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Abstract

This paper proposes a very simple test of Granger (1969) non-causality for hetero-

geneous panel data models. Our test statistic is based on the individual Wald statistics

of Granger non causality averaged across the cross-section units. First, this statistic is

shown to converge sequentially to a standard normal distribution. Second, the semi-

asymptotic distribution of the average statistic is characterized for a fixed T sample.

A standardized statistic based on an approximation of the moments of Wald statistics

is hence proposed. Third, Monte Carlo experiments show that our standardized panel

statistics have very good small sample properties, even in the presence of cross-sectional

dependence.
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1 Introduction

The aim of this paper is to propose a simple Granger (1969) non causality test in heteroge-

neous panel data models with fixed (as opposed to time-varying) coefficients. In the frame-

work of a linear autoregressive data generating process, the extension of standard causality

tests to panel data implies testing cross sectional linear restrictions on the coefficients of the

model. As usual, the use of cross-sectional information may extend the information set on

causality from a given variable to another. Indeed, in many economic matters it is highly

probable that if a causal relationship exists for a country or an individual, it also exists for

some other countries or individuals. In this case, the causality can be more efficiently tested

in a panel context with NT observations. However, the use of cross-sectional information

involves taking into account the heterogeneity across individuals in the definition of the

causal relationship. As discussed in Granger (2003), the usual causality test in panel asks

”if some variable, say Xt causes another variable, say Yt, everywhere in the panel [..]. This

is rather a strong null hypothesis.” Consequently, we propose here a simple Granger non

causality test for heterogeneous panel data models. This test allows us to take into account

both dimensions of the heterogeneity present in this context: the heterogeneity of the causal

relationships and the heterogeneity of the regression model used so as to test for Granger

causality.

Let us consider the standard implication of Granger causality 1. For each individual, we

say that variable x causes y if we are able to better predict y using all available information

than in the case where the information set used does not include x (Granger 1969). If x and y

are observed on N individuals, gauging the presence of causality comes down to determining

the optimal information set used to forecast y. Several solutions can be adopted. The most

general one consists in testing the causality from variable x observed for the ith individual

to the variable y observed for the jth individual, with j = i or j 6= i. The second solution

is more restrictive and derives directly from the time series analysis. It implies testing the

causal relationship for a given individual. The cross-sectional information is then used only

to improve the specification of the model and the power of tests as in Holtz-Eakin, Newey

and Rosen (1988). The baseline idea is to assume that there exists a minimal statistical

representation which is common to x and y at least for a subgroup of individuals. In this

paper we use such a model. In this case, causality tests can be implemented and considered

as a natural extension of the standard time series tests in the cross-sectional dimension.

However, one of the main issues specific to panel data models refers to the specification

of the heterogeneity between cross-section units. In this Granger causality context, the het-

1The definition of Granger causality is based on the ”two precepts that the cause preceded the effect and
the causal series had information about the effect that was not contained in any other series according to the
conditional distributions” (Granger 2003). The fact that the cause produces superior forecasts of the effect
is just an implication of these statements. However, it does provide suitable post sample tests, as discussed
in Granger (1980).
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erogeneity has two main dimensions. We hence distinguish between the heterogeneity of the

regression model and that of the causal relationship from x to y. Indeed, the model consid-

ered may be different from an individual to another, whereas there is a causal relationship

from x to y for all individuals. The simplest form of regression model heterogeneity takes

the form of slope parameters’ heterogeneity. More precisely, in a p order linear vectorial

autoregressive model, we define four kinds of causal relationships. The first one, denoted

Homogenous Non Causality (HNC) hypothesis, implies that no individual causality relation-

ship from x to y exists. The symmetric case is the Homogenous Causality (HC) hypothesis,

which occurs when N causality relationships exist, and when the individual predictors of

y obtained conditionally on the past values of y and x are identical. The dynamics of y

is then absolutely identical for all the individuals in the sample. The last two cases corre-

spond to heterogeneous processes. Under the HEterogenous Causality (HEC) hypothesis,

we assume that N causality relationships exist, as in the HC case, but the dynamics of y

is heterogenous. Note, however, that the heterogeneity does not affect the causality result.

Finally, under the HEterogenous Non Causality(HENC) hypothesis, we assume that there

is a causal relationship from x to y for a subgroup of individuals. Symmetrically, there is at

least one and at most N − 1 non causal relationships in the model. It is clear that in this

case the heterogeneity deals with causality from x to y.

To sum up, under the HNC hypothesis, no individual causality from x to y occurs.

On the contrary, in the HC and HEC cases, there is a causality relationship for each

individual of the sample. To be more precise, in the HC case, the same regression model is

valid (identical parameters’ estimators) for all individuals, whereas this is not the case for

the HEC hypothesis. Finally, under the HENC hypothesis, the causality relationship is

heterogeneous since the variable x causes y only for a subgroup of N −N1 units.

In this context, we propose a simple test of the Homogenous Non Causality (HNC)

hypothesis. Under the null hypothesis, there is no causal relationship for any of the units

of the panel. Our contribution is three-fold. First, we specify the alternative as the HENC

hypothesis. To put it differently, we do not test the HNC hypothesis against the HC

hypothesis as Holtz-Eakin, Newey and Rosen (1988), which, as previously discussed, is a

strong assumption. Indeed, we allow for two subgroups of cross-section units: the first one is

characterized by causal relationships from x to y, but it does not necessarily rely on the same

regression model, whereas there is no causal relationships from x to y in the case of the second

subgroup. Second, we consider a heterogenous panel data model with fixed coefficients (in

time). It follows that both under the null and the alternative hypothesis the unconstrained

parameters may be different from one individual to another. The dynamics of the variables

may be thus heterogeneous across the cross-section units, regardless of the existence (or not)

of causal relationships. Our framework hence relies on less strong assumptions than the ones

in Holtz-Eakin, Newey and Rosen (1988), who assume the homogeneity of cross-section units,

i.e. that the panel vector-autoregressive regression model is valid for all the individuals in the

panel. Third, we adapt the Granger causality test-statistic to the case of unbalanced panels
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and / or different lag orders in the autoregressive process. Most importantly, we propose a

block bootstrap procedure to correct the empirical critical values of panel Granger causality

tests so as to account for cross-sectional dependence. To our knowledge, these issues have

not been tackled before in this context.

Following the literature devoted to panel unit root tests in heterogeneous panels, and

particularly Im, Pesaran and Shin (2003), we propose a test statistic based on averaging

standard individual Wald statistics of Granger non causality tests2. Under the assumption

of cross-section independence (as used in first generation panel unit root tests), we provide

different results. First, this statistic is shown to converge sequentially in distribution to

a standard normal variate when the time dimension T tends to infinity, followed by the

individual dimension N. Second, for a fixed T sample the semi-asymptotic distribution of

the average statistic is characterized. In this case, individual Wald statistics do not have

a standard chi-squared distribution. However, under very general setting, it is shown that

individual Wald statistics are independently distributed with finite second order moments.

For a fixed T, the Lyapunov central limit theorem is sufficient to establish the distribution

of the standardized average Wald statistic when N tends to infinity. The first two moments

of this normal semi-asymptotic distribution correspond to the empirical mean of the corre-

sponding theoretical moments of the individual Wald statistics. The issue is then to propose

an evaluation of the first two moments of standard Wald statistics for small T samples. A

first solution relies on Monte-Carlo or Bootstrap simulations. A second one consists in using

an approximation of these moments based on the exact moments of the ratio of quadratic

forms in normal variables derived from Magnus (1986) theorem for a fixed T sample, with

T > 5 + 2K. Given these approximations, we propose a second standardized average Wald

statistic to test the HNC hypothesis in short T sample. Then, contrary to Konya (2006), our

testing procedure does not require bootstrap critical values generated by simulations. How-

ever, a block bootstrap simulation approach similar to theirs is adapted to our framework

(group mean Wald-statistic) so as to take into account cross-sectional dependencies.

The finite sample properties of our test statistics are examined using Monte-Carlo meth-

ods. The simulation results clearly show that our panel based tests have very good properties

even in samples with very small values of T and N . The size of our standardized statistic

based on the semi-asymptotic moments is reasonably close to the nominal size for all the

values of T and N considered. Besides, the power of our panel test statistic substantially

exceeds that of Granger non Causality tests based on single time series in all experiments

and in particular for very small values of T , e.g. T = 10, provided that there are at least a

2The idea of this test was first exposed at the LIIIe annual congress of the French Economic Association
(Hurlin, 2005). However, Hurlin (2005) is only a short note, that does not formally develop the asymptotic
and semi-asymptotic theory and which relies on only one Monte-Carlo experiment. Moreover, the cross-
sectional dependence issue is not tackled and the case of unbalanced panels is not discussed. The present
paper thus goes beyond that note from the point of view of both theoretical proofs and empirical results.
Besides, as a working paper, it has been very often cited in this literature.
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few cross-section units in the panel (e.g. N = 5). Furthermore, approximated critical values

are proposed for finite T and N samples, as well as a block-bootstrap procedure to compute

empirical critical values when taking into account cross-section dependence.

The rest of the paper is organized as follows. Section 2 is devoted to the definition

of the Granger causality test in heterogenous panel data models. Section 3 sets out the

asymptotic distribution of the average Wald statistic. Section 4 derives the semi-asymptotic

distribution for fixed T sample and section 5 presents the main results obtained from Monte

Carlo experiments. Section 6 extends the results to a fixed N sample and discusses the case

with cross-sectional dependence as well as the unbalanced panel framework. The last section

provides some concluding remarks.

2 A non causality test in heterogenous panel data mod-

els

Let us denote by x and y, two stationary variables observed for N individuals on T periods.

For each individual i = 1, .., N, at time t = 1, .., T, we consider the following linear model:

yi,t = αi +
K∑
k=1

γ
(k)
i yi,t−k +

K∑
k=1

β
(k)
i xi,t−k + εi,t (1)

with K ∈ N∗ and βi =
(
β
(1)
i , ..., β

(K)
i

)′
. For simplicity, the individual effects αi are supposed

to be fixed in the time dimension. Initial conditions (yi,−K , ..., yi,0) and (xi,−K , ..., xi,0) of

both individual processes yi,t and xi,t are given and observable. We assume that lag orders

K are identical for all cross-section units of the panel and the panel is balanced. Besides,

we allow the autoregressive parameters γ
(k)
i and the regression coefficients slopes β

(k)
i to

differ across groups. However, contrary to Weinhold (1996) and Nair-Reichert and Weinhold

(2001), parameters γ
(k)
i and β

(k)
i are constant in time. It is important to note that our model

is not a random coefficient model as in Swamy (1970): it is a fixed coefficients model with

fixed individual effects. In the sequel, we make the following assumptions.

Assumption (A1) For each cross section unit i = 1, .., N, individual residuals εi,t , ∀t =

1, .., T are independently and normally distributed with E (εi,t) = 0 and finite hetero-

geneous variances E
(
ε2i,t
)

= σ2
ε,i.

Assumption (A2) Individual residuals εi = (εi,1, .., εi,T ) ′, are independently distributed

across groups. Consequently E (εi,tεj,s) = 0, ∀i 6= j and ∀ (t, s) .

Assumption (A3) Both individual variables xi = (xi,1, ..., xi,T )′ and yi = (yi,1, ..., yi,T )′ ,

are covariance stationary with E
(
y2i,t
)
< ∞ and E

(
x2i,t
)
< ∞. Besides, E (xi,txj,z) ,

E (yi,tyj,z) and E (yi,txj,z) are only function of the difference t−z, whereas E (xi,t) and

E (yi,t) are independent of t.
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This simple model with two variables constitutes the basic framework for studying

Granger causality in a panel data context. If in a time series context, the standard causal-

ity tests consist in testing linear restrictions on the vectors βi, in a panel data model one

must be very careful to the issue of heterogeneity between individuals. The first source of

heterogeneity is standard and comes from the presence of individual effects αi. The second

source, which is more crucial, is related to the heterogeneity of the parameters βi. This

kind of heterogeneity directly affects the paradigm of the representative agent and hence

the conclusions with respect to causality relationships. It is well known that the estimates

of autoregressive parameters βi obtained under the wrong hypothesis, i.e. βi = βj ∀ (i, j) ,

are biased (see Pesaran and Smith 1995 for an AR(1) process). Then, if we impose the

homogeneity of coefficients βi, the causality test-statistics can lead to fallacious inference.

Intuitively, the estimate β̂ obtained in an homogeneous model will converge to a value close

to the average of the true coefficients βi, and if this mean is itself close to zero, we risk to

accept at wrong the hypothesis of no causality.

Beyond these statistical stakes, it is evident that an homogeneous specification of the

relation between the variables x and y does not allow to interpret causality relations if at

least one individual from the sample has an economic behavior different from that of the

others. For example, let us assume that there is a causality relation for a set of N countries,

for which the vectors βi are strictly identical. What conclusions can be drawn if we introduce

into the sample a set of N1 countries for which, in contrast, there is no relation of causality?

Whatever the value of the ratio N/N1 is, the test of the causality hypothesis is nonsensical.

Given these observations, we propose to test the Homogenous Non Causality (HNC)

hypothesis by taking into account both the heterogeneity of the regression model and that

of the causal relation. Under the alternative we hence allow for a subgroup of individuals

for which there is no causality relation and a subgroup of individuals for which the variable

x Granger causes y. The null hypothesis of HNC is defined as:

H0 : βi = 0 ∀i = 1, ..N (2)

with βi =
(
β
(1)
i , ..., β

(K)
i

)′
. Additionally, βi may differ across groups under the alternative

(model heterogeneity). We also allow for some, but not all, of the individual vectors βi to

be equal to 0 (non causality assumption). We assume that under H1, there are N1 < N

individual processes with no causality from x to y. It follows that our test is not a test of

non-causality assumption against causality from x to y for all the individuals, as in Holtz-

Eakin, Newey and Rosen (1988). It is more general, since we can observe non causality for

some units under the alternative:

H1 : βi = 0 ∀i = 1, .., N1 (3)

βi 6= 0 ∀i = N1 + 1, N1 + 2, .., N

6



whereN1 is unknown but satisfies the condition 0 ≤ N1/N < 1. The ratioN1/N is necessarily

inferior to one, since if N1 = N there is no causality for any of the individuals in the panel,

which is equivalent to the HNC null hypothesis. Conversely, when N1 = 0 there is causality

for all the individuals in the sample. The structure of this test is similar to the unit root

test in heterogenous panels proposed by Im, Pesaran and Shin (2003). In our context, if

the null is accepted the variable x does not Granger cause the variable y for all the units

of the panel. By contrast, if we assume that the HNC is rejected and N1 = 0, we have

seen that x Granger causes y for all the individuals of the panel: in this case we get an

homogenous result as far as causality is concerned. Indeed, the regression model considered

may be not homogenous, i.e. the estimators of the parameters differ across groups, but the

causality relations are observed for all individuals. On the contrary, if N1 > 0, the causality

relationship is heterogeneous: the regression model and the causality relations are different

from one individual from the sample to another.

In this context, we propose to use the average of individual Wald statistics associated

with the test of the non causality hypothesis for units i = 1, .., N .

Definition The average statistic WHnc
N,T associated with the null Homogenous Non Causality

(HNC) hypothesis is defined as:

WHnc
N,T =

1

N

N∑
i=1

Wi,T , (4)

where Wi,T denotes the individual Wald statistics for the ith cross-section unit corre-

sponding to the individual test H0 : βi = 0.

To obtain the general form of this statistic, we stack the observations for the T periods

corresponding to the ith individual’s characteristics into a T elements vector as:

y
(k)
i

(T,1)

=


yi,1−k

.

.

yi,T−k

 x
(k)
i

(T,1)

=


xi,1−k

.

.

xi,T−k

 εi
(T,1)

=


εi,1

.

.

εi,T


and we define two (T,K) matrices:

Yi =
[
y
(1)
i : y

(2)
i : ... : y

(K)
i

]
and Xi =

[
x
(1)
i : x

(2)
i : ... : x

(K)
i

]
.

Let us also denote by Zi the (T, 2K + 1) matrix Zi = [e : Yi : Xi] , where e denotes a (T, 1)

unit vector, and by θi = (αi γ
′
i β
′
i)
′ the vector of parameters of the model. The test for the

HNC hypothesis can now be expressed as Rθi = 0 where R is a (K, 2K + 1) matrix with

R = [0 : IK ] . The Wald statistic Wi,T corresponding to the individual test H0 : βi = 0 is

defined for each i = 1, .., N as:
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Wi,T = θ̂′iR
′
[
σ̂2
iR (Z ′iZi)

−1
R′
]−1

Rθ̂i =
θ̂′iR

′ [R (Z ′iZi)
−1R′

]−1
Rθ̂i

ε̂′iε̂i/ (T − 2K − 1)
,

where θ̂i is the estimate of parameter θi obtained under the alternative hypothesis, and σ̂2
i is

the estimate of the variance of the residuals. For a small T sample, the corresponding unbi-

ased estimator3 takes the form of σ̂2
i = ε̂′iε̂i/ (T − 2K − 1) . It is well known that this Wald

statistic can also be expressed as a ratio of quadratic forms in normal variables corresponding

to the true population of residuals with:

Wi,T = (T − 2K − 1)

(
ε̃′iΦiε̃i
ε̃′iMiε̃i

)
, i = 1, .., N (5)

where the (T, 1) vector ε̃i = εi/σε,i is normally distributed according to N (0, IT ) under

assumption A1. The (T, T ) matrices Φi and Mi are positive semi definite, symmetric and

idempotent

Φi = Zi (Z
′
iZi)

−1
R′
[
R (Z ′iZi)

−1
R′
]−1

R (Z ′iZi)
−1
Z ′i (6)

Mi = IT − Zi (Z ′iZi)
−1
Z ′i (7)

where IT is the identity matrix of size T. Notice that the matrix Mi corresponds to the

standard projection matrix of the linear regression analysis.

Our objective now is to determine the distribution of the average statistic WHnc
N,T under

the null hypothesis of Homogenous Non Causality. For that, we first consider the asymptotic

case where T and N tend to infinity, and second we tackle the case where T is fixed.

3 Asymptotic distribution

We propose to derive the asymptotic distribution of the average statistic WHnc
N,T under the

null hypothesis of non causality. For that, we consider the case of a sequential convergence,

i.e. when T tends to infinity and then N tends to infinity. This sequential convergence

result can be deduced from the standard convergence result of the individual Wald statistic

Wi,T in a large T sample. In a non dynamic model, the normality assumption in A1 would

be sufficient to establish the fact for all T, the Wald statistic has a chi-squared distribution

with K degrees of freedom. But in our dynamic model, this result can only be achieved

asymptotically. Let us consider the expression (5). Given that under A1 the least squares

estimate θ̂i is convergent, we know that plim ε′iMiεi/ (T − 2K − 1) = σ2
ε,i. It implies that:

plim
T→∞

ε̃′iMiε̃i
T − 2K − 1

= plim
T→∞

1

σ2
ε,i

(
ε′iMiεi

T − 2K − 1

)
= 1.

3It is also possible to use the standard formula of the Wald statistic by substituting the term (T − 2K − 1)
by T. However, several software (as Eviews) use this normalization.
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Then, if the statistic Wi,T has a limiting distribution, it is the same distribution of the

statistics as that resulting from replacing the denominator by its limiting value, that is to

say 1. Thus, Wi,T has the same limiting distribution as ε̃′iΦiε̃i. Under assumption A1, the

vector ε̃i is normally distributed, i.e. ε̃i ∼ N (0, IT ) . Since Φi is idempotent, the quadratic

form ε̃′iΦiε̃i is chi-squared distributed with a number of degrees of freedom equal to the

rank of Φi. The rank of the symmetric idempotent matrix Φi is equal to its trace, i.e. K

(cf. Appendix). Therefore, under the null hypothesis of non causality, each individual Wald

statistic converges to a chi-squared distribution with K degrees of freedom:

Wi,T
d−→

T→∞
χ2 (K) , ∀i = 1, .., N. (8)

In other words, when T tends to infinity, the individual statistics {Wi,T}Ni=1 are identically

distributed. They are also independent since under assumption A2 the residuals εi and εj
are independent for j 6= i. To sum up, if T tends to infinity individual Wald statistics Wi,T

are i.i.d. with E (Wi,T ) = K and V (Wi,T ) = 2K. Then, the distribution of the average

Wald statistic WHnc
N,T when T →∞ first and then N →∞, can be deduced from a standard

Lindberg-Levy central limit theorem.

Theorem 1. Under assumption A2, the individual Wi,T statistics for i = 1, .., N are identi-

cally and independently distributed with finite second order moments as T →∞, and there-

fore, by Lindberg-Levy central limit theorem under the HNC null hypothesis, the average

statistic WHnc
N,T sequentially converges in distribution.

ZHnc
N,T =

√
N

2K

(
WHnc
N,T −K

) d−→
T,N→∞

N (0, 1) (9)

with WHnc
N,T = (1/N)

∑N
i=1Wi,T , where T,N → ∞ denotes the fact that T → ∞ first and

then N →∞.

For large N and T samples, if the realization of the standardized statistic ZHnc
N,T is superior

to the corresponding normal critical value for a given level of risk, the homogeneous non

causality (HNC) hypothesis is rejected. This asymptotic result may be useful in some

macro panels. However, it should be extended to the case where T and N simultaneously

tend to infinity.

4 Fixed T samples and semi-asymptotic distributions

Asymptotically, individual Wald statistics Wi,T converge toward an identical chi-squared

distribution for each i = 1, .., N,. Nonetheless, this convergence result can not be generalized

to any time dimension T, even if we assume the normality of residuals. We then seek to show

that, for a fixed T dimension, individual Wald statistics have finite second order moments

even if they do not have the same distribution and this distribution is not a standard one.
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Let us consider the expression (5) of Wi,T under assumption A1, which is the ratio of

two quadratic forms in a standard normal vector. Magnus (1986) gives general conditions

which ensure that the expectations of a quadratic form in normal variables exist. Let us

denote by E [(x′Ax/x′Bx)s] the moments of this ratio when x is a normally distributed vector

N (0, σ2IT ), A is a symmetric (T, T ) matrix and B is a positive semi definite (T, T ) matrix

of rank r ≥ 1. Besides, let Q be a (T, T − r) matrix of full column rank T − r such that

BQ = 0. If r ≤ T − 1, Magnus’s theorem (1986) identifies three conditions for the existence

of the moments of a quadratic form in normal variables:

(i) If AQ = 0, then E [(x′Ax/x′Bx)s] exists for all s ≥ 0.

(ii) If AQ 6= 0 and Q′AQ = 0, then E [(x′Ax/x′Bx)s] exists for 0 ≤ s < r and does not

exist for s ≥ r.

(iii) If Q′AQ 6= 0, then E [(x′Ax/x′Bx)s] exists for 0 ≤ s < r/2 and does not exist for

s ≥ r/2.

These general conditions are established in the case where matrices A and B are deter-

ministic. In our case, the corresponding matrices Mi and Φi are stochastic, even though we

assume that variables Xi are deterministic. However, given a fixed T sample, we propose

here to apply these conditions to the corresponding realizations of the two matrices, denoted

mi and φi. To be more precise, in our case the rank of the symmetric idempotent matrix

mi is equal to T − 2K − 1. Besides, since the matrix mi is the projection matrix associated

with the realization zi of Zi, we have by construction mizi = 0, where zi is of full column

rank 2K + 1, as T−rank(mi) = 2K + 1. Then, for a given realization φi, by construction,

the product φizi is different from zero

φizi = zi (z
′
izi)
−1
R′
[
R (z′izi)

−1
R′
]−1

,where R 6= 0.

Moreover, the product z′iφizi is also different from zero, since

z′iφizi = R′
[
R (z′izi)

−1
R′
]−1

,where R 6= 0.

Then, Magnus’ theorem allows us to establish that E [(ε̃′iφiε̃i) / (ε̃′imiε̃i)]
s exists if 0 ≤ s <

rank(mi) /2. We assume that this condition is also satisfied for Wi,T :

E [(Wi,T )s] = (T − 2K − 1)sE

[(
ε̃′iΦiε̃i
ε̃′iMiε̃i

)s]
exists if 0 ≤ s <

T − 2K − 1

2

In particular, given the realizations of Φi and Mi, we can identify the condition on T which

ensures that the second order moments (s = 2) of Wi,T exist.
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Proposition 1. For a fixed time dimension T ∈ N, the second order moments of the indi-

vidual Wald statistic Wi,T associated with the test H0,i : βi = 0, exist if and only if:

T > 5 + 2K (10)

Consequently, individual Wald statistics Wi,T are not necessarily identically distributed

for small T since the matrices Φi and Mi are different from an individual to another. Besides,

these statistics do not have a standard distribution as in the previous section. However, the

condition which ensures the existence of second order moments is the same for all units.

Indeed, the second order moments of Wi,T exist when T > 5+2K or equivalently T ≥ 6+2K.

Under the condition of proposition 1, for a fixed T sample, the non-causality test-statistic

WHnc
N,T is the average of non identically distributed variables Wi,T , but with finite second order

moments. At the same time, under assumption A2, the vectors of residuals εi and εj are

independent for j 6= i. Therefore, individual Wald statistics, Wi,T , are also independent for

i = 1, .., N . The distribution of the non causality test statistic WHnc
N,T can hence be derived

by relying on the Lyapunov central limit theorem.

Theorem 2. Under assumption A2, if T > 5 + 2K the individual statistics Wi,T are

independently but not identically distributed with finite second order moments ∀i = 1, .., N ,

and therefore, by Lyapunov central limit theorem under the HNC null hypothesis, the average

statistic W b
HNC converges. Indeed, if

lim
N→∞

(
N∑
i=1

V ar (Wi,T )

)− 1
2
(

N∑
i=1

E
[
|Wi,T − E (Wi,T )|3

]) 1
3

= 0

the standardized statistic ZHnc
N converges in distribution:

ZHnc
N =

√
N
[
WHnc
N,T −N−1

∑N
i=1E (Wi,T )

]
√
N−1

∑N
i=1 V ar (Wi,T )

d−→
N→∞

N (0, 1) (11)

with WHnc
N,T = (1/N)

∑N
i=1Wi,T , where E (Wi,T ) and V ar (Wi,T ) denote the mean and the

variance of the statistic Wi,T defined by equation (5).

The decision rule is the same as in the asymptotic case: if the realization of the stan-

dardized statistic ZHnc
N is superior to the corresponding normal critical value for a given level

of risk, the homogeneous non causality (HNC) hypothesis is rejected. For large T, the mo-

ments used in theorem (2) are expected to converge to E (Wi,T ) = K and V ar (Wi,T ) = 2K

since the individual statistics Wi,T converge in distribution to a chi-squared distribution with

K degrees of freedom. Then, the statistic ZHnc
N converges to ZHnc

N,T and we find the conditions

of theorem 1. However, these values of the asymptotic moments can lead to poor test results

when T is small. We should then evaluate the mean and the variance of the Wald statistic

11



Wi,T , knowing that this statistic does not have a standard distribution for a fixed T sample.

The issue is now to compute the standardized average statistic ZHnc
N . There are two

main approaches to compute the first two moments of the individual Wald statistics Wi,T .

On the one hand, these moments can be computed via stochastic simulation (Monte Carlo or

bootstrap) of the Wald under the null. In this case, for each cross section unit, it is necessary

to estimate the parameters of the model (γi, σi and αi) and the parameters βi associated

with the exogenous variables xit. Then, the variable yi is simulated under the null with

i.i.d. normal residual εi with zero means and variance σ2
i (Monte Carlo) or with re-sampled

historical residuals (bootstrap). At each simulation of the processes yi and xi the individual

Wald statistic Wi,T is computed. Finally, using the replications of Wi,T , we estimate the first

two moments of the individual test-statistics for each cross-section unit. Denote by Z̃MC
N

the corresponding standardized average statistic. It is obvious that this method can be time

consuming, especially if we consider very large N panel sets. On the other hand, we propose

here an approximation of E (Wi,T ) and V ar (Wi,T ) based on the results of Magnus’s theorem

(1986). Let us consider the expression of the Wald statistic Wi,T as a ratio of two quadratic

forms in a standard normal vector under assumption A1:

Wi,T = (T − 2K − 1)

(
ε̃′iΦiε̃i
ε̃′iMiε̃i

)
(12)

where the (T, 1) vector ε̃i = εi/σε,i is distributed according to a N (0, IT ) and the matrices Φi

and Mi are idempotent and symmetric (and consequently positive semi-definite). For a given

T sample, we denote by φi and mi the realizations of the matrices Φi and Mi, respectively.

We hence apply Magnus (1986) theorem to the quadratic forms in a standard normal vector

defined as:

W̃i,T = (T − 2K − 1)

(
ε̃′iφiε̃i
ε̃′imiε̃i

)
, (13)

where the matrices φi and mi are positive semi-definite.

Theorem 3 (Magnus 1986). Let ε̃i be a normal distributed vector with E (ε̃i) = 0 and

E (ε̃iε̃
′
i) = IT . Let Pi be an orthogonal (T, T ) matrix and Λi a diagonal (T, T ) matrix such

that

P ′imiPi = Λi and P ′iPi = IT . (14)

Then, provided that the expectation for s = 1, 2, 3.. exists, we have:

E

[(
ε̃′iφiε̃i
ε̃′imiε̃i

)s]
=

1

(s− 1)!

∑
v

γs (v)×
∫ ∞
0

{
ts−1 |∆i|

s∏
j=1

[trace (Ri)]
nj

}
dt, (15)

where the summation is over all (s, 1) vectors v = (n1, .., ns) whose elements nj are nonneg-
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ative integers satisfying
∑s

j=1 jnj = s,

γs (v) = s! 2s
s∏
j=1

[nj! (2j)nj ]
−1
, (16)

∆i is a diagonal positive definite (T, T ) matrix and Ri is a symmetric (T, T ) matrix given

by:

∆i = (IT + 2 tΛi)
−1/2 and Ri = ∆i P

′
iφiPi ∆i. (17)

In our case, we are interested in the first two moments. For the first order moment

(s = 1), there is only one scalar v = n1, which is equal to one. Then, the quantity γ1 (v) is

also equal to one. For the second order moment (s = 2), there are two vectors v = (n1, n2)

which are defined by v1 = (0, 1) and v2 = (2, 0), respectively. Consequently, γ2 (v1) = 2 and

γ2 (v2) = 1. Given these results, we can compute the exact two moments corresponding to

the statistic W̃i,T as:

E
(
W̃i,T

)
= (T − 2K − 1) ×

∫ ∞
0

|∆i| trace (Ri) dt (18)

E

[(
W̃i,T

)2]
= (T − 2K − 1)2 ×

{
2

∫ ∞
0

t |∆i| trace (Ri) dt+

∫ ∞
0

t |∆i| [trace (Ri)]
2 dt

}
,

(19)

where matrices ∆i and Ri are defined in theorem (3). Both quantities |∆i| and trace (Ri)

can be computed analytically in our model given the properties of these matrices. Since Λi

is issued from the orthogonal decomposition of the idempotent matrix mi with rank(mi) =

T − 2K − 1 (cf. Appendix), it is a zero matrix except for the first block which is equal to

the T − 2K − 1 identity matrix (corresponding to the characteristic roots of mi which are

not null). Then, for a scalar t ∈ R+, the matrix ∆i = (IT + 2 tΛi)
−1/2 can be partitioned as:

∆i
(T,T )

=

 Di (t)
(T−2K−1,T−2K−1)

0
(T−2K−1,2K+1)

0
(2K+1,T−2K−1)

I2K+1
(2K+1,2K+1)


where Ip denotes the identity matrix of size p. The diagonal block Di (t) is defined as Di (t) =

(1 + 2t)−
1
2 IT−2K−1. Therefore, the determinant of ∆i can be expressed as:

|∆i| = (1 + 2t)−(T−2K−1
2 ) . (20)

Besides, the trace of the matrix Ri can be computed as follows. Since for any non singular

matrices B and C the rank of BAC is equal to the rank of A, we obtain:

rank (Ri) = rank (∆i P
′
iφiPi ∆i) = rank (P ′iφiPi)

since the matrix ∆i is non singular. Using the same transformation, and given the non
13



singularity of Pi,

rank (Ri) = rank (P ′iφiPi) = rank (φi) .

Finally, the rank of the realization φi is equal to K, the rank of Φi so that

trace (Ri) = K.

Given these results, the first two moments (equations 18 and 19) of the statistic W̃i,T for a

given T sample, based on the realizations φi and mi, can be expressed as:

E
(
W̃i,T

)
= (T − 2K − 1) ×K ×

∫ ∞
0

(1 + 2t)−(T−2K−1
2 ) dt

E

[(
W̃i,T

)2]
= (T − 2K − 1)2 ×

(
2K +K2

)
×
∫ ∞
0

t (1 + 2t)−(T−2K−1
2 ) dt.

The following proposition summarizes these results:

Proposition 2. For a fixed T sample, where T satisfies the condition of proposition (1),

given the realizations φi and mi of matrices Φi and Mi (equations 6 and 7), the exact first

two moments of the individual statistics W̃i,T , defined by equation (13) for i = 1, ..., N, are

respectively:

E
(
W̃i,T

)
= K × (T − 2K − 1)

(T − 2K − 3)
(21)

V ar
(
W̃i,T

)
= 2K × (T − 2K − 1)2 × (T −K − 3)

(T − 2K − 3)2 × (T − 2K − 5)
, (22)

as long as the time dimension T satisfies T ≥ 6 + 2K.

For a proof of this proposition see Appendix. Besides, it is essential to verify that for

large T samples, the moments of the individual statistic W̃i,T converge to the corresponding

moments of the asymptotic distribution of Wi,T , since ∀i = 1, ..., N :

lim
T→∞

E
(
W̃i,T

)
= K lim

T→∞
V ar

(
W̃i,T

)
= 2K.

Both moments correspond to the moments of a F (K,T − 2K − 1). Indeed, in this dynamic

model the F distribution can be used as an approximation of the true distribution of the

statistic Wi,T/K for a small T sample. Then, the use of Magnus theorem to approximate the

true moments of the Wald statistic given the realizations φi and mi is equivalent to asserting

that the true distribution of Wi,T can be approximated by the F distribution.

In this paper, we propose to approximate the first two moments of the individual Wald

statistic Wi,T by the first two moments of the statistics W̃i,T based on the realizations φi and

mi of the stochastic matrices Φi and Mi (equations 21 and 22). Indeed, for T ≥ 6 + 2K, we

14



assume that:

N−1
N∑
i=1

E (Wi,T ) ' E
(
W̃i,T

)
= K × (T − 2K − 1)

(T − 2K − 3)
(23)

N−1
N∑
i=1

V ar (Wi,T ) ' V ar
(
W̃i,T

)
= 2K × (T − 2K − 1)2 × (T −K − 3)

(T − 2K − 3)2 × (T − 2K − 5)
(24)

Given these approximations, we compute an approximated standardized statistic Z̃Hnc
N for

the average Wald statistic WHnc
N,T of the HNC hypothesis

Z̃Hnc
N =

√
N
[
WHnc
N,T − E

(
W̃i,T

)]
√
V ar

(
W̃i,T

) . (25)

For a large N sample, under the Homogenous Non Causality (HNC) hypothesis, we as-

sume that the statistic Z̃Hnc
N follows the same distribution as the standardized average Wald

statistic ZHnc
N .

Proposition 3. Under assumptions A1 and A2, for a fixed T dimension with T > 5 + 2K,

the standardized average statistic Z̃Hnc
N converges in distribution:

Z̃Hnc
N =

√
N

2×K
× (T − 2K − 5)

(T −K − 3)
×
[

(T − 2K − 3)

(T − 2K − 1)
WHnc
N,T −K

]
d−→

N→∞
N (0, 1) (26)

with WHnc
N,T = (1/N)

∑N
i=1Wi,T .

Consequently, the testing procedure of the HNC hypothesis is very simple and works as

follows. For each individual of the panel, we compute the standard Wald statistics Wi,T asso-

ciated with the individual hypothesis H0,i : βi = 0 with βi ∈ RK . Given these N realizations,

we obtain a realization of the average Wald statistic WHnc
N,T . We then compute the realiza-

tion of the approximated standardized4 statistic Z̃Hnc
N according to the formula (26) or we

compute the statistic Z̃MC
N based on the Monte Carlo procedure previously described. For

a large N sample, if the value of Z̃Hnc
N (or Z̃MC

N ) is superior to the corresponding normal

4If one uses the standard definition of the Wald statistic with the T normalization, it is necessary to
adapt formula (26) by substituting the quantity T − 2K − 1 by T. More precisely, if the Wald individual
statistic Wi,T is defined as:

Wi,T =

{
θ̂′iR
′
[
R (Z ′iZi)

−1
R′
]−1

Rθ̂i

}
/ [ε̂′iε̂i/T ]

then the standardized average Wald statistic Z̃Hnc
N is defined as:

Z̃Hnc
N =

√
N

2×K
× (T − 4)

(T +K − 2)
×
[(

T − 2

T

)
WHnc

N,T −K
]
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critical value for a given level of risk, the homogeneous non causality (HNC) hypothesis is

rejected.

5 Monte Carlo simulation results

In this section, we propose three sets of Monte Carlo experiments to examine the finite

sample properties of the alternative panel-based non causality tests. The first set focuses on

the benchmark model:5

yi,t = αi + γi yi,t−k + βi xi,t−k + εi,t (27)

The parameters of the model are calibrated as follows. The auto-regressive parameters γi
are drawn from a uniform distribution on ]−1, 1[ in order to satisfy the stationarity assump-

tion A3. The fixed individual effects αi, i = 1, .., N are generated according to a N (0, 1).

Individual residuals are drawn from a normal distribution with zero means and heteroge-

neous variances σ2
ε,i. The variances σ2

ε,i are generated according to a uniform distribution on

[0.5, 1.5]. Under the null of HNC, βi = 0 for all i. Under the alternative, βi is different from

0 for all i, i.e. N1 = 0. In this case, parameters βi are generated according to a N (0, 1) at

each simulation (heterogeneity of the regression model).

The second set of experiments allows for heterogeneity of the causality relationships

under the alternative H1 : βi = 0 for i = 1, .., N1 and βi 6= 0 for i = N1 + 1, .., N. In these

experiments, we evaluate the empirical power of our panel tests for various values of the

ratio n1 = N1/N . We consider a case in which there is no causality for one cross-section

unit out of two (n1 = 0.5) and a case with no causality for nine cross-section units out of

ten (n1 = 0.9).

The third set of experiments focuses on a model with K lags:

yi,t = αi +
K∑
k=1

γ
(k)
i yi,t−k +

K∑
k=1

β
(k)
i xi,t−k + εi,t, (28)

where the auto-regressive parameters γ
(k)
i are drawn according to a uniform distribution on

]−K,K[ under the constraint that the roots of Γi (z) =
∑K

k=1 γ
(k)
i zk lie outside the unit

circle. The other parameters are calibrated as in the first set of experiments. We consider

two cases denoted A and B. In the Monte Carlo experiments of case A, we compute the size

and the power (n1 = 0) of our panel tests for a lag order K equal to 2. In case B, we assume

that the lag order is misspecified. To be more precise, the underlying data are generated

by a model with one lag (K = 1), but the individual Wald statistics (and the corresponding

standardized average panel statistics) are computed from the simulated series by relying on

a regression model with two lags (K = 2).

5We also carried out several experiments with other data generating processes. The results are similar
to the ones reported in this section and are available from the authors on request.
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The second set of experiments were carried out for N = 6 (only for the case n1 = 0.5),

10, 20, 50 and T = 10, 25, 50, 100. The other experiments were carried out for N = 1, 5,

10, 25, 50 and T = 10, 25, 50, 100. We used 10, 000 replications to compute the empirical

size and power of the tests at the 5% nominal size. All the parameters’ values such as αi,

γi, σε,i or βi are generated independently at each simulation.

All the experiments are carried out using the following two statistics: ZHnc
N,T , based on the

asymptotic moments (equation 9), and Z̃Hnc
N , based on the approximation of moments for a

fixed T sample (equation 26). The results for the first set of experiments are summarized

in Table 1. As a benchmark, in the first row of this table we report the results of the

Granger non-causality test based on a Wald statistic for single time series (N = 1). For

large T samples, the standardized statistic ZHnc
N,T based on the asymptotic moments K and

2K (which are valid if T tends to infinity) has a correct size. Our panel test is more powerful

than tests based on single time series even in a panel with very few cross-section units. For

instance, for a typical panel of macroeconomic annual data (T = 50), the power of the non

causality test rises from 0.71 in the case of a single time series test (N = 1) to 0.99 for a

panel test even though only five cross-section units are included (N = 5). However, for small

values of T , the standardized statistic ZHnc
N,T is oversized and the extent of this over-rejection

worsens as N increases. This over-rejection can be intuitively understood as follows. The

Wald statistic based on single time series is slightly over-sized for small values of T . So,

under the null, we can observe large values (superior to the chi-squared critical value) of the

individual Wald statistics for some cross-section units. For a given value of N , these large

values (that range from the chi-squared critical value to infinity) are not compensated by the

realizations obtained for other cross-section units since the latter only range from 0 to the

chi-squared critical value. Consequently, the cross-section average (WHnc
N,T statistic) tends to

be larger than the corresponding normal critical value. The more N increases, the more the

probability to obtain large values for some cross-section units increases. So, for small values

of T , the ZHnc
N,T test tends to over-reject the null of non causality and this propensity becomes

stronger as N increases.

On the contrary, the size of the standardized Z̃Hnc
N statistic based on the semi-asymptotic

moments (defined for fixed values of T ) is reasonably close to the nominal size for all values

of T and N . The semi asymptotic standardized Z̃Hnc
N statistic substantially augments the

power of non-causality tests even for very small values of N . For example, when T = 10, the

power of our panel test is equal to 0.73 even though only five cross-section units (N = 5) are

considered. In this case, the test based on time series (N = 1) has only a power of 0.43. All

in all, the Z̃Hnc
N statistic has a correct size, and its power rises monotonically and quickly

with N and T. For T = 10, when N is larger than 10, the power of the Z̃Hnc
N test is near

to one. This improvement in power can be intuitively understood as follows. Individual

statistics are bounded from below (by zero) but may take arbitrarily large value. Hence,

when averaging among individual Wald statistics, the ‘abnormal’ realizations (realizations
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below the chi-squared critical value) are annihilated by the realizations on the true side

(large).

In the power simulations summarized in Table 1, we assume that there is causality for all

the cross-section units of the panel. By contrast, in the second set of experiments we gauge

the influence of heterogeneity of causality relationships, i.e. the relative importance of N1

with respect to N , on the power of our panel tests. Our findings are summarized in Table 2.

For n1 = 0.5 and n1 = 0.9, we can verify that the power of the standardized statistics ZHnc
N,t

and Z̃Hnc
N is slightly reduced compared to the case n1 = 0 (Table 1). Nevertheless, even in

the worse case studied (in which there is causality for only one cross-section unit out of ten,

i.e. n1 = 0.9), the power of our panel tests remains reasonable even for very small values of

T and N . For instance, with T = 25 and N = 10 (N1 = 9), the power of the Z̃Hnc
N statistic

is equal to 0.42. With twenty cross-section units (causality for two cross-sections units if

n1 = 0.9), its power increases to 0.60.

The results for the third set of experiments are summarized in Table 5. In case A, we

consider a model with two lags. The results are quite similar to the ones obtained for the

benchmark case with one lag (Table 1): the power of the panel average statistics substantially

exceeds that of single times series non-causality test, the ZHnc
N,t statistic is over-sized and Z̃Hnc

N

has a correct size for all T and N considered. Similar results (not reported) are obtained

when we consider heterogeneous lag orders Ki. In case B, we study the influence of a mi-

specification of the lag-order. When the lag order is overestimated for all cross-section units,

the power of our panel test statistics is reduced but remains reasonable. With T = 10, the

power of the panel Z̃Hnc
N statistic rises from 0.36 with five cross-section units to 0.87 with

twenty cross-section units.

6 Further Issues

6.1 Fixed T and Fixed N Distributions

If N and T are fixed, the standardized statistic ZHnc
N and the average statistic WHnc

N,T do

not converge to standard distributions under the HNC hypothesis. Two solutions are then

envisageable: the first consists in using the mean Wald statistic WHnc
N,T and to compute

the exact empirical critical values, denoted cN,T (α) , for the corresponding sizes N and T

via stochastic simulations. The upper panel in table 4 reports the results of an example

of such a simulation. As in Im, Pesaran and Shin (2003), the second solution consists in

using the approximated standardized statistic Z̃Hnc
N and to compute an approximation of the

corresponding critical value for a fixed N . Indeed, we can show that:

Pr
[
Z̃Hnc
N < z̃N (α)

]
= Pr

[
WHnc
N,T < cN,T (α)

]
,
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where z̃N (α) is the α-percent critical value of the distribution of the standardized statistic

under the HNC hypothesis. The critical value cN,T (α) of WHnc
N,T is defined as:

cN,T (α) = z̃N (α)

√
N−1var

(
W̃i,T

)
+ E

(
W̃i,T

)
,

where E
(
W̃i,T

)
and V ar

(
W̃i,T

)
denote the mean and the variance of the individual Wald

statistic defined by equations (21) and (22). Given the result of proposition (3), we know

that the critical value z̃N (α) corresponds to the α-percent critical value of the standard

normal distribution, denoted zα if N tends to infinity whatever the size T. For a fixed N ,

the use of the normal critical value zα to built the corresponding critical value cN,T (α) is

not founded. Despite this, we can propose an approximation c̃N,T (α) based on this value

c̃N,T (α) = zα

√
N−1var

(
W̃i,T

)
+ E

(
W̃i,T

)
(29)

or equivalently:

c̃N,T (α) = zα ×
(T − 2K − 1)

(T − 2K − 3)
×

√
2K

N
× (T −K − 3)

(T − 2K − 5)
+
K × (T − 2K − 1)

(T − 2K − 3)
. (30)

In Table 4, the simulated 5% critical values cN,T (0.05) obtained from 50 000 replications

of the benchmark model under H0 are reproduced. The approximated 5% critical values

c̃N,T (0.05) are also reported. Notice that both critical values are very similar and the same

result can be obtained for larger lag-order K.

6.2 Cross-Sectional Dependence

Nowadays, an important issue in panel analysis is related to the existence of cross-sectional

dependence. Following the literature on second-generation panel unit-root tests (e.g. Bai

et Ng, 2001; Moon et Perron, 2004; Pesaran, 2007), new panel non-causality tests should

be developed so as to explicitly take into account general forms of dependencies among the

individuals of the panel.

Since specifying a particular form of correlation for the individual residuals has a neg-

ative impact on the small-sample properties of a test for alternative forms of dependence,

we consider here a very general and simple, although computationally intensive, solution to

this issue. To be more precise, we take into account cross-sectional dependence by using

bootstrapped critical values instead of asymptotic critical values when performing Granger

non-causality tests. The block bootstrap procedure we hence propose implies several steps:

1. Define the panel model for which we test the Granger non-causality hypothesis (e.g.

yi,t = αi +
∑K

k=1 γi,kyi,t−1 +
∑K

k=1 βi,kxi,t−1).

2. Estimate the model for each cross-sectional unit and compute the standardized test statis-

19



tics ZHnc
N,T and Z̃Hnc

N .

3. Estimate the model under the null hypothesis of no Granger causality (βi,k are null) for

each cross-section unit and compute the N vectors of size (T ,1) of residuals.

4. Resample the residuals with replacement by considering a block of size 1 in time-series

and size N in the panel dimension. The size of the time-series block can take another shape

if we suspect that the residuals are also autocorrelated in time.

5. Next, we construct a resampled series yi,t under the null hypothesis ỹi,t = α̂i+
∑K

k=1 γ̂i,kyi,t−1+

ε̃i,t, where α̂ is the vector of estimated fixed effects, γ̂ is the matrix of estimated autoregressive

parameters for all the individuals and lags, and ε̃ is the matrix of resampled residuals.

6. Estimate the model defined at step 1 by using the resampled data ỹi,t and compute the test

statistics for this resampled data.

7. Repeat steps 5 and 6 a large number of times. At each repetition keep the test statistics

obtained for the resampled data, so as to compute the empirical critical values as the 95%

percentile of the distribution of test-statistics (taken in absolute value) under the null hypoth-

esis of no causality.

8. Compare the test statistics corresponding to the initial dataset (step 2) with the empirical

critical values calculated in step 7.

To illustrate this procedure, we assume that the cross-sectional dependence can be mir-

rored by a correlation coefficient equal to 0.5. Therefore, it is possible to construct the true

variance-covariance matrix V by drawing the vector of variances of the residuals from a

uniform distribution on [0.5,1.5].

We first scrutinize the empirical size of the panel Granger non-causality tests in presence

of cross-sectional dependence. For this, we choose as benchmark model the one considered

for the first set of Monte-Carlo experiments and follow several steps:

Step A1 - Generate the series of interest yi,t under the null hypothesis of Homogeneous

Non Causality.

yi,t = αi + γiyi,t−1 + εi,t, (31)

where the vectors of disturbances are jointly normal distributed εi ∼ Nn(0,Σ), with the

sample covariance matrix drawn from the Wishart distribution with covariance-matrix V

and df degrees of freedom, i.e. Σ ∼ Wn(V, df), with i ∈ [1, N ] and t ∈ [1, T ]. Besides, the

autoregressive parameters γi are drawn from a uniform distribution on ]−1, 1[ and the fixed

individual effects αi are generated according to a N(0, 1) distribution.

Step A2 - Define the regression model for each individual i in the panel

yi,t = αi + γiyi,t−1 + βixi,t−1, (32)

where x is normally distributed with mean 0 and unit variance. Note that the specified

regression model allows for heterogeneity of the estimated parameters among individuals.

The individual Wald statistic for the ith individual Wi,T corresponding to the individual test

H0 : βi = 0, can now be computed. The regression model is hence applied for each i ∈ [1, N ],
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so that in the end we obtain a vector of N statistics. In this context, we can construct the

standardized statistics ZHnc
N,T and Z̃Hnc

N (see equation 9 and equation 26).

Step A3 - Repeat Steps A1 and A2 a large number of times and count the number of

rejections for each test-statistic by relying on the bootstrapped critical values. These nested

simulations are very time-consuming. Therefore, we use 5,000 simulations in steps A1-A2,

whereas we consider 1,000 repetitions for the empirical critical values.

Second, to account for cross-sectional dependence, the empirical power has to be com-

puted from the rejection rates obtained with the bootstrapped critical values. Indeed,

we implement a two-step procedure specially designed to size-adjust the power results,

as follows. First, we generate the series {yi,t}Tt=−100 under the alternative hypothesis, i.e.

yi,t = αi + γiyi,t−1 + βxi,t−1 + εi,t, where βi are drawn from a standard normal distribu-

tion. Next, we estimate equation 32 and implement the panel Granger causality tests so

as to obtain the test-statistics under the alternative. 5,000 repetitions are considered, and

for each of them we compute bootstrapped critical values based on 1,000 simulations under

the null hypothesis, performed by following the same procedure as for the size simulations.

Note that for the critical values the regression model corresponds to equation 31, since these

simulations are performed under the null hypothesis.

Table 5 depicts the size and power results obtained for different N and T at the 5%

nominal level. Our main finding is that both test-statistics, i.e. ZHnc
N,T and Z̃Hnc

N , are roughly

well sized when empirical critical values are used so as to tackle cross-sectional dependence.

This result holds regardless of the sample sizes N and T . At the same time, the power of

the tests is higher than 0.79 and it increases monotonically with the number of cross-section

units in the sample, N , and that of the time-dimension T .

6.3 Unbalanced Panel Data and / or Unit-Specific Lag Order

Two other cases are frequently encountered in economic applications, namely an unbalanced

panel dataset and a lag order Ki that is specific to each cross-section unit. In such circum-

stances, the standardized statistic Z̃Hnc
N must be adapted as follows:

Z̃Hnc
N =

√
N
[
WHnc
N,T −N−1

∑N
i=1E

(
W̃i,T

)]
√
N−1

∑N
i=1 V ar

(
W̃i,T

)
=
√
N

[
WHnc
N,T −N−1

N∑
i=1

Ki ×
(Ti − 2Ki − 1)

(Ti − 2Ki − 3)

]

×

[
N−1

N∑
i=1

2Ki ×
(Ti − 2Ki − 1)2 × (Ti −Ki − 3)

(Ti − 2Ki − 3)2 × (Ti − 2Ki − 5)

]−1/2
, (33)
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where Ti > 5 + 2Ki denotes the time dimension for the ith cross-section unit. Indeed, in the

case of unbalanced datasets, the distributions of the test-statistics depends upon the time-

series dimension of each cross-sectional unit Ti, apart from the variance of the residuals. This

distribution is hence different across individuals and it is not a chi-squared one. Similarly,

if the lag-order differs from one individual to another, the distribution of the test-statistics,

which depends on the number of restrictions imposed under the null, will vary across groups.

However, in both cases the distributions of the test-statistics are independent from one unit to

another, and hence the mean of the test-statistics will asymptotically converge in distribution

to a normal distribution as long as Ti > 5 + 2Ki. For this, it is nevertheless necessary that

N →∞.

A simple experiment, based on Monte-Carlo simulations, looks at the size of the Granger-

causality test-statistic Z̃Hnc
N in unbalanced panels. The time dimension for each individual,

Ti, is drawn from a uniform distribution on the interval [8,100]. Besides, N = 2, 000 cross-

sectional units are considered. We find that the test is slightly oversized, the rejection rate

obtained after 5,000 simulations being equal to 0.056. This result depends, however, on the

frequency of individuals with small (large) time-dimension Ti, which is chosen to be uniform

in this exercise. All in all, the asymptotic properties of the test do not change significantly

when the dataset is unbalanced or when the lag-order is different across individuals.

7 Conclusion

In this paper, we propose a simple Granger (1969) non-causality test for heterogenous panel

data models. Under the null hypothesis of Homogeneous Non Causality (HNC), there is

no causal relationship for any of the cross-section units of the panel. Under the alternative,

there are two subgroups of cross-section units: one characterized by causal relationships

from x to y (even though the regression model is not necessarily the same) and another

subgroup for which there is no causal relationship from x to y. As in panel unit root test

literature, our test statistic is simply defined as the cross-section average of individual Wald

statistics associated with the standard Granger causality tests based on single time series.

Under the cross-section independence assumption, we show that this average statistic con-

verge to a standard normal distribution when T and N tend sequentially to infinity. The

semi-asymptotic distribution is also characterized for fixed T samples. In this case, individual

Wald statistics do not have a standard chi-squared distribution. However, under very general

setting, Wald statistics are independently distributed with finite second order moments. For

a fixed T , the Lyapunov central limit theorem is then sufficient to get the distribution of

the standardized average Wald statistic when N tends to infinity. The first two moments

of this normal semi-asymptotic distribution correspond to the cross-section averages of the

corresponding theoretical moments of the individual Wald statistics. The issue is then to

evaluate these moments of the standard Wald statistics for small T samples. In this paper we

hence propose a general approximation of these moments and the corresponding standard-
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ized average Wald statistic. Moreover, we tackle the case with cross-sectional dependence

by proposing a block-bootstrap procedure so as to obtain empirical critical values for the

Granger non-causality tests.

One of the main advantages of our testing procedure is that it is very simple to implement:

the standardized average Wald statistics are simple to compute and have a standard normal

asymptotic distribution. Besides, Monte Carlo simulations show that our panel statistics

lead to substantial increase in the power of the Granger non-causality tests even for samples

with very small T and N dimensions. Furthermore, our test statistics (based on cross section

average of individual Wald statistics) do not require any particular panel estimation. Finally,

the test can be easily implemented in unbalanced panels and / or panels with different lag

order K for each individual.

Our testing procedure has the same advantages but also the same drawbacks as the

approach used by Im, Pesaran and Shin (2003) in the context of panel unit root tests. First,

the rejection of the null of Homogeneous Non Causality does not provide any guidance with

respect to the number or the identity of the particular panel units for which the null of

non causality is rejected. Second, the asymptotic distribution of our statistics is established

under the assumption of cross-section independence, although a block-bootstrap procedure

is proposed to tackle the dependence issue in empirical applications. As for panel unit root

tests, it is now necessary to develop second generation panel non causality tests that allow

for general or specific cross-section dependences. This is precisely our objective for further

researches.

Appendix: Moments of individual Wald W̃i,T

The two noncentered moments of W̃i,T are respectively defined as:

E
(
W̃i,T

)
= (T − 2K − 1) ×K ×

∫ ∞
0

(1 + 2t)−(T−2K−1
2 ) dt

E

[(
W̃i,T

)2]
= (T − 2K − 1)2 ×

(
2K +K2

)
×
∫ ∞
0

t (1 + 2t)−(T−2K−1
2 ) dt.
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For simplicity, let us denote T̃ = (T − 2K − 1) /2. For the first order moment, we get:

E
(
W̃i,T

)
= 2T̃ ×K ×

∫ ∞
0

(1 + 2t)−T̃ dt

= 2T̃ ×K ×

(1 + 2t)−T̃+1

2
(
−T̃ + 1

)
∞

0

=
2T̃ ×K

2
(
T̃ − 1

)
Since the quantity 2

(
T̃ − 1

)
= T −2K−3 is strictly different from zero under the condition

of proposition (1), we obtain

E
(
W̃i,T

)
= K × (T − 2K − 1)

(T − 2K − 3)
. (34)

At the same time, the definition of the second order moment is:

E

[(
W̃i,T

)2]
= 4 T̃ 2 ×

(
2K +K2

)
×
∫ ∞
0

t (1 + 2t)−T̃ dt.

By integrating by parts, this expression can be transformed into:

E

[(
W̃i,T

)2]
= 4 T̃ 2×

(
2K +K2

)
×


t× (1 + 2t)−T̃+1

2
(
−T̃ + 1

)
∞

0

− 1

2
(
−T̃ + 1

) × ∫ ∞
0

(1 + 2t)−T̃ dt

 .

Under the condition of proposition (1) we have T̃ > 1, and then:

E

[(
W̃i,T

)2]
=

4 T̃ 2 × (2K +K2)

2
(
T̃ − 1

) ×
∫ ∞
0

(1 + 2t)−T̃ dt

=
4 T̃ 2 × (2K +K2)

2
(
T̃ − 1

) ×

(1 + 2t)−T̃+2

2
(
−T̃ + 2

)
∞

0

=
4 T̃ 2 × (2K +K2)

2
(
T̃ − 1

) × 1

2
(
T̃ − 2

) .
After simplifications:

E

[(
W̃i,T

)2]
=
T̃ 2 × (2K +K2)(
T̃ − 1

)(
T̃ − 2

) =
(T − 2K − 1)2 × (2K +K2)

(T − 2K − 3) (T − 2K − 5)
. (35)
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Under the condition T > 5 + 2K, this second order moment exists as it was previously

established in proposition (1).

Finally, we can compute the second order centered moment, V ar
(
W̃i,T

)
as:

V ar
(
W̃i,T

)
= E

[(
W̃i,T

)2]
− E

(
W̃i,T

)2
=

(T − 2K − 1)2 × (2K +K2)

(T − 2K − 3) (T − 2K − 5)
−
[
K × (T − 2K − 1)

(T − 2K − 3)

]2
.

After simplifications, we have:

V ar
(
W̃i,T

)
= 2K × (T − 2K − 1)2 × (T −K − 3)

(T − 2K − 3)2 (T − 2K − 5)
. (36)
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de Panel Hétérogène, LIIIe annual congress of the French Economic Association 2004,

Revue Economique, 56(3), 799-809

[7] Hsiao, C. 2003. Analysis of panel data, Cambridge University Press

[8] Im, K.S., Pesaran, M.H., Shin, Y. 2003. Testing for Unit Roots in Heterogenous Panels.

Journal of Econometrics, 54, 91-115.

[9] Magnus, J.R. 1986. The exact moments of a ratio of quadratic forms in normal variables,

Annales d’Economie et de Statistiques, 4, 96-109.

25



[10] Nair-Reichert, U. Weinhold, D. 2001, Causality tests for cross-country panels: a look

at FDI and economic growth in less developed countries, Oxford Bulletin of Economics

and Statistics, 63, 153-171.

[11] Pesaran, H.M. Smith, R. 1995. Estimating long-run relationships from dynamic heteroge-

nous panels, Journal of Econometrics, 68, 79-113.

[12] Swamy, P.A. 1970. Efficient inference in a random coefficient regression model, Econo-

metrica, 38, 311-323.

[13] Weinhold, D. 1996. Tests de causalité sur données de panel : une application à l’étude de
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Table 1: Size and Power of Panel Granger Non-causality Tests

T = 10 T = 25 T = 50 T = 100

N Test Size Power Size Power Size Power Size Power

1 Wald 0.09 0.43 0.06 0.62 0.05 0.71 0.05 0.81

5 ZHnc 0.16 0.88 0.07 0.98 0.06 0.99 0.05 0.99

Z̃Hnc 0.04 0.73 0.04 0.97 0.04 0.99 0.04 0.99

10 ZHnc 0.21 0.98 0.08 0.99 0.06 1.00 0.05 1.00

Z̃Hnc 0.04 0.91 0.04 0.99 0.04 1.00 0.04 1.00

25 ZHnc 0.31 1.00 0.09 1.00 0.06 1.00 0.05 1.00

Z̃Hnc 0.04 0.99 0.04 1.00 0.04 1.00 0.04 1.00

50 ZHnc 0.44 1.00 0.11 1.00 0.07 1.00 0.06 1.00

Z̃Hnc 0.04 1.00 0.04 1.00 0.05 1.00 0.05 1.00

Notes: This table reports the size and power of the Wald statistic based on time series

(N = 1), the panel standardized statistic ZHnc
N,T based on asymptotic moments defined by

(9) and the panel standardized statistic Z̃Hnc
N based on semi-asymptotic moments defined

by (26). The underlying data are generated by yi,t = αi + γi yi,t−k + βi xi,t−k + εi,t, for

i = 1, .., N and t = −100,−99, .., T. At each replication, the auto-regressive parameters

γi are drawn from a uniform distribution on ]−1, 1[ and the fixed individual effects αi are

generated according to a N (0, 1). Individual residuals are N.i.d.
(
0, σ2

ε,i

)
. The variance σ2

ε,i

are generated according to a uniform distribution on [0.5, 1.5]. The size (βi = 0, i = 1, ., N)

and the power of the tests are computed at the 5% nominal level. Under the alternative

(power simulations), βi is different from 0 for all i, i.e. N1 = 0. The parameters βi are

generated according to a N (0, 1) . The number of replications is set to 10, 000.
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Table 2: Power of Panel Granger Non-causality Tests: Experiments with Heterogeneity in
the Causal Relationship (n1 >0)

Power of Panel HNC Tests with n1 = 0.5

N N1 Test T = 10 T = 25 T = 50 T = 100

6 3 ZHnc 0.72 0.89 0.96 0.98

Z̃Hnc 0.48 0.87 0.95 0.98

10 5 ZHnc 0.85 0.97 0.99 0.99

Z̃Hnc 0.63 0.96 0.99 0.99

20 10 ZHnc 0.97 0.99 0.99 1.00

Z̃Hnc 0.85 0.99 0.99 1.00

50 25 ZHnc 1.00 1.00 1.00 1.00

Z̃Hnc 0.99 1.00 1.00 1.00

Power of Panel HNC Tests with n1 = 0.9

N N1 Test T = 10 T = 25 T = 50 T = 100

6 — ZHnc — — — —

Z̃Hnc — — — —

10 9 ZHnc 0.40 0.48 0.60 0.71

Z̃Hnc 0.16 0.42 0.58 0.71

20 18 ZHnc 0.58 0.68 0.81 0.90

Z̃Hnc 0.22 0.60 0.79 0.89

50 45 ZHnc 0.85 0.92 0.97 0.99

Z̃Hnc 0.38 0.86 0.97 0.99

Notes: This table reports the power of the panel standardized statistic ZHnc
N,T based on

asymptotic moments defined by (9) and the panel standardized statistic Z̃Hnc
N based on

semi-asymptotic moments defined by (26). The underlying data are generated by yi,t =

αi + γi yi,t−k + βi xi,t−k + εi,t, for i = 1, .., N and t = −100,−99, .., T. At each replication,

the auto-regressive parameters γi are drawn according to a uniform distribution on ]−1, 1[

and the fixed individual effects αi are generated according to a N (0, 1). Individual residuals

are N.i.d.
(
0, σ2

ε,i

)
. The variances σ2

ε,i are generated according to a uniform distribution on

[0.5, 1.5]. The power is computed at the 5% nominal level. We consider power simulations

with heterogeneous causal relationships. The parameters βi are equal to 0 (non-causality)

for i = 1, .., N1 and different from 0 (causality) for i = N1 + 1, .., N . In this case, βi are

generated according to a N (0, 1) . The ratio n1 = N1/N, with 0 ≤ n1 < 1, denotes the

fraction of cross-section units for which there is no causality under the alternative.
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Table 3: Size and Power of Panel Non-causality Tests: Influence of Lag Order K.

Case A: DGP with K = 2, model with K = 2

T = 10 T = 25 T = 50 T = 100

N Test Size Power Size Power Size Power Size Power

1 Wald 0.13 0.57 0.07 0.81 0.06 0.91 0.05 0.95

5 ZHnc 0.52 0.98 0.37 0.99 0.34 1.00 0.31 1.00

Z̃Hnc 0.02 0.67 0.04 0.99 0.04 1.00 0.04 1.00

10 ZHnc 0.61 0.99 0.37 1.00 0.36 1.00 0.33 1.00

Z̃Hnc 0.02 0.89 0.03 1.00 0.05 1.00 0.04 1.00

50 ZHnc 0.92 1.00 0.48 1.00 0.37 1.00 0.34 1.00

Z̃Hnc 0.03 1.00 0.05 1.00 0.05 1.00 0.05 1.00

Case B: DGP with K = 1, model with K = 2

T = 10 T = 25 T = 50 T = 100

N Test Size Power Size Power Size Power Size Power

1 Wald 0.15 0.40 0.07 0.56 0.06 0.69 0.05 0.77

5 ZHnc 0.52 0.91 0.35 0.98 0.33 0.99 0.32 0.99

Z̃Hnc 0.02 0.36 0.04 0.95 0.04 0.99 0.04 0.99

10 ZHnc 0.62 0.98 0.38 0.99 0.33 1.00 0.32 1.00

Z̃Hnc 0.02 0.57 0.04 0.99 0.04 1.00 0.05 1.00

50 ZHnc 0.91 1.00 0.48 1.00 0.37 1.00 0.34 1.00

Z̃Hnc 0.03 0.99 0.04 1.00 0.05 1.00 0.04 1.00

Notes: This table reports the size and power of the Wald statistic based on time series

(N = 1), the panel standardized statistic ZHnc
N,T based on asymptotic moments defined by

(9) and the panel standardized statistic Z̃Hnc
N based on semi-asymptotic moments defined by

(26). The underlying data are generated by yi,t = αi+
∑K

k=1 γ
(k)
i yi,t−k+

∑K
k=1 β

(k)
i xi,t−k+εi,t,

for i = 1, .., N and t = −100,−99, .., T. At each replication, the auto-regressive parameters

γ
(k)
i are drawn according to a uniform distribution on ]−K,K[ under the constraint that

the roots of Γi (z) =
∑K

k=1 γ
(k)
i zk lie outside the unit circle. The fixed individual effects αi

are generated according to a N (0, 1). Individual residuals are N.i.d.
(
0, σ2

ε,i

)
. The variances

σ2
ε,i are generated according to a uniform distribution on [0.5, 1.5]. In case B, the data

are generated by a model with one lag (K = 1) whereas the individual Wald statistics

are computed from a model that includes (at wrong) two lags (K = 2). The size (βi = 0,

i = 1, ., N) and the power of the tests are computed at the 5% nominal level. Under the

alternative (power simulations), βi is different from 0 for all i, i.e. N1 = 0. The parameters

βi are generated according to a N (0, 1) . The number of replications is set to 5, 000.
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Table 4: Comparison of Simulated and Approximated Critical Values for Fixed N and T
samples.

Simulated 5% Critical Values cN,T (0.05)

N\T 10 15 20 25 30 40 50 100

5 3.54 2.87 2.66 2.53 2.47 2.39 2.36 2.28

10 2.97 2.38 2.19 2.10 2.04 1.98 1.95 1.88

15 2.68 2.15 1.99 1.91 1.85 1.80 1.77 1.71

20 2.49 2.01 1.86 1.79 1.75 1.69 1.67 1.62

25 2.40 1.92 1.78 1.71 1.66 1.62 1.60 1.55

Approximated 5% Critical Values c̃N,T (0.05)

N\T 10 15 20 25 30 40 50 100

5 3.46 2.66 2.44 2.34 2.27 2.21 2.17 2.10

10 2.86 2.24 2.06 1.97 1.92 1.87 1.84 1.78

15 2.59 2.05 1.89 1.81 1.77 1.72 1.69 1.64

20 2.43 1.93 1.79 1.72 1.68 1.63 1.61 1.56

25 2.32 1.85 1.72 1.65 1.61 1.57 1.55 1.50

Notes: The approximated critical values for the average statisticWHnc
N,T are computed from

equation (30) for the case K = 1. The simulated critical values are computed via stochastic

simulations with 50, 000 replications. The individual Wald statistics Wi,T are built under

the HNC hypothesis, where the auto-regressive parameters γ
(k)
i are drawn according to a

uniform distribution on ]−1, 1[. The fixed individual effects αi, i = 1, .., N are drawn from a

N (0, 1).
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Table 5: Size and Power of Panel Granger Non-causality Tests in the Presence of Cross-
sectional Dependence

T = 10 T = 25 T = 50 T = 100

N Test Size Power Size Power Size Power Size Power

5 ZHnc 0.05 0.79 0.05 0.98 0.05 1.00 0.05 1.00

Z̃Hnc 0.05 0.79 0.05 0.98 0.05 1.00 0.05 1.00

10 ZHnc 0.05 0.96 0.06 1.00 0.05 1.00 0.05 1.00

Z̃Hnc 0.05 0.96 0.06 1.00 0.05 1.00 0.05 1.00

25 ZHnc 0.04 0.98 0.05 1.00 0.06 1.00 0.05 1.00

Z̃Hnc 0.05 0.98 0.05 1.00 0.06 1.00 0.05 1.00

50 ZHnc 0.05 0.95 0.06 1.00 0.05 1.00 0.05 1.00

Z̃Hnc 0.05 0.95 0.06 1.00 0.05 1.00 0.05 1.00

Notes: This table reports the size and power of the standardized panel Wald statistic

ZHnc
N,T based on asymptotic moments defined by (9) and the standardized panel statistic Z̃Hnc

N

based on semi-asymptotic moments defined by (26). The underlying data are generated by

yi,t = αi+γi yi,t−k+βi xi,t−k+εi,t, for i = 1, .., N and t = −100,−99, .., T. At each replication,

the auto-regressive parameters γi are drawn according to a uniform distribution on ]−1, 1[

and the fixed individual effects αi are generated according to a N (0, 1). Individual residuals

are N.i.d. (0,Σ), where Σ is drawn from the Wishart distribution with covariance-matrix V

and 1,000 degrees of freedom. V is obtained by assuming that the dependence takes the form

of a correlation coefficient equal to 0.5 and that the variances σ2
ε,i are generated according to

a uniform distribution on [0.5, 1.5]. The size (βi = 0, i = 1, ., N) and the power of the tests

are computed at the five percent nominal level. Under the alternative (power simulations),

βi is different from 0 for all i, i.e. N1 = 0. The parameters βi are generated according to a

N (0, 1) . The number of replications is set to 5, 000 and 1,000 simulations are considered at

each replication so as to compute the empirical critical values.
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