
HAL Id: halshs-00260190
https://shs.hal.science/halshs-00260190v1

Preprint submitted on 3 Mar 2008 (v1), last revised 15 May 2008 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using maps of city analogues to display and interpret
climate change scenarios and their uncertainty

Sebastian Kopf, Minh Ha-Duong, Stéphane Hallegatte

To cite this version:
Sebastian Kopf, Minh Ha-Duong, Stéphane Hallegatte. Using maps of city analogues to display and
interpret climate change scenarios and their uncertainty. 2008. �halshs-00260190v1�

https://shs.hal.science/halshs-00260190v1
https://hal.archives-ouvertes.fr


Using maps of city analogues to display and

interpret climate change scenarios and their
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Abstract

We describe a method to represent the results of climate simulation

models with analogues. An analogue to a city A is a city B whose cli-

mate today represents A’s simulated future climate. Climates were char-

acterized and compared non-parametrically, using the 30-years distribu-

tion of three indicators: Aridity Index, Heating Degree Days and Cooling

Degree Days. Analogy was evaluated statistically with the two-samples

Kolmogorov-Smirnov test, generalized to 3 dimensions. We looked at the

climate of 12 European cities at the end of the century under an A2 climate

change scenario. We used two datasets produced with high-resolution

regional climate simulation models from the Hadley Center and Meteo

France. Climate analogues were generally found southward of present

locations, a clear warming trend even if much model and scenario un-

certainty remains. Climate analogues provide an intuitive way to show

the possible effects of climate change on urban areas, offering a holistic

approach to think about how cities adapt to different climates. Evidence

of its communication value comes from the reuse of our maps in teaching

and in several European mass-media.
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1 Introduction

Most Europeans live in urban areas nowadays. In cities, weather patterns in-
teract with the socio-economic structures directly and indirectly in many un-
counted and mostly unaccountable ways. Elevated temperatures, particularly
during extremes like the 2003 and 2006 summers, have shown the heavy strain
on and need for adaptation of sanitary systems, production strategies (above
all in construction and agriculture), power supply systems, living comfort and
so forth. All these consequences of climate change were not credibly predicted.
Their full extent can only be analyzed in retrospect, and because of adaptation
and evolution of societies, the next event will be lived differently. An integrated
assessment of the impact of future climate change on urban areas would re-
quire not only the description of vegetational response to changing conditions,
but also a systematic consideration of a large number of heavily interwoven ur-
ban attributes which affect the adaptation process, such as architectural styles,
transport infrastructure and cultural lifestyles. Defining a convincing reference
scenario under these conditions, together with a consistent vision of economic
and cultural drivers of the adaptation process, is a daunting task. Predicting
the consequences of climate changes on human settlements is impossible.

Hallegatte et al. [2007] suggested an alternative, holistic approach to the
assessment of socio-economic consequences of climate change. The authors pro-
posed to search and evaluate current analogues of the future climate of urban
areas. In order to think about how city A will be in the future, it suggests to
look at how city B is in the present, whose current climate is like the simu-
lated future climate of A. This circumvents the obstacle of having to theorize
adaptation to the climate change consequences.

The analogue concept is not new, and has indeed been used previously to
assess climate change impacts on agriculture [Darwin et al., 1995, Mendelsohn
and Dinar, 1999]. This research’s contribution is to extend and improve the
approach initially proposed by Hallegatte et al. [2007], by presenting a statistical
methodology to identify climate analogues. This method is generally applicable
to high spatial resolution climate simulation models, computationally light, and
does not need heuristics nor hand tuning.

There are two key methodological choices for a climate analogue method.
The first is which climate indicators to use. As the next section discusses,
climates are characterized here using three indicators: Aridity Index, Heating
Degree Days and Cooling Degree Days. The second choice is how to compare cli-
mates statistically. As discussed in Section 3, the proposed method does not rely
on averages or on parametric tests, but applies the 3-dimensional two-samples
Kolmogorov-Smirnov test directly to the 30-years distribution of the indicators.
Section 4 demonstrates applicability by computing analogues for 12 large Eu-
ropean cities using data from two high-resolution regional climate simulation
models from the Hadley Center and Meteo France. In the concluding section
5, we discuss the method’s limits, potential improvements, and communication
value in several European mass-media channels.

Three technical appendices describe respectively A/ the parameterization
of the K-S test, based on Monte-Carlo simulations in the literature, B/ more
detailed results on the comparison between using 3 indicators versus only 2, and
C/ the difference between p-value maps versus maps of the KS statistic, that
we use preferentially because they offer a better visual contrast.
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2 Characterizing climate with indicators

2.1 On indicators

Climate can be defined as the weather conditions in a certain geographical area
averaged over a long period of time. A more quantitative definition is needed for
a computer-based method. A well accepted approach to characterize climates
is to select a few aggregate indicators quantifying the most relevant attributes.
Many climate indicators exist [Thornthwaite, 1948], as climates can be defined
in different ways for different purposes. For example in agriculture, the total
annual evapotranspiration is an important indicator for plant growth whereas in
tourism the total number of rainy days might be of primary interest instead. The
literature suggests that general-purpose characterizations of climates, such as
the Köppen classification, tend to include at least one indicator related to tem-
perature (or energy) and one indicator related to moisture (or water). Holdridge
[1947] Life Zone system’s popularity shows that three indicators are sufficient
to define a useful classification of climates (these zones are usually represented
on a two dimensional triangle).

In order to characterize climate from the point of view of its impact on cities
and urban life, we considered the combination of the following three climate in-
dicators: annual Aridity Index, annual Heating Degree Days and annual Cooling
Degree Days. The annual Aridity Index represents aridity, a key factor defin-
ing a climate’s vegetation. This index is widely used in the categorization of
climate types, and water stress is expected to be a key social impact of climate
change too. The Heating and Cooling Degree Days are known to correlate well
with the energy demand for heating and air conditioning, respectively. They
are actually used in financial markets to settle the price of weather derivatives
and futures, or to estimate a building’s or a city’s energy needs. From an agri-
cultural point of view, they relate directly to the Effective Temperature Sum
(ETS) used by Fronzek and Carter [2003] as an energy requirement indicator
for crop species sustainability.

Although capturing additional aspects of climate or investigating selected
features or particular subsystems of urban areas might require additional indi-
cators, there is a certain trade-off between the exhaustivity of climate description
and the applicability of the method of finding climate analogues. We believe
that the combination of these three indicators provides a sufficient description
of a city’s climate to assess the impact of climatic change on urban areas, so
we define climate for this study as the 30-years joint distribution of the triple
(Aridity Index, Heating Degree Days and Cooling Degree Days). In order to
statistically compare climatic (dis-) similarities of different times and places, we
assume stationarity, as if the 30 years were drawn from the same unchanging
distribution. No assumption is made on the shape of this distribution. The
three indicators are defined in principle from daily data, but monthly mean
temperature and precipitation data are more readily available. As we show
next, they can be computed to a good approximation from monthly data.

2.2 Aridity

Aridity describes the availability of water that plants can use. It is a funda-
mental indicator for a climate’s vegetation, likely to change significantly in a
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Figure 1: Precipitations and potential evapotranspiration of the simulated cli-
mate of Paris in 2071 (HadRM3H model). Absolute aridity is the area above the
precipitation and below evapotranspiration bars of the deficient months (hollow
rectangles). It is divided by total evapotranspiration of the deficient months to
get the aridity index.

changing climate. There are several variants of an aridity index available in lit-
erature: absolute or relative, aridity or humidity. For the purpose of describing
climates statistically, they are largely equivalent so we settled on the classical
Aridity Index AI as defined by Thornthwaite [1948] (see Figure 1) and reminded
below:

In any given month, the water deficit is the difference between the monthly
potential evapotranspiration e and the precipitation p which sums up for all
water deficient months of a year to the annual water deficit. The annual Aridity
Index is defined relative to the total potential evapotranspiration of the deficient
months:

AI = 100

∑12

i=1
δi(ei − pi)

∑12

i=1
δiei

{

δi = 1 if ei > pi

δi = 0 if ei ≦ pi

(1)

Thornthwaite [1948] also provides an empirically derived method for closely
estimating the monthly potential evapotranspiration e of a standard month of
30 days in cm from the mean monthly temperature in ❽:

ei = 1.6

(

10 ti

I

)a

; ti > 0◦C (2)

with

I =
12
∑

i=1

(

ti

5

)1.514

; ti > 0◦C (3)

a = 0.000000675I3 + 0.0000771I2 + 0.01792I + 0.49239 (4)
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Figure 2: Temperature simulation for Paris in 2071 (HadRM3H model). Cooling
Degree Days (CDD) correspond to the area above the 18❽ line (grey area).
Heating Degree Days (HDD) correspond to the area below the 18❽ line (black
area).

As the days in a month vary and the number of hours of sunshine per day
depend on the seasons and the latitude, Thornthwaite [1948] also introduced an
adjustment factor for the above calculated unadjusted potential evapotranspi-
ration. In the present work, we neglected this adjustment but follow-up studies
should investigate this aspect.

2.3 Cooling and heating degree days

Heating and cooling degree days (HDD and CDD, see Figure 2) can be seen as
measures of heating and air conditioning needs, respectively. They are based on
the simple idea that heaters (or air conditioners) are turned on when temper-
ature drops below (or rises above) a reference temperature b, commonly set at
18❽. These indicators’ relevance for the climate change issue is twofold. On the
one hand, changes in their distributions are an expected important impact of
climate change. And on the other hand, they also matter for mitigation, since
empirically degree days characterize households’ energy consumption very well.
Mathematically, annual heating and cooling degree days are defined as follows:

HDD =
365
∑

i=1

δi(b − ti)

{

δi = 1 if b > ti

δi = 0 if b ≦ ti
(5)

CDD =
365
∑

i=1

δi(ti − b)

{

δi = 1 if ti > b

δi = 0 if ti ≦ b
(6)

Although by definition based on a daily difference to the base, observing
that the daily temperature distribution has a known shape, it is possible to
estimate monthly degree days statistically from monthly temperature means,
neglecting Schaer et al. [2004]’s suggestion that climate change will alter this
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known shape. Thom [1954, 1966] proposed a method to calculate the normal
degree days above (CDD) or below (HDD) any base as follows:

N D̄± = N [l∗(∓x0)
√

Nσm ± (t − b)] (7)

where D̄+ are degree days above a base (i.e. Cooling Degree Days) and D̄−

are degree days below a base (i.e. Heating Degree Days), N is the month length
in days, σm is the standard deviation of monthly average temperature (which
was calculated in our case from the average monthly temperatures over several
years as available), b=18❽ is the base, and x0 and l∗ the so-called truncation
point and truncation coefficient, which are related empirically and after Thom
[1966] calculated with an exponential approximation as follows:

x0 =
b − t√
Nσm

(8)

l∗(x0) = 0.34e−4.7x0 − 0.15e−7.8x0 (9)

l∗(−x0) = l∗(x0) + x0 (10)

3 A statistical measure of climates similarity

3.1 The 1-Dimensional two sample Kolmogorov-Smirnov

test

The Kolmogorov-Smirnov test is a commonly used and relatively simple non-
parametric statistical test. It can be used to examine if a sample comes from
a known distribution, or to examine if two samples come from the same un-
known distribution. Our use is the later: to compare climates from two different
places and periods, using samples of 30 years. In its basic univariate case, the
Kolmogorov-Smirnov statistic D is defined as the maximum vertical distance
between the cumulative distribution functions of the two samples. This is illus-
trated in figure 3 for the cumulative distribution of the 30 annual aridity indices
of the climate of Paris from 2071 to 2100 and the climate of the southern Italian
city Barletta from 1961 to 1990 respectively (aridity indices computed using the
results of the HadRM3H model simulation.)

The basic idea of the test is the following. When one draws two samples of
numbers according to a given probability distribution f , the cumulative distri-
bution curves of the two samples will both tend to fall around the same PDF
curve of f . Thus, if one cannot expect D to be exactly 0, one can expect it to be
small. But when one draws two samples according to very distinct probability
distributions, respectively f and g, the cumulative distribution curves of the
two samples will tend to fall around the PDF curves of respectively f and g. If
these curves are well apart, one can expect the statistic D to be close to 1. To
illustrate with an extreme case, if numbers drawn according to f are known to
lie within [1, 2] and numbers drawn according to g are in [3, 4], then certainly
the distance will be 1.

Monte-Carlo simulations allow to compute empirically the frequency distri-
bution p of the K-S statistic D for two samples of 30 drawn from the same
distribution f to any useful precision. The key to the K-S test is that p does
not depend too much on the shape of f itself. Thus, the K-S is non parametric,
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Figure 3: Cumulative Probability Distributions of the Aridity index for Paris
(2071–2100) and the southern Italian city Barletta (1961–1990), data from
HadRM3H model. The Kolmogorov-Smirnov statistic D is the maximum verti-
cal distance between the two curves.

as no assumption need to be made on the unknown distribution1. Figure 4
displays the distribution according to the literature.

The Kolmogorov-Smirnov distance D allows to compute an absolute measure
of similarity between two samples, using statistical testing theory. In technical
language, the probability that two samples drawn from the same distribution
have a K-S statistic at least as a great as D is called the p-value. For example,
the p-value of two identical samples (D = 0) is p = 1. When the p-value is
small, there is reason to reject the hypothesis that the two samples come from
the same distribution. On the contrary, the larger p, the more reason there is
to believe (or accept the hypothesis) that the two samples where indeed drawn
from the same distribution.

3.2 The 2-D and 3-D Kolmogorov-Smirnov test

The classical K-S test exposed above deals with real-valued variables (i.e. is
1-dimensional). However, we characterize climates with three indicators, so we
have to test the joint probability distribution of the triple (AI, HCC, CDD).
Generalization is not trivial because in higher dimensions there is no obvious
total ordering relation, so the notion of cumulative distribution is not imme-
diately applicable. We used Peacock [1983], Fasano and Franceschini [1987]
generalization of the K-S test for two and three dimensions.

1Fasano and Franceschini [1987] show for the 2- and 3-dimensional case the correlation
between the multiple variables to be the sole dependency.
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Figure 4: The pvalue as a function of the K-S statistic D after Press et al.
[1992]. It measures on an absolute scale (between 0 and 1) how likely it is for
two samples to be drawn from the same distribution i.e. in our case, how well
the two climates, as described by the indicator, correspond.

In the case of two-dimensional samples, each data point is a pair of numbers,
such as (AI, CDD) for example. Peacock [1983] approach is best understood
graphically, as illustrated in figure 5 for the combination of annual Aridity Index
and annual Cooling Degree Days over 30 years of the climate of Paris from 2071
to 2100 and the climate of Barletta, Italy, from 1961 to 1990. It replaces the
cumulative probability distribution with a description of the integrated prob-
ability in each of the 4 quadrants around a given reference point (x,y) of the
sample. Practically, each data point of the sample is successively used as the
reference point. For each such reference point, the relative frequencies for the
two samples are calculated in each quadrant, as the ratio of the number of data
points in the quadrant to the total number of data points. Finally, The K-S
statistic D between two samples is the maximum difference of the relative fre-
quencies in the 4 quadrants, when considering successively all data points as
the reference point.

Generalizing the 2-dimensional version of the K-S statistic D to the 3-
dimensional case is straightforward. Each data point is a triple, for example
(AI,CDD, HDD). These data points can be seen as a cloud in the 3-dimensional
space. There are 8 octants in the space around each data point instead of 4
quadrants in the plane. The K-S statistic D between two sample distributions
is taken as the maximum difference of the relative frequencies when considering
the 8 octants around and all data points.
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Figure 5: Spatial distribution of the combination of the two climate indica-
tors annual Aridity Index and annual Cooling Degree Days from 30 years for
Paris (2071–2100) and the southern Italian city Barletta (1961–1990), data from
HadRM3H model. The Kolmogorov-Smirnov statistic D is the maximum differ-
ence of the integrated probabilities of the two distributions in the 4 quadrants
around each data point. The figure displays this calculation with one data point
as a reference. To find the maximum the same calculation is performed for all
data points.

For statistical testing, the translation of the K-S statistic D into the pvalue

in the multi-dimensional cases is based on the same Monte-Carlo methods as
in the 1-dimensional case. Technically, given a distance D measured between
two tested samples, the pvalue is the probability that the K-S distance between
two samples randomly drawn from the same distribution is greater than D. It
describes how well the two samples are similar, or could come from the same
probability distribution. In other terms, the pvalue is the likelihood that the
two samples are two realizations from the same probability distribution. In our
case, it also means how well two climates, as described by multiple indicators,
coincide. Technical details on the probability distributions used in the 2- and
3-dimensional cases are shown Appendix A.

3.3 Analogue Filtering, Selection and Visualization

The selection of the best current analogue to a city’s future climate amounts to
searching for a local minimum in D. We used two additional filters.

First, only grid points in the model with a pvalue greater than 0.5 were
considered acceptable for further evaluation. Locations that reject the “same
climate” hypothesis at a 50% confidence level were not acceptable. According
to the usual practice of statistical testing at 95%, this is a quite low confidence
level. But the purpose is not to test for all analogs, only to simplify further
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computations by filtering out a large fraction of grid cells. When no grid cell is
acceptable, the search simply fails.

Second, we penalized narrow optima by applying a lowpass spatial filter
before minimizing the D field. The filter combined the score of a cell with
a 0.5 weight, with the score of its four cardinal neighbors located at plus or
minus 0.5◦ latitude/longitude, using a 0.125 weight. Neighbors were obtained
by interpolation when the datagrid made it necessary. The justification for
this smoothing is heuristic. The analogue is meant to represent a climate to
readers who have a fuzzy mental representation of European climates. This
goal is better accomplished when the optimum is within a large region of good
analogues.

The optimum was found using exhaustive search, as this is nonconvex op-
timization with a finite, computationally tractable number of points (one per
grid cell). Compared to Hallegatte et al. [2007], no further heuristic arbitration
between candidate optima was needed. The smallest smoothed K-S statistic at
an acceptable location was considered the best analogue. It was then possible
to name the analogue according to the closest meteorological station or city.

Based on this method, two kinds of maps were drawn. The first kind is the
“climate analogues quality” map, shown in Figure 7. It shows where one can
currently find the future climate of a given city, by mapping the K-S statistic D

on a regular grid of Europe, at the resolution of the original dataset. We used
interpolation when the original dataset was not on a rectangular grid. Appendix
C discusses why we choose to display D instead of the p-value. This kind of map
allows to check visually the quality of the ”best” analogue, which is necessary
since it involves nonconvex local minimization.

A second kind of map is the ”climate relocation” map. It is obtained by
selecting a set of cities, and displaying where their best analogue lies on a
common map of Europe, see Figure 8. These maps allow to communicate the
directions and order of magnitude of climate changes expected over the course
of the century. They also convey a disturbing feeling of otherworldliness by
mapping the cities well away from their actual location. In order to convey
the uncertainty related to climate simulations, it is important to always show
several such maps obtained by different models or emissions scenarios.
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4 Application

Figure 6: Cities examined in this paper

4.1 Data and implementation

The method was implemented in Fortran, using g77 with the GrADS, NetCDF
and CDO libraries. For cities coordinates, we took the list of stations from
the Global Historical Climatology Network 2 dataset. The code uses resources
from Press et al. [1986], is released under the GPL and available from the CIRED
web site2. It can be parameterized to examine most big cities in Europe. For this
paper, we examined analogues for 12 large European cities: Athens, Barcelona,
Berlin, Helsinki, Istanbul, London, Madrid, Oslo, Paris, Rome, Saint-Petersburg
and Stockholm, as shown Figure 6.

The key inputs needed are regional 2D fields of mean monthly surface tem-
peratures and precipitations. Data should be at relatively high spatial resolu-
tion, about 50 km grid. It should cover two 30 years spans, in order to compare
the present and the future climates. Finally, it should cover a reasonably wide
latitudinal zone, since warmer climates are to be found southward.

We used two climate simulation datasets from models of the PRUDENCE
project. One dataset is the DE6 run of the ARPEGE-Climate model from
CNRM/Météo-France. This is a global circulation model with a variable hori-
zontal resolution of up to 50km in Europe. This atmospheric model was forced
by sea surface tempature of the HadCM3 A2 model. The other dataset is the

2http://www.centre-cired.fr
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ackda run of the HadRM3H model from the Hadley Center, a regional model
with a 50-km resolution, forced by the global circulation model HadAM3H A2.
Both models simulate a warming over Europe with an increase in precipita-
tion in the North and a strong drying over the Mediterranean. The global
warming predicted by the HadRM3H model is stronger than the one from the
ARPEGE model but both lie within the range of the IPCC predictions. They
both provided monthly mean temperatures and precipitations over 30 years in
the present climate (1961–1990) and the projected future climate (2071–2100).

4.2 Comparing two versus three indicators

We compared empirically the results of the method as described above, based on
a 3-dimensional K-S test using three indicators (Aridity Index and both Degree
Days), with a simplified version using only two indicators (and a 2-dimensional
K-S test). There are three possible ways to pick two indicators out of three,
but theoretically it is hardly defensible to throw away the Aridity Index and
keep only the two temperature-based indicators. This is why we tested only
(AI, HDD) and (AI, CDD).

Figure 7, based on the HadRM3H model simulation, allows to compare for
Paris and Saint-Petersburg the climate analogues maps computed with three
and two indicators. Logically, it can be seen that the former is like the fuzzy
intersection of the later two.

The analogue location selected by the 3D test is also relatively good when
tested with the 2-dimensional criteria, whereas the converse is not necessarily
true. For example for Paris, the testing method with all 3 indicators found the
best climate analogue close to the small Spanish city of Badajoz at the Spanish-
Portuguese border with a pvalue of 90%. This location also evaluates to a pvalue

of 100% in the 2-dimensional test with Aridity Index and Heating Degree Days
as well as a pvalue of 75% in the 2-dimensional test with Aridity Index and
Cooling Degree Days.

Also, the best analogue with (AI, CDD) may be a poor one when seen
with (AI, HDD) or vice versa. In the same example, the locations of the best
analogues found by either of the 2-dimensional tests (for the test with Aridity
Index and HDD located in the Black Sea and for the test with Aridity Index
and CDD close to the Spanish city of Ciudad-Real) evaluate to a pvalue of 0%
in the other test. This example is representative of all 12 examined cities, see
Appendix B.

In short, the results are not only theoretically but also empirically more
satisfying using 3 indicators, and since the supplementary computational cost is
modest, there is no reason to use just 2. We did not look beyond three, but in
some case this may be useful, because in many case there are several analogues
approximately as good as each other. See for example all dark gray areas in
Figure 7 for cities like Paris and Saint-Petersburg. Possible extensions, to name
only a few, would be for example an indicator for seasonality to account for
urban adaptation to seasonal variations, elevation in order to consider climatic
particularities at different altitudes or distance to the sea to take into account
marine influences, which might not be well reproduced by models with a 50-km
resolution.
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3D K-S with AI, CDD, HDD 2D K-S with AI and HDD 2D K-S with AI and CDD

Figure 7: Comparison of the 3-dimensional K-S statistic results (with Arid-
ity Index, HDD and CDD) and the two 2-dimensional K-S statistic results
(with Aridity Index and HDD/CDD respectively) for Paris, Saint-Petersburg
and Athens. Respective city’s actual location indicated on each map along with
a white cross for the best climate analogue (if existent). (HadRM3H model
simulation)
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(a) Analogues: ARPEGE (b) Analogues: HadRM3H

Figure 8: Relocation of European climates at the end of the 21st century, ana-
logues found with the ARPEGE and the HadRM3H dataset in a global warming
scenario.

4.3 Climate relocation maps

Variability in the prediction of future climate arising from the stochastic nature
of climatic processes is accounted for, but deeper uncertainties remain. Climate
relocation maps can be used to compare the output of climate models and to
understand the differences between climate change simulations better. Figure 8
compares the analogues found for the different datasets: the ARPEGE and
HadRM3H models projecting global warming. Figure 6 was the reference map
of actual locations of the examined 12 cities in Europe.

Comparing the analogues found in the case of the ARPEGE and HadRM3H
models, which are two leading climate simulations model, allow to see the ex-
tend of the remaining uncertainty in climate change prediction for Europe. Both
models however agree in showing a clear southward drift in the climate ana-
logues. This supports the expected effect of global warming on European local
climates towards the end of the century, under the A2 greenhouse gases emission
scenario.

5 Conclusion

We described a method to analyze the results of climate simulation models,
improving on Hallegatte et al. [2007]. It is based on the concept of climate
analogues, i.e. finding a City B whose present climate statistically corresponds
to the simulated future climate of an evaluated City A. This provides an intuitive
visualization of climate change effects on urban areas, by replacing the change of
climate (in time) with a change of a city’s location (in space). Through the use
of several models and scenarios, this approach also allows to clarify the extend
of the uncertainty in climatic change predictions, and in their effects on urban
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areas.
Climates were characterized using three annual indicators: Aridity Index,

Heating Degree Days and Cooling Degree Days. These indicators can readily
be computed from monthly precipitation and temperature datasets. To com-
pare climates, we compared 30-years time series of these indicators using the
two sample tri-dimensional Kolmogorov-Smirnov tests. We found that using 3
instead of only 2 climate indicators provided an heuristically more satisfying
analogue selection, at the cost of a moderate increase in computational com-
plexity.

Using two datasets, analogues for 12 European cities were computed: Athens,
Barcelona, Berlin, Helsinki, Istanbul, London, Madrid, Oslo, Paris, Rome, Saint-
Petersburg and Stockholm. Two climate simulation models projecting differ-
ent degrees of global warming for the A2 emissions scenario were used: The
ARPEGE model from CNRM/Météo-France and the HadRM3H model from
the Hadley Center. Both show a clear southward drift in climate relocation for
Europe.

The analogues of Paris are representative of the kind of scientific policy-
oriented message this method provides: according to one simulation, Paris could
have at the end of the century the climate of Bordeaux. That may not be seen
as an adverse change by many stakeholders. However, according to another
simulation, Paris could also have the climate of the city of Badajoz in Southern
Spain. It is widely held that heat waves and water shortages, which were not
considered as a significant problem in Paris only ten years ago, are nowadays
reccuring sources of trouble in the Badajoz area. This work illustrates, therefore,
how new climate-related problems will appear in numerous cities because of
climate change. The related evolution of natural risks has to be managed in
the most proactive ways to avoid the repetition of costly surprises like the 2003
heat wave in Europe and its dramatic consequences.

In some cases no suitable analogue for the projected climate of a given city
were found. This indicates a lack of the type of climate projected for the city
within Europe, at a 50% confidence level. For example, Athens lacks a good
analogues on figure 7. It can only be supposed that a suitable analogue might
be found further south. An obvious extension of this work would be to search
potential analogues not only within Europe but worldwide. Another would be
to search the analogue using climatological observation data instead of model-
based datasets.

Evidence of this method’s communication value comes from its use in teach-
ing and in European popular science and mass media [Kopf et al., 2007, Halle-
gatte, 2007, Adam, 2007]. In the absence of any fully integrated socio-economic
simulations for future scenarios, climate analogues provide a rigorous way to
frame the climate change issue on cities and provide an estimate of the extent
of uncertainty in the prediction of climatic changes. It allows socio-economic
adaptation to different climates to enter the mental model.
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Appendix A: Parameterization of the Kolmogorov-

Smirnov tests

To determine the pvalue corresponding to a value of the 2 and 3-dimensional
Kolmogorov-Smirnov statistic D, we derived a set of sample probability distri-
butions from the procedure and data reported in Appendix A and B of Fasano
and Franceschini [1987], and calculated the appropriate approximation formulae
for each needed sample size (and a variety of correlation coefficients) through
third order polynomial interpolations using an appropriate function from Press
et al. [1986]. In the 2-dimensional case, data points of the probability distribu-
tion for the needed sample sizes were calculated using the polynomial expansion
proposed by Fasano and Franceschini [1987] for the 2-dimensional Kolmogorov-
Smirnov test. In the 3-dimensional case, the data points for the needed sample
sizes were obtained by linear interpolation of the data calculated by Fasano and
Franceschini [1987] with Monte Carlo simulations. The range of correlation co-
efficients covered (in both the 2 and 3-dimensional case) were CC=0, 0.5, 0.6,
0.7, 0.8 and 0.9 as values between 0 and 0.5 do not differ significantly from the
uncorrelated CC = 0 case3. As our calculations with the three climate indi-
cators Aridity Index, HDD and CDD in the 3-dimensional test did not yield
partial correlation coefficients exceeding 0.95, the average ̺ of the 3 CC could
be used [Fasano and Franceschini, 1987]. Table 1 and 2 report the constants of
the derived polynomials for the 2 and 3-dimensional case of the main scenario
of sample distributions with 30 samples (i.e. annual Aridity Index and Degree
Days over 30 years). Sample points and polynomial estimates for the main sce-
nario are furthermore visualized in figure 9 and 10. All polynomials have the
form:

pvalue(d) =











1.0 if d < dmin

c1d
3 + c2d

2 + c3d + c4 if d ∈ [dmin; dmax]

0.0 if d > dmax

(11)

CC dmin dmax c1 c2 c3 c4

0.0 0.222 0.462 -32.134 52.213 -27.686 4.825
0.5 0.219 0.459 -32.138 51.894 -27.336 4.733
0.6 0.216 0.457 -29.879 49.164 -26.191 4.563
0.7 0.211 0.454 -29.759 48.448 -25.569 4.417
0.8 0.202 0.448 -30.900 48.514 -24.890 4.202
0.9 0.185 0.436 -31.123 46.797 -23.101 3.766

Table 1: Polynomial constants of the probability distribution approximation for
the 2-dimensional case

3Fasano and Franceschini [1987]
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♦
data CC 0.5++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ + + +

+
data CC 0.6

������������������������������������������������������������������������������������������������ � � �

�
data CC 0.7
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×
data CC 0.8
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△
data CC 0.9

⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆
approx CC 0.0
approx CC 0.5
approx CC 0.6
approx CC 0.7
approx CC 0.8
approx CC 0.9

Figure 9: Sample points and polynomial estimates of the probability distribution
for the 2-dimensional case

CC dmin dmax c1 c2 c3 c4

0.0 0.234 0.468 -26.314 49.131 -28.606 5.334
0.5 0.225 0.467 -37.054 59.458 -31.334 5.450
0.6 0.220 0.464 -35.685 57.477 -30.257 5.240
0.7 0.211 0.458 -36.224 56.879 -29.311 4.984
0.8 0.203 0.454 -49.571 69.975 -33.069 5.239
0.9 0.190 0.443 -56.376 74.752 -33.367 5.023

Table 2: Polynomial constants of the probability distribution approximation for
the 3-dimensional case
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Figure 10: Sample points and polynomial estimates of the probability distribu-
tion for the 3-dimensional case
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Appendix B: Comparing three versus two climate

indicators

We compared the results obtained using a 3-dimensional Kolmogorov-Smirnov
test on the 3 climate indicators Aridity Index, Heating Degree Days and Cooling
Degree Days with results obtained using only a 2-dimensional test on Aridity
Index plus either kind of Degree Days. In a given column, the number is the
p-value of the optimal analogue, and the three black rectangular bars display
the p-value of same location with respect to the three criteria. Table 3 below
allows to check that for the 12 European cities examined in this study, results
are as expected:

❼ Analogues found with the three indicators are not as good as analogues
found with only two indicators, in absolute terms. For example, Stockholm
has an excellent match (p ≈ 100%) with either (AI,CDD) or (AI,HDD),
but only a good match (61%) with the complete set of criteria.

❼ Analogues found with the complete set of 3 criteria, in the first column,
are also good analogues when tested with only two criteria. In the left-
most column, all 3 black bars are generally high. This shows the good
performance of the locations found by the 3-indicators test for all three
testing methods.

❼ The converse is not true. In the middle and right column, it is generally
the case that only the bar of the maximized criteria is good. This means
that the climate analogue would be rejected when tested with any of the
two other set of indicators.

This supports our choice to use three climate indicators instead of only two.

City 3D test 2D test with HDD 2D test with CDD

Athens no good analogue El Arfiane 95% Ghardaia 77%

Barcelona Ouezzene 100% Tunis/Carthage 79% Bordj Bou Arrer 74%

Berlin Orleans Ville 61% Cahors 100% Sremska Mitrovi 91%

Helsinki Sandomierz 90% Przemysl 100% Tours 100%
Istanbul Karaman 61% Laghouat 95% Laghouat 77%

London Vila Real 90% Ciudad-Real 100% Lubny 100%
Madrid no good analogue Geryville 63% El Aliod 77%

Oslo Teruel 61% Iasi 100% Zlynka 100%

Paris Badajoz 90% Kumkoy 100% Ciudad-Real 71%

Rome Nicosia 61% Sagres 79% Djelfa 100%

Saint-Petersburg Ternopol 100% Siedlce 100% Sandomierz 100%

Stockholm Soria 61% Oradea 100% Zlynka 100%

Table 3: Quality of different optima (as measured by p-value) obtained using
three or two climate indicators.
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Appendix C: Displaying K-S statistic D instead

of the p-value

For visualization of the Kolmogorov Smirnov test results, we have chosen to dis-
play the K-S statistic D rather than the corresponding pvalue. The relationship
between D and p is obviously monotonous, so mathematically no information
is loss, and it does not matter for the location of the optimum best analogue.

Figure 11 illustrates the difference between a D map and a p map. Admit-
tedly, displaying p-values would be more meaningful to the statistician theoret-
ically. But to everyone else, the K-S statistic gives a better visual indication
of graduated differences between climates. This is because, as 4 shows, the
p(D) function is very nonlinear. Lower values of D give practically p = 1, and
higher values give p = 0. Therefore, displaying p tends to produce more cat-
egorical maps of “good” versus “poor” analogues, while displaying D produce
more gradual, esthetically pleasing maps. Figure 12 shows the 3-dimensional
K-S statistic for all 12 examined cities (HadRM3H model simulation).

Paris K-S statistic Paris p-values

Figure 11: Visualization of the results of the 3-dimensional K-S test (HadRM3H
model simulation) by means of visualizing the K-S statistics D and probabilities
pvalue in contrast.
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Rome Saint-Petersburg Stockholm

Figure 12: Visualization of the 3-dimensional K-S statistic for all 12 examined
cities (HadRM3H model simulation)
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