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Abstract. In the paper, we study a relation between command games proposed by Hu and Shap-
ley and an influence model. We show that our framework of influence is more general than the
framework of the command games. We define several influence functions which capture the com-
mand structure. These functions are compatible with the command games, in the sense that each
commandable player for a coalition in the command game is a follower of the coalition under the
command influence function. For some influence functions we define the command games such that
the influence functions are compatible with these games. We show that not for all influence func-
tions such command games exist. Moreover, we propose a more general definition of the influence
index and show that some power indices, which can be used in the command games, coincide with
some expressions of the weighted influence indices. We show exact relations between an influence
function and a follower function, between a command game and commandable players, and between
influence functions and command games. An example of the Confucian model of society is broadly
examined.

JEL Classification: C7, D7

Keywords: influence function, follower, influence index, command game, commandable
player, Shapley-Shubik index, Banzhaf index, Coleman indices, König-Bräuninger index

1 Introduction

Studying an interaction and an influence among players in voting situations exposes many
challenging problems to be solved. In traditional framework of power indices (see e.g.,
[1–5, 11, 14–17, 19], see also [6] for an overview), neither interaction nor influence among
the voters is assumed. The concept of the interaction or cooperation among players in
a cooperative game is studied, for instance, in [7], where players in a coalition are said
to exhibit a positive (negative) interaction when the worth of the coalition is greater
(smaller) than the sum of the individual worths. The authors present an axiomatization
of the interaction indices which are extensions of the Shapley and Banzhaf values.

Another approach is presented in [12, 13], where the command structure of Shapley
[18] is applied to model players’ interaction relations by simple games. For each player,
boss sets and approval sets are introduced. While the boss sets are defined as the ‘sets
of individuals that the player must obey, regardless of his own judgment or desires’, the
‘consent of the approval set is sufficient to allow the player to act, if he wishes’ [13].
Based on the boss and approval sets, a simple game called the command game for a
player is built. Furthermore, an equilibrium authority distribution is formulated to which
the Shapley-Shubik index is applied.



Coming still from a different direction is an approach proposed by Hoede and Bakker
[10], where the authors talk explicitly about an influence between players in a social
network. Players who are to make a yes-no decision, have their inclinations to say either
‘yes’ or ‘no’, but due to the influence by the others, they can decide differently from their
inclinations. The model of Hoede and Bakker is the point of departure for our research
on influence. In [8] we introduce and study weighted influence indices of a coalition on a
player in a social network, and consider different influence functions. In [9] we extend the
yes-no model to a multi-choice game, and assume that players have a totally ordered set of
possible actions instead of just two actions ‘yes’ or ‘no’. Each player has an inclination to
choose one of the actions. Consequently, the generalized influence indices are investigated.

The aim of the present paper is to study a relation between the command games
considered by Hu and Shapley [12, 13] and the influence functions and influence indices
defined in [8, 9]. We show that our framework of influence is in a sense more general
than the framework of command games. In the influence model, many different influence
functions may be proposed. In the present paper, we define several influence functions
which capture the command structure proposed by Hu and Shapley. These influence
functions are compatible with the command games, in the sense that each commandable
player for a coalition in the command game is a follower of the coalition under the
command influence function. For some influence functions introduced in [8], we define
the command games such that the influence functions are compatible with these games.
In particular, we show that not for all influence functions such command games exist.

Moreover, we propose a more general definition of the influence index and show that
some power indices, which can be used in the command games, coincide with some expres-
sions of the weighted influence indices under the considered command influence functions.

The main results of the paper concern a relation between influence functions and
command games. We show exact relations between an influence function and a follower
function, between a command game and commandable players, and between influence
functions and command games.

The structure of the paper is the following. Definitions of power indices we refer to
in the paper are recapitulated in Section 2. In Section 3 the framework of the command
games is briefly presented. The latter model of the relationship we search for, that is, the
influence model, is summarized in Section 4. The core of the paper is presented in Sections
5, 6, and 7, where the relation between the influence model and the command games is
investigated. In Section 5, we define several influence functions which are compatible
with the command games. We show some relations between several power indices and
the weighted influence indices under the command influence functions. In Section 6, we
define the command games for some influence functions introduced in [8]. In Section 7,
we show the relation between the influence functions and the command games. In Section
8, the relations between the influence model and the command games are illustrated by
an example mentioned in [13], i.e., by the Confucian model of society. In Section 9, we
conclude.
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2 Power indices

First, we introduce several notations for convenience. Cardinality of sets S, T, . . . will be
denoted by the corresponding lower case s, t, . . .. We omit braces for sets, e.g., {k,m},
N \ {j}, S ∪ {j} will be written km, N \ j, S ∪ j, etc.

A (0, 1)-game is a pair (N, v), where N = {1, ..., n} is the set of players, and a function
v : 2N → {0, 1} satisfying v(∅) = 0 is the characteristic function. A nonempty subset of
N is called a coalition. A simple game is a (0, 1)-game such that v is not identically equal
to 0 and is monotonic, i.e., v(S) ≤ v(T ) whenever S ⊆ T . A coalition S is winning if
v(S) = 1, and is loosing if v(S) = 0. A game is superadditive if v(S ∪ T ) ≥ v(S) + v(T )
whenever S ∩ T = ∅. Let SGn denote the set of all simple superadditive n-person games.
Player k is a swing in a winning coalition S if his removal from the coalition makes it
loosing, i.e., if v(S) = 1 and v(S \ k) = 0. A minimal winning coalition is a winning
coalition in which all players are swings.

A power index is a function φ : SGn → Rn which assigns to each (N, v) ∈ SGn a
vector φ(N, v) = (φ1(N, v), ..., φn(N, v)).

The Shapley-Shubik index [19] of player k ∈ N in a game (N, v) is defined by

Shk(N, v) =
∑

S⊆N :k∈S

(n− s)!(s− 1)!

n!
(v(S)− v(S \ k)). (1)

The non-normalized Banzhaf index (the absolute Banzhaf index, [1]) of player k ∈ N
in a game (N, v) is defined by

Bzk(N, v) =
1

2n−1

∑
S⊆N :k∈S

(v(S)− v(S \ k)), (2)

and the normalized Banzhaf index B̃z is given by

B̃zk(N, v) =
Bzk(N, v)∑

j∈N Bzj(N, v)
. (3)

The Coleman ‘power of a collectivity to act’ [2], [3] in a game (N, v) is defined by

A(N, v) =

∑
S⊆N v(S)

2n
. (4)

The Coleman index ‘to prevent action’ [2], [3] of player k ∈ N in a game (N, v) is
defined by

ColPk (N, v) =

∑
S⊆N :k∈S(v(S)− v(S \ k))∑

S⊆N v(S)
. (5)

The Coleman index ‘to initiate action’ [2], [3] of player k ∈ N in a game (N, v) is
defined by

ColIk(N, v) =

∑
S⊆N :k/∈S(v(S ∪ k)− v(S))

2n −
∑

S⊆N v(S)
. (6)

The König-Bräuninger inclusiveness index [15] of player k ∈ N in a game (N, v) is
defined by

KBk(N, v) =

∑
S⊆N :k∈S v(S)∑

S⊆N v(S)
(7)
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3 The command games

We recapitulate briefly the main concepts concerning the command games introduced by
Hu and Shapley [12, 13]. Let N = {1, ..., n} be the set of players (voters). For k ∈ N and
S ⊆ N \ k:

– S is a boss set for k if S determines the choice of k;
– S is an approval set for k if k can act with an approval of S.

It is assumed that any superset (in N \ k) of a boss set is a boss set.
For each k ∈ N , a simple game (N,Wk) is built, called the command game for k,

where the set of winning coalitions is

Wk := {S | S is a boss set for k} ∪ {S ∪ k | S is a boss or approval set for k}. (8)

We can recover the boss sets Bossk

Bossk = {S ⊆ N \ k | S ∈ Wk} = Wk ∩ 2N\k (9)

and the approval sets Appk

Appk = {S ⊆ N \ k | S ∪ k ∈ Wk but S /∈ Wk}. (10)

We have Bossk ∩ Appk = ∅. In particular, if Appk = 2N\k, then k is called a free agent:
he needs no approval (since ∅ ∈ Appk), and nobody can boss him (since Bossk = ∅). If
Appk = ∅, then k is called a cog.

Given the command games {(N,Wk) | k ∈ N}, for any coalition S ⊆ N , the set ω(S)
of all members that are ‘commandable’ by S is defined by:

ω(S) := {k ∈ N | S ∈ Wk}. (11)

We have: ω(∅) = ∅, ω(N) = N , and ω(S) ⊆ ω(S ′) whenever S ⊂ S ′.
An authority distribution π = (π1, ..., πn) over an organization (N, {(N,Wk) | k ∈ N})

satisfies
πk ≥ 0 for any k ∈ N and

∑
k∈N

πk = 1.

The power transition matrix of the organization is the stochastic matrix P = [P (j, k)]nj,k=1

such that
P (j, k) := Shk(N,Wj), (12)

where Shk(N,Wj) is the Shapley-Shubik index of player k in the command game for
player j. The authority distribution π is assumed to satisfy the authority equilibrium
equation given by

π = πP, i.e., πk =
∑
j∈N

πjP (j, k), ∀k ∈ N. (13)

In the sense of a political counterbalance equilibrium, πjP (j, k) is the authority flowing
from j to k. Hence, πk is the sum of these authorities flowing to k.

Let P 2 = PP , P 3 = PPP , etc. Player k is said to influence j if P k(j, k) > 0 for
some k > 0, and j, k communicate if they influence each other ([13]). A coalition (or
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an organization) is said to be irreducible if any two members of the coalition (or the
organization) communicate. Another interpretation of πk is the long-run influence of
player k on other players. If the organization is irreducible and aperiodic, then

πk = lim
t→∞

P t(j, k),

and the limit is independent of the choice of j. Hu and Shapley [13] call it the ‘uniform
ultimate influence’ of k to other members of the organization.

4 The influence model

4.1 Direct versus opposite influence

In this section, the main concepts introduced in [8] are summarized. Let N := {1, ..., n} be
the set of players (agents, actors, voters). The players are to make a yes-no decision. Each
player has an inclination either to say ‘yes’ (denoted by +1) or ‘no’ (denoted by −1). Let
i = (i1, ..., in) denote an inclination vector and I := {−1,+1}n be the set of all inclination
vectors. Players may influence each other, and as a consequence of the influence, the
final decision of a player may be different from his original inclination. Each inclination
vector i ∈ I is therefore transformed into a decision vector Bi = ((Bi)1, ..., (Bi)n), where
B : I → I is the influence function. Let B denote the set of all influence functions.

We introduce for any S ⊆ N the set

IS := {i ∈ I | ∀k, j ∈ S [ik = ij]}, (14)

and Ik := I, for any k ∈ N . We denote by iS the value ik for some k ∈ S, i ∈ IS. For
each S ⊆ N and j ∈ N , we define the set IS→j of all inclination vectors of potential
direct influence of S on j, and the set I∗S→j(B) of all inclination vectors of observed direct
influence of S on j under given B ∈ B:

IS→j := {i ∈ IS | ij = −iS} (15)

I∗S→j(B) := {i ∈ IS→j | (Bi)j = iS}. (16)

Similarly, for each S ⊆ N and j ∈ N we introduce the set Iop
S→j of all inclination

vectors of potential opposite influence, and the set I∗op
S→j(B) of all inclination vectors of

observed opposite influence of a coalition on a player:

Iop
S→j := {i ∈ IS | ij = iS} (17)

I∗op
S→j(B) := {i ∈ Iop

S→j | (Bi)j = −iS}. (18)

For each S ⊆ N , j ∈ N \S and i ∈ IS, we introduce a weight αS→j
i ∈ [0, 1] of influence

of coalition S on j ∈ N under the inclination vector i ∈ IS. We assume that for each
S ⊆ N and j ∈ N \S, there exists i ∈ IS→j such that αS→j

i > 0, and there exists i ∈ Iop
S→j

such that αS→j
i > 0.

Given B ∈ B, for each S ⊆ N , j ∈ N \ S, the weighted direct influence index of
coalition S on player j is defined as

dα(B, S → j) :=

∑
i∈I∗S→j(B) α

S→j
i∑

i∈IS→j
αS→j

i

∈ [0, 1] (19)
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and the weighted opposite influence index of coalition S on player j is defined as

dop
α (B, S → j) :=

∑
i∈I∗op

S→j(B) α
S→j
i∑

i∈Iop
S→j

αS→j
i

∈ [0, 1]. (20)

Let ∅ 6= S ⊆ N and B ∈ B. We define the set FB(S) of followers of S under B as

FB(S) := {j ∈ N | ∀i ∈ IS [(Bi)j = iS]}. (21)

We assume FB(∅) = ∅. We have, in particular,

dα(B, S → j) = 1, ∀j ∈ FB(S) \ S. (22)

Assume FB is not identically the empty set. The kernel of B, that is, the set of ‘true’
influential coalitions, is the following collection of sets:

K(B) := {S ∈ 2N | FB(S) 6= ∅, and S ′ ⊂ S ⇒ FB(S ′) = ∅}. (23)

4.2 A general case of influence

Next, we generalize the concept of influence to be able to comprise all imaginable cases
of influence, in particular, the direct influence, the opposite influence, an influence of a
coalition on its member, etc. The point of departure will be the set IS defined in (14). In
other words, we assume that a coalition may influence a player only in situations when all
members of the coalition have the same inclination. Furthermore, an observed influence
of a coalition S on a player j, which depends now on λ ∈ {ij,−ij, iS,−iS,+1,−1}, takes
place if (Bi)j = λ. Hence, the set IS→j,λ(B) of all inclination vectors of influence of S
on j under B is defined as

IS→j,λ(B) := {i ∈ IS | (Bi)j = λ}. (24)

Definition 1 Given B ∈ B, for each S ⊆ N , j ∈ N , the weighted influence index of
coalition S on player j is defined as

ψα,λ(B, S → j) :=

∑
i∈IS→j,λ(B) α

S→j
i∑

i∈IS
αS→j

i

. (25)

The weighted direct influence index is recovered as follows:

ψα,λ(B, S → j) = dα(B, S → j) if λ = −ij and αS→j
i = 0 for ij = iS. (26)

The weighted opposite influence index is recovered as:

ψα,λ(B, S → j) = dop
α (B, S → j) if λ = −ij and αS→j

i = 0 for ij = −iS. (27)

The essence of both the direct influence and the opposite influence is that the decision of
an influenced player is different from his original inclination (λ = −ij). The only difference
between these two types of influence lies in the inclination vectors we consider: while in
the direct influence we observe only situations in which the inclinations of a player and
an influencing coalition are different from each other (αS→j

i = 0 for ij = iS), in case of
the opposite influence we take into account only situations in which the inclinations of a
player and an influencing coalition are the same (αS→j

i = 0 for ij = −iS).
The set of followers and the kernel are defined like in (21) and (23), respectively.
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4.3 Influence functions

We recapitulate some influence functions defined in [8] that we refer to in the present
paper.

(i) The Majority function - Let n ≥ t > bn
2
c, and introduce for any i ∈ I the set

i+ := {k ∈ N | ik = +1}. The majority influence function Maj[t] ∈ B is defined by

Maj[t]i :=

{
1N , if |i+| ≥ t

−1N , if |i+| < t
, ∀i ∈ I. (28)

We have for each S ⊆ N :

FMaj[t](S) =

{
N, if s ≥ t

∅, if s < t
(29)

K(Maj[t]) = {S ⊆ N | |S| = t}. (30)

(ii) The Guru function - Let k̃ ∈ N be a particular player called the guru. The guru

influence function Gur[k̃] ∈ B is defined by

(Gur[k̃]i)j = ik̃, ∀i ∈ I, ∀j ∈ N. (31)

We have for each S ⊆ N :

F
Gur[k̃](S) =

{
N, if k̃ ∈ S
∅, if k̃ /∈ S

(32)

K(Gur[k̃]) = {k̃}. (33)

(iii) The identity function Id ∈ B is defined by

Idi = i, ∀i ∈ I. (34)

We have for each S ⊆ N , FId(S) = S. The kernel is K(Id) = {{k}, k ∈ N}.
(iv) The reversal function −Id ∈ B is simply the opposite of the identity function:

−Idi = −i, ∀i ∈ I. (35)

We have for each S ⊆ N , F−Id(S) = ∅. The kernel is K(−Id) = ∅.

5 Command influence functions

We can apply our model of influence to the framework of the command games. First, we
propose several influence functions, called here the command influence functions that are
compatible with the command games, in the sense that each commandable player for a
coalition in the command game is a follower of the coalition under the command influence
function.

7



Definition 2 Let {(N,Wk) | k ∈ N} be the command games, and ω(S) be the set of
all players commandable by S as defined in (11). The influence function B is compatible
with the command games {(N,Wk) | k ∈ N} if

ω(S) ⊆ FB(S), ∀S ⊆ N, (36)

where FB(S) is the set of followers of S under the influence function B.

For each set of the command games, the necessary condition for the existence of the
influence function which is compatible with the command games is as follows:

Proposition 1 Let {(N,Wk) | k ∈ N} be the command games. If there exists an influ-
ence function which is compatible with these command games, then the following holds:

S ∩ S ′ 6= ∅, ∀k ∈ N ∀S, S ′ ∈ Wk. (37)

Proof: Suppose that there exists the influence function B which is compatible with the
command games {(N,Wk) | k ∈ N}, and the condition (37) does not hold. Hence, from
(36), ω(S) ⊆ FB(S), for each S ⊆ N . Moreover, since (37) does not hold, there exist
k ∈ N , and S, S ′ ∈ Wk such that S ∩ S ′ = ∅. Since S, S ′ ∈ Wk, we have k ∈ ω(S)
and k ∈ ω(S ′), which by virtue of (36) implies k ∈ FB(S) and k ∈ FB(S ′). From (21),
(Bi)k = iS for each i ∈ IS, and (Bi)k = iS′ for each i ∈ IS′ . Take i ∈ IS ∩ IS′ such that
iS 6= iS′ . Hence, we have (Bi)k = iS 6= iS′ = (Bi)k, contradiction. �

In this paper, we apply the power indices (recapitulated in Section 2) to the com-
mand games, and we show that these power indices coincide with some expressions of
the weighted influence indices under the command influence functions. We consider the
Shapley-Shubik index matrix as defined in (12), i.e.,

Sh = [Shk(N,Wj)]
n
j,k=1 (38)

where Shk(N,Wj) is the Shapley-Shubik index of player k in the command game for j.
We create also the Banzhaf index matrix

Bz = [Bzk(N,Wj)]
n
j,k=1 (39)

where Bzk(N,Wj) is the Banzhaf index of player k in the command game for j, and
matrices related to the Coleman indices and the König-Bräuninger index. Let

A = [A(N,Wj)]j∈N (40)

ColP = [ColPk (N,Wj)]
n
j,k=1 (41)

ColI = [ColIk(N,Wj)]
n
j,k=1 (42)

KB = [KBk(N,Wj)]
n
j,k=1 (43)
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where A(N,Wj) is the Coleman power of a collectivity to act in the command game
for player j, ColPk (N,Wj) / ColIk(N,Wj) is the Coleman index to prevent action / the
Coleman index to initiate action of player k in the command game for j, and KBk(N,Wj)
is the König-Bräuninger inclusiveness index of k in the command game for j.

As will be shown in this section, there exist relations between these indices in the
command games, and the weighted influence indices under the command influence func-
tions.

5.1 An influence function with abstention

The first command influence function we propose is related to an extended model of
influence (see [9]), in which players have an ordered set of possible actions. In the present
model, each player has an inclination either to say ‘yes’ (denoted by +1) or ‘no’ (denoted
by −1), but he has three options to make his decision: ‘yes’, ‘no’, or ‘to abstain’ (denoted
by 0). The command influence function is defined as follows.

Definition 3 Given the command games {(N,Wk) | k ∈ N}, the command influence
function Com ∈ B is defined for each k ∈ N and i ∈ I by

(Comi)k :=


+1, if {j ∈ N | ij = +1} ∈ Wk

−1, if {j ∈ N | ij = −1} ∈ Wk

0, otherwise

. (44)

According to the command influence function Com, for each voter k and each inclination
vector, if all players with the same inclination forms a winning coalition in his command
game, the voter k follows the inclination of this winning coalition. Otherwise, that is, if
none of the two coalitions with all members having the same inclination is winning, the
voter k simply abstains.

Proposition 2 Let {(N,Wk) | k ∈ N} be the command games, and ω(S) be the set of
all players that are ‘commandable’ by S, as defined in (11). We have

FCom(S) = ω(S), ∀S ⊆ N, (45)

where FCom(S) is the set of followers of S under the command influence function Com.

Proof: FCom(∅) = ∅ = ω(∅). Take an arbitrary S ⊆ N . Suppose that FCom(S) 6⊆ ω(S).
Hence, there exists k ∈ FCom(S) such that k /∈ ω(S), and therefore (Comi)k = iS for all
i ∈ IS, and S /∈ Wk. Take i ∈ IS such that iS = +1, and ij = −1 for each j /∈ S. Hence,
(Comi)k = iS = +1, but since S /∈ Wk we have also either (Comi)k = −1 or (Comi)k = 0,
contradiction.
Suppose now that ω(S) 6⊆ FCom(S). Hence, there exists k ∈ ω(S) such that k /∈ FCom(S).
This means that S ∈ Wk for some k, and there is i ∈ IS such that (Comi)k 6= iS. Hence,
if iS = +1, then (Comi)k = +1 and (Comi)k 6= +1, contradiction. If iS = −1, then
(Comi)k = −1, and also (Comi)k 6= −1, contradiction. �

Consequently, by virtue of (23) and (45), the kernel of Com is given by:

K(Com) = {S ∈ 2N | ω(S) 6= ∅, and S ′ ⊂ S ⇒ ω(S ′) = ∅}. (46)
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Proposition 3 Let j ∈ N and (N,Wj) be the command game for j. Then for each k ∈ N

Shk(N,Wj) = ψα̃(Sh),λ=ik
(Com, k → j)− ψα̃(Sh),λ=−ik

(Com, k → j) (47)

where ψα,λ is the weighted influence index defined in (25), and for each i ∈ I

α̃
(Sh)k→j
i =


1

n(n−1
|i|−1)

, if ik = +1

1

n( n−1
n−|i|−1)

, if ik = −1
(48)

and |i| := |{m ∈ N | im = +1}|.

Proof: By a coalition S we mean the set of players with the same inclination iS, while
all players outside S have the inclination −iS. Consequently, two coalitions are formed
under each inclination vector: a coalition of players with the positive inclination, and a
coalition of players with the negative inclination. We have: k ∈ S iff ik = iS. Moreover,
given (N,Wj): v(S) = 1 iff S ∈ Wj iff (Comi)j = iS for each i ∈ IS such that im = −iS
for each m /∈ S. We can also define a function f : 2N × {−1,+1} → I such that for each
S ⊆ N and iS ∈ {−1,+1}, f(S, iS) = i, where im = iS if m ∈ S, and im = −iS if m /∈ S.
From (1), we have

Shk(N,Wj) =
∑

S⊆N :k∈S

(n− s)!(s− 1)!

n!
(v(S)− v(S \ k))

=
∑

S⊆N :k∈S

(n− s)!(s− 1)!

n!
v(S)−

∑
S⊆N :k/∈S

(n− s− 1)!s!

n!
v(S)

=
∑

S⊆N :k∈S

v(S)

n
(

n−1
s−1

) − ∑
S⊆N :k/∈S

v(S)

n
(

n−1
n−s−1

) =
1

2

∑
i∈I+

k

α̃
(Sh)k→j
i −

∑
i∈I−k

α̃
(Sh)k→j
i


=

∑
i∈I+

k
α̃

(Sh)k→j
i∑

i∈I α̃
(Sh)k→j
i

−
∑

i∈I−k
α̃

(Sh)k→j
i∑

i∈I α̃
(Sh)k→j
i

= ψα̃(Sh),λ=ik
(Com, k → j)− ψα̃(Sh),λ=−ik

(Com, k → j)

where
I+
k := {i ∈ I | (Comi)j = ik} (49)

I−k := {i ∈ I | (Comi)j = −ik} (50)

ψα,λ is the weighted influence index defined in (25), and α̃(Sh) is given in (48). The last
but one equality results from the following facts:∑

i:ik=+1

α̃
(Sh)k→j
i =

∑
i:ik=+1

1

n
(

n−1
|i|−1

) =
n∑

|i|=1

1

n
(

n−1
|i|−1

)(
n− 1

|i| − 1

)
= 1

∑
i:ik=−1

α̃
(Sh)k→j
i =

∑
i:ik=−1

1

n
(

n−1
n−|i|−1

) =
n−1∑
|i|=0

1

n
(

n−1
n−|i|−1

)(
n− 1

|i|

)
= 1.

�
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Proposition 4 Let j ∈ N and (N,Wj) be the command game for j. Then for each k ∈ N

Bzk(N,Wj) = ψα̃,λ=ik(Com, k → j)− ψα̃,λ=−ik(Com, k → j) (51)

where ψα,λ is the weighted influence index defined in (25) with

α̃k→j
i = 1, ∀i ∈ I. (52)

Proof: The proof is similar to the one of Proposition 3. From (2), we have

Bzk(N,Wj) =
1

2n−1

∑
S⊆N :k∈S

(v(S)− v(S \ k)) =
1

2n−1

∑
S⊆N :k∈S

v(S)− 1

2n−1

∑
S⊆N :k/∈S

v(S)

=
1

2n−1

[
|{i ∈ I | (Comi)j = ik}|

2
− |{i ∈ I | (Comi)j = −ik}|

2

]
= ψα̃,λ=ik(Com, k → j)− ψα̃,λ=−ik(Com, k → j)

where ψα,λ is the weighted influence index defined in (25), and α̃ is given in (52). �

Proposition 5 Let j ∈ N and (N,Wj) be the command game for j. Then

A(N,Wj) =
ψα̃,λ6=0(Com, k → j)

2
, ∀k ∈ N (53)

and for each k ∈ N

ColPk (N,Wj) =
ψα̃,λ=ik(Com, k → j)− ψα̃,λ=−ik(Com, k → j)

ψα̃,λ6=0(Com, k → j)
(54)

KBk(N,Wj) =
ψα̃,λ=ik(Com, k → j)

ψα̃,λ6=0(Com, k → j)
(55)

where ψα,λ is the weighted influence index defined in (25) with

α̃k→j
i = 1, ∀i ∈ I. (56)

Proof: (53) results immediately from (4). Let j ∈ N , and take an arbitrary k ∈ N .
We have

A(N,Wj) =

∑
S⊆N v(S)

2n
=
|{i ∈ I | (Comi)j 6= 0}|

2|I|
=
ψα̃,λ6=0(Com, k → j)

2

where α̃ is given in (56).
We have ∑

S⊆N

v(S) =
|{i ∈ I | (Comi)j 6= 0}|

2
= 2n−1ψα̃,λ6=0(Com, k → j) > 0. (57)

11



By virtue of (2) and (5), we have for each j, k ∈ N

ColPk (N,Wj) =
2n−1Bzk(N,Wj)∑

S⊆N v(S)
=

Bzk(N,Wj)

ψα̃,λ6=0(Com, k → j)

which together with (51) gives (54).

Since we have∑
S⊆N :k∈S

v(S) =
|{i ∈ I | (Comi)j = ik}|

2
= 2n−1ψα̃,λ=ik(Com, k → j), (58)

hence from (7), (57), and (58), we have

KBk(N,Wj) =

∑
S⊆N :k∈S v(S)∑

S⊆N v(S)
=
ψα̃,λ=ik(Com, k → j)

ψα̃,λ6=0(Com, k → j)
.

�

5.2 An influence function in which a player without a boss follows himself

Next, we mention another command influence function which is compatible with the
command games.

Definition 4 Given the command games {(N,Wk) | k ∈ N}, the command influence

function C̃om ∈ B is defined for each k ∈ N and i ∈ I by

(C̃omi)k :=


+1, if {j ∈ N | ij = +1} ∈ Wk

−1, if {j ∈ N | ij = −1} ∈ Wk

ik, otherwise

. (59)

The command influence function C̃om is similar to the function Com defined in (44)
with a difference that for each inclination vector, if none of the two coalitions with all
members having the same inclination is winning, now instead of abstaining, the voter in
question simply follows his own inclination. As a consequence, we do not have the equality
between the sets ω(S) and F

C̃om
(S) (as we had before between ω(S) and FCom(S)), but

the inclusion.

Proposition 6 Let {(N,Wk) | k ∈ N} be the command games, and ω(S) be the set of
all players that are ‘commandable’ by S, as defined in (11). We have

F
C̃om

(S) = ω(S) ∪ {k ∈ S | ∀S ′ ∈ Wk [S ∩ S ′ 6= ∅]}, ∀S ⊆ N, (60)

where F
C̃om

(S) is the set of followers of S under the command influence function C̃om.

12



Proof: Suppose that F
C̃om

(S) 6⊆ ω(S) ∪ {k ∈ S | ∀S ′ ∈ Wk [S ∩ S ′ 6= ∅]} for a certain
S ⊆ N . Hence, there exists k ∈ F

C̃om
(S) such that k /∈ ω(S), and either k /∈ S or

(k ∈ S, but there is S ′ ∈ Wk such that S ∩ S ′ = ∅). Consequently, since k ∈ F
C̃om

(S)

and k /∈ ω(S), we have (C̃omi)k = iS for all i ∈ IS, and S /∈ Wk. Take i ∈ IS such

that iS = +1, and ij = −1 for all j /∈ S. Hence, (C̃omi)k = iS = +1. If k /∈ S, then

(C̃omi)k = iS = +1 and (C̃omi)k = −1, contradiction. Suppose that k ∈ S and there

is S ′ ∈ Wk such that S ∩ S ′ = ∅. Hence, iS′ = −1, and therefore (C̃omi)k = +1 and

(C̃omi)k = −1, contradiction.
Suppose now that ω(S) ∪ {k ∈ S | ∀S ′ ∈ Wk [S ∩ S ′ 6= ∅]} 6⊆ F

C̃om
(S) for a certain

S ⊆ N . Hence, there exists k such that k /∈ F
C̃om

(S), and either k ∈ ω(S) or (k ∈ S and

for all S ′ ∈ Wk, S ∩S ′ 6= ∅). Since k /∈ F
C̃om

(S), there is i ∈ IS such that (C̃omi)k = −iS.

If k ∈ ω(S), then S ∈ Wk, and therefore (C̃omi)k = iS, contradiction. Suppose k ∈ S
and for all S ′ ∈ Wk, S ∩ S ′ 6= ∅. Hence, in particular, ik = iS. If there is S ′ ∈ Wk such

that i ∈ IS′ , then (C̃omi)k = iS′ = iS, contradiction. If i /∈ IS′ for all S ′ ∈ Wk, then

(C̃omi)k = ik = iS, contradiction. �

5.3 A non-symmetric influence function

Next, we propose an influence function under which we treat a winning coalition as the
set of potential yes-voters only.

Definition 5 Given the command games {(N,Wk) | k ∈ N}, the command influence
function Com ∈ B is defined by

(Comi)k :=

{
+1, if {j ∈ N | ij = +1} ∈ Wk

−1, if {j ∈ N | ij = +1} /∈ Wk

, ∀i ∈ I ∀k ∈ N. (61)

Proposition 7 Let {(N,Wk) | k ∈ N} be the command games, and ω(S) be the set of
all players that are ‘commandable’ by S, as defined in (11). We have

FCom(S) = ω(S), ∀S ⊆ N, (62)

where FCom(S) is the set of followers of S under the command influence function Com.

Proof: FCom(∅) = ∅ = ω(∅). Take an arbitrary S ⊆ N . Suppose that FCom(S) 6⊆ ω(S).
Hence, there exists k ∈ FCom(S) such that k /∈ ω(S), and therefore (Comi)k = iS for
all i ∈ IS, and S /∈ Wk. Take i ∈ IS such that iS = +1. Hence, (Comi)k = +1 and
(Comi)k = −1, contradiction.
Suppose now that ω(S) 6⊆ FCom(S). Hence, there exists k ∈ ω(S) such that k /∈ FCom(S).
This means that S ∈ Wk and there is i ∈ IS such that (Comi)k = −iS. Hence, if iS = +1,
then (Comi)k = −1 and (Comi)k = +1, contradiction. If iS = −1, then (Comi)k = +1,
and also since S ∈ Wk, and from (37), {j ∈ N | ij = +1} /∈ Wk. Hence (Comi)k = −1
and (Comi)k = +1, contradiction. �
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Consequently, by virtue of (23) and (62), the kernel of Com is given by:

K(Com) = {S ∈ 2N | ω(S) 6= ∅, and S ′ ⊂ S ⇒ ω(S ′) = ∅}. (63)

Proposition 8 Let j ∈ N and (N,Wj) be the command game for j. Then for each k ∈ N

Shk(N,Wj) = ψα̃(Sh),λ=+1(Com, k → j)− ψα̂(Sh),λ=+1(Com, k → j) (64)

where ψα,λ is the weighted influence index defined in (25), and for each i ∈ I

α̃
(Sh)k→j
i =

{
1

n(n−1
|i|−1)

, if ik = +1

0, if ik = −1
α̂

(Sh)k→j
i =

{
0, if ik = +1

1

n( n−1
n−|i|−1)

, if ik = −1
(65)

and |i| := |{m ∈ N | im = +1}|.

Proof: We introduce a bijection f : I → 2N such that for each i ∈ I,
f(i) = {k ∈ N | ik = +1}. Hence, k ∈ S iff ik = +1. Given (N,Wj), we have:
v(S) = 1 iff S = f(i) ∈ Wj iff (Comi)j = +1. Hence, from (1), we have

Shk(N,Wj) =
∑

S⊆N :k∈S

(n− s)!(s− 1)!

n!
(v(S)− v(S \ k))

=
∑

S⊆N :k∈S

(n− s)!(s− 1)!

n!
v(S)−

∑
S⊆N :k/∈S

(n− s− 1)!s!

n!
v(S)

=
∑

S⊆N :k∈S

v(S)

n
(

n−1
s−1

) − ∑
S⊆N :k/∈S

v(S)

n
(

n−1
n−s−1

) =
∑
i∈I+

k

α̃
(Sh)k→j
i −

∑
i∈I−k

α̂
(Sh)k→j
i

=

∑
i∈I+

k
α̃

(Sh)k→j
i∑

i:ik=+1 α̃
(Sh)k→j
i

−
∑

i∈I−k
α̂

(Sh)k→j
i∑

i:ik=−1 α̂
(Sh)k→j
i

= ψα̃(Sh),λ=+1(Com, k → j)− ψα̂(Sh),λ=+1(Com, k → j)

where
I+
k := {i ∈ I | ik = +1 ∧ (Comi)j = +1} (66)

I−k := {i ∈ I | ik = −1 ∧ (Comi)j = +1} (67)

ψα,λ is the weighted influence index defined in (25), and α̃(Sh) and α̂(Sh) are given in (65).
The last but one equality results from the following facts:

∑
i:ik=+1

α̃
(Sh)k→j
i =

∑
i:ik=+1

1

n
(

n−1
|i|−1

) =
n∑

|i|=1

1

n
(

n−1
|i|−1

)(
n− 1

|i| − 1

)
= 1

∑
i:ik=−1

α̂
(Sh)k→j
i =

∑
i:ik=−1

1

n
(

n−1
n−|i|−1

) =
n−1∑
|i|=0

1

n
(

n−1
n−|i|−1

)(
n− 1

|i|

)
= 1.

�
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Proposition 9 Let j ∈ N and (N,Wj) be the command game for j. Then for each k ∈ N

Bzk(N,Wj) = ψα̃(Bz),λ=+1(Com, k → j)− ψα̂(Bz),λ=+1(Com, k → j) (68)

where ψα,λ is the weighted influence index defined in (25), and for each i ∈ I

α̃
(Bz)k→j
i =

{
1, if ik = +1

0, if ik = −1
α̂

(Bz)k→j
i =

{
0, if ik = +1

1, if ik = −1.
(69)

Proof: The proof is similar to the one of Proposition 8. From (2), we have

Bzk(N,Wj) =
1

2n−1

∑
S⊆N :k∈S

(v(S)− v(S \ k)) =
1

2n−1

∑
S⊆N :k∈S

v(S)− 1

2n−1

∑
S⊆N :k/∈S

v(S)

=
|{i ∈ I | ik = +1 ∧ (Comi)j = +1}|

2n−1
− |{i ∈ I | ik = −1 ∧ (Comi)j = +1}|

2n−1

=
|{i ∈ I | ik = +1 ∧ (Comi)j = +1}|

|{i ∈ I | ik = +1}|
− |{i ∈ I | ik = −1 ∧ (Comi)j = +1}|

|{i ∈ I | ik = −1}|
= ψα̃(Bz),λ=+1(Com, k → j)− ψα̂(Bz),λ=+1(Com, k → j)

where ψα,λ is the weighted influence index defined in (25), and α̃(Bz) and α̂(Bz) are given
in (69). �

Proposition 10 Let j ∈ N and (N,Wj) be the command game for j. Then

A(N,Wj) = ψα̃,λ=+1(Com, k → j), ∀k ∈ N (70)

and for each k ∈ N

ColPk (N,Wj) =
ψα̃(Bz),λ=+1(Com, k → j)− ψα̂(Bz),λ=+1(Com, k → j)

2ψα̃,λ=+1(Com, k → j)
(71)

ColIk(N,Wj) =
ψα̃(Bz),λ=+1(Com, k → j)− ψα̂(Bz),λ=+1(Com, k → j)

2ψα̃,λ=−1(Com, k → j)
(72)

KBk(N,Wj) =
ψα̃(Bz),λ=+1(Com, k → j)

2ψα̃,λ=+1(Com, k → j)
(73)

where ψα,λ is the weighted influence index defined in (25) with

α̃k→j
i = 1, ∀i ∈ I (74)

and α̃(Bz), α̂(Bz) are given in (69).

15



Proof: (70) results immediately from (4). Let j ∈ N , and take an arbitrary k ∈ N .
We have

A(N,Wj) =

∑
S⊆N v(S)

2n
=
|{i ∈ I | (Comi)j = +1}|

|I|
= ψα̃,λ=+1(Com, k → j)

where α̃ is given in (74).
We have ∑

S⊆N

v(S) = |{i ∈ I | (Comi)j = +1}| = 2nψα̃,λ=+1(Com, k → j) > 0. (75)

By virtue of (2) and (5), we have for each j, k ∈ N

ColPk (N,Wj) =
2n−1Bzk(N,Wj)∑

S⊆N v(S)
=

Bzk(N,Wj)

2ψα̃,λ=+1(Com, k → j)

which together with (68) gives (71).
Moreover we note that

∑
S⊆N :k∈S

v(S) = |{i ∈ I | ik = +1 ∧ (Comi)j = +1}| = 2n−1ψα̃(Bz),λ=+1(Com, k → j) (76)

∑
S⊆N :k/∈S

v(S) = |{i ∈ I | ik = −1 ∧ (Comi)j = +1}| = 2n−1ψα̂(Bz),λ=+1(Com, k → j) (77)

2n −
∑
S⊆N

v(S) = |{i ∈ I | (Comi)j = −1}| = 2nψα̃,λ=−1(Com, k → j) (78)

By virtue of (6), (76), (77), and (78), we have

ColIk(N,Wj) =

∑
S⊆N :k/∈S(v(S ∪ k)− v(S))

2n −
∑

S⊆N v(S)
=

∑
S⊆N :k∈S v(S)−

∑
S⊆N :k/∈S v(S)

2n −
∑

S⊆N v(S)

=
|{i ∈ I | ik = +1 ∧ (Comi)j = +1}| − |{i ∈ I | ik = −1 ∧ (Comi)j = +1}|

|{i ∈ I | (Comi)j = −1}|

=
ψα̃(Bz),λ=+1(Com, k → j)− ψα̂(Bz),λ=+1(Com, k → j)

2ψα̃,λ=−1(Com, k → j)

From (7), (75), and (76), we have

KBk(N,Wj) =

∑
S⊆N :k∈S v(S)∑

S⊆N v(S)
=
ψα̃(Bz),λ=+1(Com, k → j)

2ψα̃,λ=+1(Com, k → j)
.

�
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6 Command games defined for some influence functions

In this section, we work in an opposite direction than in Section 5: for some influence
functions defined in [8] we define the command games such that the influence functions are
compatible with these games. In particular, we show that not for all influence functions
such command games exist.

Proposition 11 Let n ≥ t > bn
2
c and Maj[t] ∈ B be the majority function as defined in

(28). Let {(N,WMaj[t]

k ) | k ∈ N} be the command games given by

WMaj[t]

k = {S ⊆ N | s ≥ t}, ∀k ∈ N. (79)

The majority function Maj[t] is compatible with the games {(N,WMaj[t]

k ) | k ∈ N}.

Proof: By virtue of (79), the set ωMaj[t](S) of commandable players, for each S ⊆ N , is
given by

ωMaj[t](S) =

{
N, if s ≥ t

∅, if s < t
(80)

which from (29) is equal to FMaj[t](S). �

Remark 1 Note that for the command games {(N,WMaj[t]

k ) | k ∈ N} defined by (79), we
have for n > 2, n > t > bn

2
c, and k ∈ N

BossMaj[t]

k = {S ⊆ N | s ≥ t ∧ k /∈ S}

AppMaj[t]

k = {S ⊆ N | s = t− 1 ∧ k /∈ S}.
In particular, for t = n, k ∈ N ,

BossMaj[t]

k = ∅, AppMaj[t]

k = N \ k.

Proposition 12 Let Gur[k̃] ∈ B be the guru function as defined in (31), with the guru

k̃ ∈ N . Let {(N,WGur[k̃]

k ) | k ∈ N} be the command games given by

WGur[k̃]

k = {S ⊆ N | k̃ ∈ S}, ∀k ∈ N. (81)

The guru function Gur[k̃] is compatible with the command games {(N,WGur[k̃]

k ) | k ∈ N}.

Proof: By virtue of (81), the set ωGur[k̃]
(S) of commandable players, for each S ⊆ N , is

given by

ωGur[k̃]

(S) =

{
N, if k̃ ∈ S
∅, if k̃ /∈ S

(82)

which from (32) is equal to F
Gur[k̃](S). �
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Remark 2 In the command games {(N,WGur[k̃]

k ) | k ∈ N} defined by (81), the guru k̃ is
a free agent, and the remaining players are cogs, i.e.,

BossGur[k̃]

k̃
= ∅, AppGur[k̃]

k̃
= 2N\k̃

BossGur[k̃]

k = {S ⊆ N | k̃ ∈ S ∧ k /∈ S}, AppGur[k̃]

k = ∅, for k 6= k̃.

Proposition 13 Let Id ∈ B be the identity function as defined in (34). Let
{(N,W Id

k ) | k ∈ N} be the command games given by

W Id
k = {S ⊆ N | k ∈ S}, ∀k ∈ N. (83)

The identity function Id is compatible with the command games {(N,W Id
k ) | k ∈ N}.

Proof: From (83), we have ωId(S) = S for each S ⊆ N . On the other hand, also
FId(S) = S for S ⊆ N . �

Remark 3 In the command games {(N,W Id
k ) | k ∈ N} defined by (83), all players are

free agents, i.e.,
BossId

k = ∅, AppId
k = 2N\k.

Proposition 14 Let −Id ∈ B be the reversal function as defined in (35). There is no
set of command games such that the reversal function is compatible with these command
games.

Proof: We know that F−Id(S) = ∅ for S ⊆ N . Hence, in particular, F−Id(N) = ∅. Suppose
there is a set of command games {(N,W−Id

k ) | k ∈ N} such that −Id is compatible with
these command games. We have ω(N) = N for arbitrary command games, and therefore,
we have in particular, ω−Id(N) = N 6⊆ F−Id(N), contradiction. �

7 Relation between the influence model and the command
games

7.1 Influence functions and followers

Any influence function B is a mapping from I to I, hence the cardinality of B is (2n)(2n) =
2n2n

. The ‘follower function’ of B, denoted by FB, is a mapping from 2N to 2N . Hence
there are (2n)(2n) such functions, as many as influence functions. Let us denote by F the
set of mappings from 2N to 2N . However, while there is no restriction on B, FB should
satisfy some conditions, like monotonicity. Hence there are functions in F which cannot
correspond to the follower function of some influence function, and consequently, several
B’s may have the same follower function (put differently, we loose some information by
considering only FB). Formally, this means that the mapping Φ : B → F , defined by
B 7→ Φ(B) := FB, is neither a surjection nor an injection. This raises the following
natural questions:
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– Given a function in F , which are the sufficient and necessary conditions so that there
exists B ∈ B such that F ≡ FB? Let us call F a follower function if these conditions
are satisfied.

– If F is indeed a follower function, can we find a B such that FB ≡ F?

The following results answer the questions.

Proposition 15 A function F ∈ F is a follower function for some B ∈ B (i.e., FB ≡ F ,
or Φ(B) = F ) if and only if it satisfies the following three conditions:

(i) F (∅) = ∅;
(ii) F is monotone, i.e., S ⊆ T implies F (S) ⊆ F (T );
(iii) if S ∩ T = ∅, then F (S) ∩ F (T ) = ∅.

Moreover, the smallest and greatest influence functions belonging to Φ−1(F ) are respec-
tively the influence functions BF and BF , for all i ∈ I and all k ∈ N defined by:

(BF i)k :=

{
+1, if k ∈ F (S+(i))

−1, else

(BF i)k :=

{
−1, if k ∈ F (S−(i))

+1, else

where we put for convenience S±(i) := {j ∈ N | ij = ±1}. We call these influence
functions the upper and lower inverses of F .

Proof: We already know from [8, Prop. 2] that any follower function fulfills the above
three conditions.

Take F ∈ F satisfying the above conditions. Let us check if indeed Φ(BF ) =: FBF
= F .

We have to prove that FBF
(S) = F (S) for all S ⊆ N . It is true for S = ∅, by definition

of follower functions, and the condition F (∅) = ∅.
We consider some subset S 6= ∅. Let us first study the case where F (S) = ∅.

This implies that BF i = (−1, . . . ,−1), for i = (1S,−1N\S), which in turn implies that
FBF

(S) = ∅.
Suppose now F (S) 6= ∅, and k ∈ F (S). Let us show that k ∈ FBF

(S). For i =
(1S,−1N\S) ∈ IS, we have (BF i)k = 1 = iS. We have to show that this remains true
for any i ∈ IS. We have IS = {(1S′ ,−1N\S′) | S ′ ⊇ S} ∪ {(−1S′ , 1N\S′) | S ′ ⊇ S}. If
i = (1S′ ,−1N\S′) for S ′ ⊇ S, we have (BF i)k = iS = 1 if k ∈ F (S ′), which is true since
k ∈ F (S) and F is monotone. If i = (−1S′ , 1N\S′) for S ′ ⊇ S, we have (BF i)k = iS = −1 if
k 6∈ F (N \S ′). Since S∩(N \S ′) = ∅, by the third condition we have F (S)∩F (N \S ′) = ∅,
hence k 6∈ F (N \ S ′). In conclusion, k ∈ FBF

(S).
Conversely, if FBF

(S) = ∅, then necessarily F (S) = ∅ too, since we have proved above
that any element in F (S) is also in FBF

(S). Suppose now that FBF
(S) 6= ∅, and take

k ∈ FBF
(S). Then for any i ∈ IS, (BF i)k = iS. In particular, i := (1S,−1N\S) ∈ IS, so

that (BF i)k = 1, which implies that k ∈ F (S).
Finally, BF is the smallest B such that Φ(B) = F because any B in Φ−1(F ) must

satisfy for any k ∈ F (S) 6= ∅, Bik = 1 for i = (1S,−1N\S). Hence B ≥ BF .
The proof for the upper inverse is much the same. �
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Example 1 Consider F ≡ ∅, which is a follower function. We know already from [8,
Prop. 7] that an inverse of F is the reversal function −Id. Clearly, the lower inverse is the
constant function B ≡ (−1, . . . ,−1), while the upper inverse is B ≡ (1, . . . , 1).

Example 2 Consider F = Id, which is a follower function. We know already from [8,
Prop. 6] that an inverse of F is the identity function Id. Clearly, the lower and upper
inverses collapse to Id. Hence, Φ−1(Id) = {Id}.

Remark 4 Denoting inclination vectors by their corresponding subset of players with
positive inclination, the above results can be written in a simpler way. It is easy to see
that

BF (S) = F (S), BF (S) = F (S).

Also, the definition of the follower function can be rewritten as

F (S) =
⋂

S′⊇S

B(S ′) ∩
⋂

S′⊆N\S

B(S ′).

The following example uses this notation.

Example 3 Let n = 3 and the following function F be defined as follows:

S ∅ 1 2 3 12 13 23 123
F (S) ∅ ∅ 2 ∅ 2 3 12 123

Then the upper and lower inverses are

i ∅ 1 2 3 12 13 23 123

BF i ∅ 3 12 13 123 13 123 123
BF i ∅ ∅ 2 ∅ 2 3 12 123

7.2 Command games and commandable players

Similar questions can be raised concerning command games and the set of commandable
players, as well as the exact relationship between command games and influence functions.
We start by studying the relation between command games and commandable players.

We begin by some simple (but useful) observations. A set of command games (Wk, N)
for k ∈ N can be viewed more compactly as a mapping Ω : N × 2N → {0, 1}, with
(k, S) 7→ Ω(k, S) = 1 if S ∈ Wk, and 0 else. Let us call G the set of such functions.
Hence the cardinality of G is 2n2n

, which is exactly the cardinality of B. What are the
restrictions imposed on the command games? If we examine the structure induced by boss
and approval sets, we find that Wk is a union of principal filters, and hence is an upset:
Wk =↑ S1 ∪ . . .∪ ↑ Sl, produced either by minimal boss sets (those Sj not containing k)
or by approval sets (those Sj containing k)12. Now, another constraint may be to impose
that S1 ∩ · · · ∩Sl 6= ∅ for each Wk. This implies in particular that there is no two disjoint
boss sets. Lastly, the empty set cannot be a boss set (this does not make sense), hence
Wk 6=↑ ∅ = 2N . This leads to the following definition.

1 A family of subsets is an upset if any superset of an element of the family belongs also to te family. For any
S ⊆ N , we define ↑ S := {T ⊆ N | T ⊇ S}, the principal filter of S. Evidently, for N being finite, any upset is
a union of principal filters.

2 It is not written explicitly if Wk could be empty, but since ω(N) = N is assumed, necessarily Wk 3 N for all
k ∈ N .
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Definition 6 A normal command game Ω is a set of simple games (Wk, N)k∈N satisfying
the two conditions:

(i) For each k ∈ N , there exists a nonempty family of nonempty subsets Sk
1 , . . . , S

k
lk

(called
the minimal sets generating Wk) such that Wk =↑ Sk

1 ∪ . . .∪ ↑ Sk
lk
.

(ii) For each k ∈ N , Sk
1 ∩ · · · ∩ Sk

lk
6= ∅.

Next we consider ω(S), the set of players commandable by S. Clearly w : 2N → 2N , so
the set of all such mappings, which is F , has the same cardinality as the set of functions
Ω. There exists an obvious bijection between G and F , let us call it Ψ . We have

Ψ(Ω) = ω, with ω(S) = {k ∈ N | S ∈ Wk}, ∀S ⊆ N

Ψ−1(ω) = Ω, with S ∈ Wk iff k ∈ ω(S).

Proposition 16 Let ω ∈ F . Then ω corresponds to some normal command game if and
only if the following conditions are satisfied:

(i) ω(∅) = ∅, ω(N) = N ;
(ii) ω is monotone w.r.t. set inclusion;
(iii) If S ∩ S ′ = ∅, then ω(S) ∩ ω(S ′) = ∅.

Proof: Suppose ω corresponds to some normal command game. Then ω(∅) = ∅ follows
from the fact that ∅ 6∈ Wk, ∀k ∈ N . On the other hand, ω(N) = N since N ∈ Wk,
∀k ∈ N . Next, take S ⊆ S ′ ⊆ N . If k ∈ ω(S), then k ∈ ω(S ′) too due to the definition of
Wk, which proves that ω(S) ⊆ ω(S ′). Lastly, if k ∈ ω(S) ∩ ω(S ′), then both S, S ′ belong
to Wk, and so they must have a nonempty intersection.

Conversely, assume that ω fulfills the three conditions, and consider the corresponding
Ω. Since ω(N) = N , each Wk contains N , and thus is nonempty. Since ω(∅) = ∅, no Wk

contains the emptyset. Take any Wk, and consider S ∈ Wk. Then any S ′ ⊇ S belongs
also to Wk, since S ⊆ S ′ implies ω(S) ⊆ ω(S ′). This proves that Wk is an upset, hence
it is a union of principal filters ↑ Sk

1 , . . . , ↑ Sk
lk
. It remains to prove that there is no pair

of disjoint sets in this family. Assuming Wk contains at least two subsets (otherwise the
condition is void), take S, S ′ ∈ Wk such that S ∩S ′ = ∅. Then by (iii), ω(S)∩ω(S ′) = ∅,
which contradicts that fact that S, S ′ ∈ Wk. �

If ω ∈ F satisfies the conditions of Prop. 16, the notion of kernel is meaningful. We
denote it by K(ω).

Proposition 17 Let ω ∈ F satisfy the conditions of Prop. 16. Then the generating family
Sk

1 , . . . , S
k
lk

of Wk is given by:

(i) If there exists S ∈ K(ω) such that k ∈ S:

{Sk
1 , . . . , S

k
lk
} = {S ∈ K(ω) | ω(S) 3 k};

(ii) Otherwise:

{Sk
1 , . . . , S

k
lk
} = {S ∈ 2N | ω(S) 3 k and S ′ ⊂ S ⇒ ω(S ′) 63 k}.

Proof: Clear. �
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7.3 Influence functions and command games

We turn to the relation between influence functions and command games.

Definition 7 Let B be an influence function and Ω be a command game. Then B and
Ω are equivalent if FB ≡ ω. They are compatible if ω(S) ⊆ FB(S), for all S ⊆ N .

Due to the previous results, the case of equivalence is elucidated.

Theorem 1 (i) Let B be an influence function. Then B is equivalent to a (unique) nor-
mal command game Ω if and only if FB(N) = N . The generating families Sk

1 , . . . , S
k
lk
,

k ∈ N , of Ω are given by Prop. 17, which gives the minimal boss sets and approval
sets:

Boss∗k = {Sk
j | Sk

j 63 k, j = 1, . . . , lk}, App∗k = {Sk
j | Sk

j 3 k, j = 1, . . . , lk}.

(ii) Let Ω be a normal command game. Then any influence function in Φ−1(ω) is equiva-
lent to Ω, in particular the upper and lower inverse Bω and Bω. Moreover, the kernel
of any influence function B in Φ−1(ω) is given by

K(B) = min
( ⋃

k∈N

{Sk
1 , . . . , S

k
lk
}
)

where min(. . .) means that only minimal sets are selected from the collection.

8 Example - The Confucian model

In [13] the Confucian model of society is mentioned. We have four players in the society,
i.e., N = {1, 2, 3, 4} with the king (1), the man (2), the wife (3), and the child (4). The
rules are as follows:

(i) The man follows the king;
(ii) The wife and the child follow the man;
(iii) The king should respect his people.

Let us define the command games for this example. By virtue of the rules (i) and (ii), we
have immediately:

W2 = {1, 12, 13, 14, 123, 124, 134, 1234}
W3 = {2, 12, 23, 24, 123, 124, 234, 1234}
W4 = {2, 12, 23, 24, 123, 124, 234, 1234}.

Hence, we have

Boss2 = {1, 13, 14, 134}, Boss3 = {2, 12, 24, 124}, Boss4 = {2, 12, 23, 123}

App2 = App3 = App4 = ∅,
which means that players 2, 3, and 4 are the cogs.
How can we translate the rule (iii) into the set W1 of winning coalitions in the command
game for player 1? We propose several interpretations of this rule, and consequently,
several command games for player 1.
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8.1 The command game with W1 = {1234}

If W1 = {1234}, then we get:

Boss1 = ∅, App1 = {234},

i.e., the king needs the approval of all his people.

ω(1) = ω(13) = ω(14) = ω(134) = {2}, ω(2) = ω(23) = ω(24) = ω(234) = {3, 4}

ω(3) = ω(4) = ω(34) = ∅, ω(N) = N, ω(12) = ω(123) = ω(124) = {2, 3, 4}.

The Shapley-Shubik index matrix is then:

P = Sh =


1
4

1
4

1
4

1
4

1 0 0 0
0 1 0 0
0 1 0 0


and from (13) one has 

π1 = 1
4
π1 + π2

π2 = 1
4
π1 + π3 + π4

π3 = 1
4
π1

π4 = 1
4
π1

π1 + π2 + π3 + π4 = 1

which gives the authority distribution:

π =
1

9
(4, 3, 1, 1).

Let us apply now the command influence functions to the model. Table 1 presents the
inclination and decision vectors under the three command influence functions.

Table 1. The inclination and decision vectors for W1 = {1234}

i ∈ I Comi C̃omi Comi

(1, 1, 1, 1) (1, 1, 1, 1) (1, 1, 1, 1) (1, 1, 1, 1)
(1, 1, 1,−1) (0, 1, 1, 1) (1, 1, 1, 1) (−1, 1, 1, 1)
(1, 1,−1, 1) (0, 1, 1, 1) (1, 1, 1, 1) (−1, 1, 1, 1)
(1,−1, 1, 1) (0, 1,−1,−1) (1, 1,−1,−1) (−1, 1,−1,−1)
(−1, 1, 1, 1) (0,−1, 1, 1) (−1,−1, 1, 1) (−1,−1, 1, 1)

(1,−1, 1,−1) (0, 1,−1,−1) (1, 1,−1,−1) (−1, 1,−1,−1)
(1, 1,−1,−1) (0, 1, 1, 1) (1, 1, 1, 1) (−1, 1, 1, 1)
(−1, 1, 1,−1) (0,−1, 1, 1) (−1,−1, 1, 1) (−1,−1, 1, 1)
(1,−1,−1, 1) (0, 1,−1,−1) (1, 1,−1,−1) (−1, 1,−1,−1)
(−1,−1, 1, 1) (0,−1,−1,−1) (−1,−1,−1,−1) (−1,−1,−1,−1)
(−1, 1,−1, 1) (0,−1, 1, 1) (−1,−1, 1, 1) (−1,−1, 1, 1)

(1,−1,−1,−1) (0, 1,−1,−1) (1, 1,−1,−1) (−1, 1,−1,−1)
(−1, 1,−1,−1) (0,−1, 1, 1) (−1,−1, 1, 1) (−1,−1, 1, 1)
(−1,−1, 1,−1) (0,−1,−1,−1) (−1,−1,−1,−1) (−1,−1,−1,−1)
(−1,−1,−1, 1) (0,−1,−1,−1) (−1,−1,−1,−1) (−1,−1,−1,−1)

(−1,−1,−1,−1) (−1,−1,−1,−1) (−1,−1,−1,−1) (−1,−1,−1,−1)
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Note that under B ∈ {Com, C̃om,Com} each player (except the king) always follows the
inclination of his boss sets. Under the influence function Com, the king will say ‘yes’ /
‘no’ only if all players (including himself) have the positive / negative inclination. In the

remaining cases, the king abstains. Under the influence function C̃om, the king always
follows his own inclination, since 1234 is the unique winning coalition in the command
game for player 1. Under the influence function Com, if all people of the king are against,
his decision is also ‘no’, but if all his people are in favor (i.e., the king has the approval of
his people), his decision is ‘yes’ only if his inclination is also positive. In case the people
of the king are not unanimous, the king has no approval, and consequently he chooses
‘no’, even if his inclination is positive.

We have, in particular:

FB(1) = {2}, FB(2) = {3, 4}, FB(12) = {2, 3, 4}, for B ∈ {Com,Com}

F
C̃om

(1) = {1, 2}, F
C̃om

(2) = {3, 4}, F
C̃om

(12) = N.

By virtue of (22), dα(B, S → j) = 1 for each j ∈ FB(S) \ S. Hence, we have:

dα(B, 1 → 2) = dα(B, 2 → 3) = dα(B, 2 → 4) = 1, for B ∈ {Com, C̃om,Com}.

The kernel is equal to:

K(B) = {{1}, {2}}, for B ∈ {Com, C̃om,Com}.

We have already calculated the Shapley-Shubik index matrix for this example. The
Banzhaf index matrices are equal to:

Bz =


1
8

1
8

1
8

1
8

1 0 0 0
0 1 0 0
0 1 0 0

 B̃z =


1
4

1
4

1
4

1
4

1 0 0 0
0 1 0 0
0 1 0 0


The Coleman matrix A is equal to:

A = [A(N,Wj)]j∈N =

[
1

16
,
1

2
,
1

2
,
1

2

]
.

Moreover, we have

ColP =


1 1 1 1
1 0 0 0
0 1 0 0
0 1 0 0

 ColI =


1
15

1
15

1
15

1
15

1 0 0 0
0 1 0 0
0 1 0 0

 KB =


1 1 1 1
1 1

2
1
2

1
2

1
2

1 1
2

1
2

1
2

1 1
2

1
2

 .
8.2 The command game with W1 = {123, 124, 134, 1234}

If W1 = {123, 124, 134, 1234}, then we get:

Boss1 = ∅, App1 = {23, 24, 34, 234},
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i.e., the king needs the approval of the majority of his people.

ω(1) = ω(13) = ω(14) = {2}, ω(134) = {1, 2}, ω(2) = ω(23) = ω(24) = ω(234) = {3, 4}

ω(3) = ω(4) = ω(34) = ∅, ω(12) = {2, 3, 4}, ω(123) = ω(124) = ω(N) = N.

The Shapley-Shubik index matrix is then:

P = Sh =


1
2

1
6

1
6

1
6

1 0 0 0
0 1 0 0
0 1 0 0


and from (13) one has 

π1 = 1
2
π1 + π2

π2 = 1
6
π1 + π3 + π4

π3 = 1
6
π1

π4 = 1
6
π1

π1 + π2 + π3 + π4 = 1

which gives the authority distribution:

π =
1

11
(6, 3, 1, 1).

As before, we apply now the command influence functions to the model. Table 2
presents the inclination and decision vectors under the three command influence functions.

Table 2. The inclination and decision vectors for W1 = {123, 124, 134, 1234}

i ∈ I Comi C̃omi Comi

(1, 1, 1, 1) (1, 1, 1, 1) (1, 1, 1, 1) (1, 1, 1, 1)
(1, 1, 1,−1) (1, 1, 1, 1) (1, 1, 1, 1) (1, 1, 1, 1)
(1, 1,−1, 1) (1, 1, 1, 1) (1, 1, 1, 1) (1, 1, 1, 1)
(1,−1, 1, 1) (1, 1,−1,−1) (1, 1,−1,−1) (1, 1,−1,−1)
(−1, 1, 1, 1) (0,−1, 1, 1) (−1,−1, 1, 1) (−1,−1, 1, 1)

(1,−1, 1,−1) (0, 1,−1,−1) (1, 1,−1,−1) (−1, 1,−1,−1)
(1, 1,−1,−1) (0, 1, 1, 1) (1, 1, 1, 1) (−1, 1, 1, 1)
(−1, 1, 1,−1) (0,−1, 1, 1) (−1,−1, 1, 1) (−1,−1, 1, 1)
(1,−1,−1, 1) (0, 1,−1,−1) (1, 1,−1,−1) (−1, 1,−1,−1)
(−1,−1, 1, 1) (0,−1,−1,−1) (−1,−1,−1,−1) (−1,−1,−1,−1)
(−1, 1,−1, 1) (0,−1, 1, 1) (−1,−1, 1, 1) (−1,−1, 1, 1)

(1,−1,−1,−1) (0, 1,−1,−1) (1, 1,−1,−1) (−1, 1,−1,−1)
(−1, 1,−1,−1) (−1,−1, 1, 1) (−1,−1, 1, 1) (−1,−1, 1, 1)
(−1,−1, 1,−1) (−1,−1,−1,−1) (−1,−1,−1,−1) (−1,−1,−1,−1)
(−1,−1,−1, 1) (−1,−1,−1,−1) (−1,−1,−1,−1) (−1,−1,−1,−1)

(−1,−1,−1,−1) (−1,−1,−1,−1) (−1,−1,−1,−1) (−1,−1,−1,−1)

Note that for W1 = {123, 124, 134, 1234} the decision vectors under C̃om are the same

as the decision vectors under C̃om for W1 = {1234}.
The results are similar as before, that is:

FB(1) = {2}, FB(2) = {3, 4}, FB(12) = {2, 3, 4}, for B ∈ {Com,Com}
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F
C̃om

(1) = {1, 2}, F
C̃om

(2) = {3, 4}, F
C̃om

(12) = N.

In particular:

dα(B, 1 → 2) = dα(B, 2 → 3) = dα(B, 2 → 4) = 1, for B ∈ {Com, C̃om,Com.}

The kernel is equal to:

K(B) = {{1}, {2}}, for B ∈ {Com, C̃om,Com}.

The Banzhaf index matrices are equal to:

Bz =


1
2

1
4

1
4

1
4

1 0 0 0
0 1 0 0
0 1 0 0

 B̃z =


2
5

1
5

1
5

1
5

1 0 0 0
0 1 0 0
0 1 0 0


The Coleman matrix A is equal to:

A = [A(N,Wj)]j∈N =

[
1

4
,
1

2
,
1

2
,
1

2

]
.

Moreover, we have

ColP =


1 1

2
1
2

1
2

1 0 0 0
0 1 0 0
0 1 0 0

 ColI =


1
3

1
6

1
6

1
6

1 0 0 0
0 1 0 0
0 1 0 0

 KB =


1 3

4
3
4

3
4

1 1
2

1
2

1
2

1
2

1 1
2

1
2

1
2

1 1
2

1
2

 .
8.3 The command game with W1 = {12, 13, 14, 123, 124, 134, 1234}

If W1 = {12, 13, 14, 123, 124, 134, 1234}, then we get:

Boss1 = ∅, App1 = {2, 3, 4, 23, 24, 34, 234},

i.e., the king needs the approval of at least one of his people.

ω(1) = {2}, ω(13) = ω(14) = ω(134) = {1, 2}, ω(2) = ω(23) = ω(24) = ω(234) = {3, 4}

ω(3) = ω(4) = ω(34) = ∅, ω(12) = ω(123) = ω(124) = ω(N) = N.

The Shapley-Shubik index matrix is then:

P = Sh =


3
4

1
12

1
12

1
12

1 0 0 0
0 1 0 0
0 1 0 0


and from (13) one has 

π1 = 3
4
π1 + π2

π2 = 1
12
π1 + π3 + π4

π3 = 1
12
π1

π4 = 1
12
π1

π1 + π2 + π3 + π4 = 1
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which gives the authority distribution:

π =
1

17
(12, 3, 1, 1).

We apply the command influence functions to the model. Table 3 presents the incli-
nation and decision vectors under the command influence functions.

Table 3. The inclination and decision vectors for W1 = {12, 13, 14, 123, 124, 134, 1234}

i ∈ I Comi C̃omi Comi

(1, 1, 1, 1) (1, 1, 1, 1) (1, 1, 1, 1) (1, 1, 1, 1)
(1, 1, 1,−1) (1, 1, 1, 1) (1, 1, 1, 1) (1, 1, 1, 1)
(1, 1,−1, 1) (1, 1, 1, 1) (1, 1, 1, 1) (1, 1, 1, 1)
(1,−1, 1, 1) (1, 1,−1,−1) (1, 1,−1,−1) (1, 1,−1,−1)
(−1, 1, 1, 1) (0,−1, 1, 1) (−1,−1, 1, 1) (−1,−1, 1, 1)

(1,−1, 1,−1) (1, 1,−1,−1) (1, 1,−1,−1) (1, 1,−1,−1)
(1, 1,−1,−1) (1, 1, 1, 1) (1, 1, 1, 1) (1, 1, 1, 1)
(−1, 1, 1,−1) (−1,−1, 1, 1) (−1,−1, 1, 1) (−1,−1, 1, 1)
(1,−1,−1, 1) (1, 1,−1,−1) (1, 1,−1,−1) (1, 1,−1,−1)
(−1,−1, 1, 1) (−1,−1,−1,−1) (−1,−1,−1,−1) (−1,−1,−1,−1)
(−1, 1,−1, 1) (−1,−1, 1, 1) (−1,−1, 1, 1) (−1,−1, 1, 1)

(1,−1,−1,−1) (0, 1,−1,−1) (1, 1,−1,−1) (−1, 1,−1,−1)
(−1, 1,−1,−1) (−1,−1, 1, 1) (−1,−1, 1, 1) (−1,−1, 1, 1)
(−1,−1, 1,−1) (−1,−1,−1,−1) (−1,−1,−1,−1) (−1,−1,−1,−1)
(−1,−1,−1, 1) (−1,−1,−1,−1) (−1,−1,−1,−1) (−1,−1,−1,−1)

(−1,−1,−1,−1) (−1,−1,−1,−1) (−1,−1,−1,−1) (−1,−1,−1,−1)

As before, under all three influence functions, each player (except the king) always follows
the inclination of his boss sets. Moreover, under Com, the king almost always follows
his inclination, except two cases of abstention when the inclination of all his people is

different from his own inclination. Under the function C̃om, the king always follows his
own inclination as in the previous two command games for player 1. Under the function
Com, the king almost always follows his inclination, except one case when his inclination
is positive while the inclination of all his people is negative.

We have also:

FB(1) = {2}, FB(2) = {3, 4}, FB(12) = N, for B ∈ {Com,Com}

F
C̃om

(1) = {1, 2}, F
C̃om

(2) = {3, 4}, F
C̃om

(12) = N.

dα(B, 1 → 2) = dα(B, 2 → 3) = dα(B, 2 → 4) = 1, for B ∈ {Com, C̃om,Com.}

K(B) = {{1}, {2}}, for B ∈ {Com, C̃om,Com}.
The Banzhaf index matrices are equal to:

Bz =


7
8

1
8

1
8

1
8

1 0 0 0
0 1 0 0
0 1 0 0

 B̃z =


7
10

1
10

1
10

1
10

1 0 0 0
0 1 0 0
0 1 0 0


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The Coleman matrix A is equal to:

A = [A(N,Wj)]j∈N =

[
7

16
,
1

2
,
1

2
,
1

2

]
.

Moreover, we have

ColP =


1 1

7
1
7

1
7

1 0 0 0
0 1 0 0
0 1 0 0

 ColI =


7
9

1
9

1
9

1
9

1 0 0 0
0 1 0 0
0 1 0 0

 KB =


1 4

7
4
7

4
7

1 1
2

1
2

1
2

1
2

1 1
2

1
2

1
2

1 1
2

1
2

 .
9 Conclusion

This paper presents a comparison between two models that deal with modeling players’
interactions: the command games and the influence model. The link between the models
is expressed by defining the influence functions that are compatible with the command
games, in the sense that each commandable player for a coalition in the command game
is a follower of the coalition under the command influence function. Consequently, given
a set of the command games, we define three influence functions that are compatible with
the command games. For some influence functions we define the command games such
that the influence functions are compatible with these games. Nevertheless, not for all
influence functions such command games exist. In the paper, we also show links between
some power indices, which can be used in the command games, and the generalized
weighted influence indices. The concluding remark can be that the influence model is more
general than the framework of the command games, and the concepts of the influence
function and the influence index can capture the command structure.

A research agenda concerning our future work on the influence model contains several
issues. In particular, we plan to introduce the authority distribution based on the influence
indices. Moreover, we intend to introduce dynamic aspects into the model. We want
to study the behavior of the series Bi,B2i, ..., Bni, ..., to find convergence conditions,
to investigate the corresponding influence indices, and relations between the repeated
influence model and the command games. We plan to analyze a generalized model of
influence, in which each player has a continuum of options to choose (that is, a model in
which the inclination or opinion of each player lies in an interval, say [0, 1], where each
ik ∈ [0, 1] can be interpreted as player k’s degree of inclination to say ‘yes’). An important
issue for future research concerns an axiomatic characterization of the influence indices.
Furthermore, it would be interesting to test the new concepts and to run lab experiments
concerning the influence between players.
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