show that all mathematics follows
from symbolic logic, and secondly to discover [...] what are the principles of symbolic logic itself’
(see [Russell, 1903] p. 9). As we all know, immediately after the publication of the Principles,
Russell embarked on a purely logical research (aiming at resolving the paradoxes). From this time
onward, the second issue (how to free logic itself from the contradictions?) became the central
one, to the detriment of the first one (how to logically derive some mathematical theory or other?).
In other words, immediately after the Principles, the link between logic and mathematics began
to be foreshadowed by purely logical topics, and remained subsequently of secondary importance
in Russell’s mind. This, I think, is the source of the late Russellian oversimplification. The
important point was, for Russell, to precisely define what the nature of logic was, not any more
to delineate the form that the connection between mathematics and logic should take.61 Given
this shift in the order of priority, we could understand that to oversimplify the complicated
construction of [Russell, 1903] and to come back to the arithmeticisation program (in its genetic
version), did not constitute, for Russell at the time, a betrayal of his initial inspiration.

To conclude, I would like to point out the main target of my interpretation: Wittgenstein’s
reading of Russell’s logicism. Wittgenstein described the Russellian project as a systematic
endeavour to standardize and artificially unify the mathematics. ‘Mathematics’, he claims (see
[Wittgenstein, 1956] p. 84), ‘is a motley of techniques of proof.— And upon this is based its
manifold applicability and its importance’. Wittgenstein viewed Russell’s program as a denial
of the essential variety of mathematics. Thus:

If someone tries to shew that mathematics is not logic, what he is trying to shew?
He is surely trying to say something like : — If tables, chairs, cupboards, etc. are
swathed in enough paper, certainly they will look spherical in the end.

He is not trying to shew that it is impossible that, for every mathematical proof, a
Russellian proof can be constructed which (somehow) ‘corresponds’ to it, but rather
that the acceptance of such a correspondance does not lean on logic.62

In my opinion, it would be difficult to be wider of the mark. Indeed, if I am right, Russell did
not aim at reducing the differences between the numerous mathematical techniques. On the con-
trary, one of his main goals was to use logic for uncovering the deep logical differences between
the various mathematical disciplines. The alternative is thus not between a kind of pragmatism,
careful to the specificities of the mathematical practices, on one side, and a rigid logicism, blind
to the richness of the motley mathematical sciences, on the other. There is absolutely nothing
in logicism which would prevent accounting for the differences within mathematics, and, what is
more: Russell, in the Principles, actually did use the notion of relational type to delineate the
logical core of a specific method of proof. Thus, Russell, like Wittgenstein, attempted to ‘teach
us differences’63 — and, to tell the truth, the way he did it seems to me more promising than

61Russell, suprisingly, did not like the long and detailled reviews Couturat devoted to the Principles (Couturat
gathered them in a book [Couturat, 1905]). Couturat’s analysis was precisely centred on the mathematical parts
of [Russell, 1903], and this was the feature that Russell disliked most; for more on this topic, see [Schmid, 2001].
Thus, as early as 1905, the issue related to the connection between mathematics and logic, that is the issue dealt
with in part II-VII of the Principles, had already lost its importance. In fact, my guess is that the quite subtle
‘tree schema’ dated from 1900, that is from the ‘intellectual honey-moon’ (see [Russell, 1959]) period during which
Russell wrote the mathematical parts of his work.

62[Wittgenstein, 1956] p. 89.
63Wittgenstein used the Shakespearian line ‘I’ll teach you differences’ as an epigraph of his Philosophical In-

vestigation.
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Wittgenstein’s way.
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