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Modelization and Nonparametric Estimation

for a Dynamical System with Noise

D. Blanke1 D. Bosq2 and D. Guégan3

Abstract: We examine the effect of two specific noises (either known or small ones) on
a dynamical system. We obtain consistent estimates with their rates of convergence for
the invariant density in that context.

Keywords: Invariant Measure, Nonparametric Estimation, Dynamical System, Small
Noise, Deconvolution.

1 Introduction

In this paper, we focus on estimation of the invariant measure of a dynamical system
disturbed by noise. Let us recall that a discrete time dynamical system is usually defined
via a measurable mapping ϕ : E → E where E is a closed subset of IRd such that the
state of the system at time t is given by:

xt = ϕ(t)(x0) (1.1)

where ϕ(t) = ϕoϕ · · · oϕ (t times) and x0 ∈ E is the state of the system at time t = 0.
Note that (1.1) implies

xt = ϕ(xt−1), t ≥ 1. (1.2)

Nevertheless a purely theoretical system like (1.2) is quite unrealistic since observations
xt are in general corrupted by some noise.

We assume therefore that we observe a “noisy” trajectory y1, y2, · · · , yn which leads to
the more natural model:

yt = ψ(yt−1, δt) , t ≥ 1 (1.3)

where ψ is a measurable function: E × F → E, (F ∈ BIRd) and where (δt, t ≥ 1) is the
noise which pollutes the system. In the following, typical kinds of noise will be introduced
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and studied.

In this paper, we are interested in ergodic dynamical system, thus we consider a proba-
bility space (E,B(E), µ) where E is a Borel set of IRd and B(E) is its Borel σ-field. We
thus re-write (1.2) as:

Xt = ϕ(Xt−1), t ≥ 1 (1.4)

where X0 is a given E-valued random variable.
In the same way, (1.3) becomes

Yt = ψ(Yt−1,∆t), t ≥ 1 (1.5)

where (Yt) and (∆t) are sequences of random variables.

Now, we intend to estimate nonparametrically the density f of the (possible) invari-
ant measure µ associated to models such as (1.4) when observations are given by (1.5).
Only two particular but important cases of (1.5) (see (2.1) and (2.3)) will be considered
in the sequel.

Many works have been devoted to dynamical systems, we refer to Lasota-MacKey
(1994) and the references therein for further reading. Note that in this paper, we have
rather followed a statistical approach of such dynamical systems.
The plan of our paper is the following: in Section 2 we specify the noises which will be
studied. In Section 3 we give conditions for existence and uniqueness of an invariant
measure. Section 4 and 5 deal with estimation of f for two specific systems: known and
small noises. Proofs appear in Section 6.

2 Classification of Noises

One may encounter many kind of noises in experimental systems, we now specify those
which are studied in our paper.

• First suppose that we observe a dynamical system such (1.4) but with errors-in-
variables. Thus, we get the following model:

{
Yt = Xt + εt, t ≥ 0
Xt = ϕ(Xt−1), t ≥ 1.

(2.1)

Note that (2.1) gives one possible model which is a particular case of (1.5) since one
may write Yt = ψ(Yt−1,∆t) with

{
ψ(y, δ) = ϕ(y) + δ ,

∆t = ϕ(Xt−1) − ϕ(Yt−1) + εt , t ≥ 1 ,
(2.2)

provided that Yt ∈ E i.e. εt satisfies the condition Xt + εt ∈ E for t ≥ 1.
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This latter condition is somewhat restricting, but it can be relaxed by supposing
that E = IRd, even if the system lives in some subset of IRd. In the particular case
where εt is bounded (‖εt‖ ≤ ε) it is only necessary to suppose that ϕ has a natural
extension to Eε = {x : inf

y∈E
‖x− y‖ ≤ ε} and then to work over this set.

System (2.1) corresponds to model with measurement errors. This case appears,
for instance, when one wants to simulate systems, in particular aperiodic ones (like
chaotic systems, see Guégan and Mercier, 1998). Now, if in (2.1), εt is independent
of Xt and εt has a known invariant measure ν, t ≥ 1, existence of an invariant mea-
sure, say µ for (Xt) implies the same property for (Yt) and the invariant measure
associated with (Yt) is µ ∗ ν where ∗ denotes convolution product. If the character-
istic function of ν does not vanish, then µ ∗ ν determines µ: in that case one deals
with a deconvolution problem.

• Now, we consider a general model which corresponds to propagation of errors. We
take model (1.5) with ψ(y, δ) = ϕ(y) + δ and E = IR:

Yt = ϕ(Yt−1) + ∆t. (2.3)

Assume Y0 is observed, we get:

Y1 = ϕ(Y0) + ∆1 ,

thus
Y2 = ϕ[ϕ(Y0) + ∆1] + ∆2 .

For a general t, the relation between Yt and Y0 is intricate. However, this representation
may be simplified by using successive approximations (see appendix for details):

Yt = ϕ(t)(Y0) + ξt , t ≥ 1 (2.4)

where
ξt = ∆t + Γt−1∆t−1 + Γt−1Γt−2∆t−2 + · · · + Γt−1 · · ·Γ1∆1 ,

with
Γt = (ϕ′oϕ(t))(Y0) ,

where ϕ′, the derivative of ϕ, is supposed to exist except in a countable set of points.

Notice that if ϕ is linear, the models given by (2.3) and (2.4) coincide. Models such as
(2.4) can be easily found in experimental situations, for example we refer to the Couette-
Taylor fluid flow experiment described in Brandstäter and Swinney (1987), other examples
of deterministic noise amplifiers can be found in Deissler and Farmer (1992). In these ex-
perimental systems, the smallness of the noise is fundamental. Thus, in order to modelize
the smallness of ∆ we consider a sequence of observed r.v.’s (Y1n, · · · , Ynn) associated with
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the noise (∆1n, · · · ,∆nn) where the r.v.’s ∆in are i.i.d., zero-mean, with variance σ2
n and

such that (∆in) is independent of Y0 for any i.

Now, in order to control the noise in (2.4) we can make a classical assumption upon
ϕ′ (which is satisfied in usual cases) given by 1 ≤ ‖ϕ′‖∞ < ∞ where ‖ · ‖∞ denotes the
essential supremum.
Then the conditional variance of ξt = ξtn, (introduced in (2.4)) with respect to Y0 is:

Var (ξtn|Y0) = σ2
n(1 + Γ2

t−1 + · · · + Γ2
t−1 · · ·Γ

2
1) ≤ σ2

nn · ‖ϕ′‖2(n−1)
∞ ,

and since Var (ξtn) = E (Var (ξtn/Y0)) + Var (E (ξtn/Y0)), we get

Var (ξtn) ≤ σ2
nn · ‖ϕ′‖2(n−1)

∞ .

Hence we have, Var (ξtn) → 0 as n→ +∞, provided lim
n→+∞

nσ2
n‖ϕ

′‖2(n−1)
∞ = 0.

3 Existence and uniqueness of invariant measure

In this section we give a result about existence and uniqueness of invariant measure for
the dynamical system (1.5). We use the so-called FOAIS operator associated to ψ (de-
fined in (1.5)), see Lasota-Mackey (1994, p. 414). Here, we relax somewhat assumptions
concerning this operator in order to extend Theorem 12.5.1 in Lasota-Mackey.

Let us suppose that (∆t, t ≥ 1) is a sequence of i.i.d. random variables with common
distribution ν, that for each t ≥ 1, (Yt) admits a distribution measure µt, and that (∆t)
and (Yt) are independent. Note that the model (2.2) does not satisfy such assumptions
but as seen before, the invariant measure will exist as soon as Xt has an invariant measure
and (εt) are i.i.d. variables independent of (Xt).

Let Π be the FOAIS operator defined over P(E) (the space of probability measures
over (E,BE)) such that:

(Πµ)(B) =
∫

E
dµ(x)

∫

F
1B[ψ(x, y)]dν(y)

=
∫

(1Boψ)d(µ⊗ ν), B ∈ BE.

Therefore
Πµt = µt+1 , t ≥ 0 .

We now specify our main assumptions:

Assumptions A3.1

(i) There exists µ0 belonging to P(E) such that for all η > 0, there exists a
bounded B in BE and such that (Πtµ0)(B) ≥ 1 − η, for any t ≥ 0.

(ii) : Π is continuous over P(E) with respect to the weak topology.
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These assumptions are slightly more general than those in Lasota-Mackey (1994, p. 417),
since ψ is not assumed to be continuous with respect to the first argument. We have:

Proposition 3.1

If assumptions A3.1 hold, then Π has an unique invariant measure.

4 Model with errors-in-variables

Suppose that we have n observations Y0, . . . , Yn−1 from the model (2.1):

Yt = Xt + εt, t = 0, 1, . . . , n− 1 (4.1)

with

Xt = ϕ(Xt−1) t = 1, . . . , n− 1. (4.2)

We make the following general assumptions about (4.1).

Assumptions A4.1

(i) {Xt, t ∈ ZZ} is an E-valued process.
(ii) {εt, t ∈ ZZ} are i.i.d. random variables with known density ξε and with

independent components.
(iii) {Xt, t ∈ ZZ} and {εt, t ∈ ZZ} are independent.

If we denote by µ the invariant measure of (4.2), our goal is then to estimate its density f
(if it exists) with respect to Lebesgue measure over E, when only observations Y0, . . . , Yn−1

are available and the law of the noise is known. Note that this latter condition is some-
what strong but it permits to ensure the identifiability of our problem. Moreover this
condition will be satisfied when for example, one may preliminarily calibrate the mea-
suring instrument. We now make the following assumptions upon the dynamical system
{Xt, t ∈ ZZ}:

Assumptions A4.2

(i) ϕ preserves µ and µ has a density f with respect to Lebesgue measure over E.

(ii) X0 has density f0 and for any t ≥ 1, Xt has density Πtf0 where Π is the so-
called Frobenius operator (see Lasota-MacKey p. 202) such that

+∞∑

t=0

‖Πtf0 − f‖∞ < +∞.

(iii) There exists a sequence cn → +∞ defined by

cn =
∫ ∫

E×E

∣∣∣∣∣∣∣∣

∑

0≤i,j≤n−1

i6=j

(
dP(Xi,Xj)(u, v) − dµ(u)dµ(v)

)
∣∣∣∣∣∣∣∣

and such that cn = o(n2) as n→ +∞.
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Note that these assumptions are quite similar to those used in the no-noise case. We refer
to Smili (1990), Bosq (1995, 1998) and Bosq-Guégan (1995) for examples of systems satis-
fying assumptions A4.2. Furthermore if cn is of same order as n2, we get a degenerate case.

We finally remark that if ft, gt are the respective densities of Xt and Yt, assumptions
A4.1 imply that gt = ft ∗ ξε for any t, so we deal here with the classical deconvolution
problem but in a non-stationary context.

4.1 Definition of the estimator

Deconvolution kernel estimators have been widely studied for i.i.d. observed variables
see e.g. Carrol and Hall (1988), Liu and Taylor (1989), Stefanski and Carrol (1990),
Fan (1991), or for mixing and stationary processes: Masry (1991)-(1993), Fan and Masry
(1993), as well as in a continuous time context, see Blanke (1995, 1996). These works
are related both with density and regression estimation. The nonparametric kernel-type
density estimator is defined by:

f̂n(x) =
1

nhd
n

n−1∑

i=0

Wh

(
x− Yi

hn

)
, x ∈ IRd (4.3)

with

Wh(x) =
(

1

2π

)d ∫

IRd
e−i<t,x> φK(t)

φε(t/hn)
dt

where φK is the Fourier transform of a kernel K, φε is the characteristic function of the
noise ε and < ., . > denotes the scalar product over IRd.

In the following, we will choose K as a kernel product function K = K̃ ⊗ . . .⊗ K̃ where
K̃ is a real symetric bounded density such that lim

u→0
|u|K̃(u) = 0 and

∫
IR
u2K̃(u) du < +∞.

Then, we may write:

Wh(x) =
d∏

j=1

W̃h(xj) with W̃h(xj) =
1

2π

∫

IR
e−itxj

φ̃K(t)

φ̃ε(t/hn)
dt.

Furthermore we will suppose in the sequel that |φ̃ε(t)| 6= 0 and that
∣∣∣∣

φ̃K(.)

φ̃ε(./h)

∣∣∣∣ ∈ L1(IRd) ∩

L∞(IRd) for all real t and positive h. Note that the first condition is close to the “minimal”
condition (i.e. |φ̃ε(t)| 6= 0 for almost all t) which ensures identifiability of our problem
(see Devroye, 1989). Note that this assumption excludes characteristic functions with
compact support such for instance the Beta distribution β(1/2, 1/2) defined on [−1, 1].

4.2 Properties of kernel Wh

We consider two general classes of noises specified below by (4.4) and (4.6). As usual,
noises satisfying (4.4) and (4.6) will be respectively refered in the sequel as “ordinary
smooth noise distributions” and “supersmooth noise distributions”.
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4.2.1 Ordinary smooth noise distributions

We make the following assumptions on the characteristic functions φ̃ε(t) and φ̃K(t) (see
Masry 1991, 1993).

Assumptions A4.3

φ̃K(.) and φ̃ε(.) are twice continuously differentiable with bounded derivatives such
that :

(i) |φ̃ε(t)| > 0 ∀ t ∈ IR,

(ii) ∃ β ≥ 1 such that

tβ φ̃ε(t) → A1 as |t| → +∞ with |A1| > 0, (4.4)

(iii)
∫
IR
|t|β−2 |φ̃K(t)| dt < +∞ if β > 1,

∫
IR
|t|2β |φ̃K(t)|2 dt < +∞,

(iv)
∫
IR
|t|β−1 |φ̃′

K
(t)| dt < +∞,

∫
IR
|t|β |φ̃′′

K
(t)| dt < +∞.

Condition (ii) specifies the asymptotic behaviour of the noise, it includes, in particular
Laplacian densities (β = 2) and also the Gamma ones Γ(λ,t) (β = t). Assumptions (iii)

and (iv) are technical and are satisfied by e.g. Gaussian kernels K̃.

Under such assumptions Masry (1991, 1993a) gives the following useful properties of
Wh:

Lemma 4.1

Under assumptions A4.3 and for any 1 ≤ q ≤ +∞ we get

‖W̃h‖q = O
(
h−β

n

)
n→ +∞. (4.5)

4.2.2 Supersmooth noise distributions

We now consider noises satisfying the following assumptions.

Assumptions A4.4

(i) For all real t, |φ̃ε(t)| > 0, furthermore there exist positive constants B1, a, β
and a real constant β0 such that

|φ̃ε(t)| ≥ B1|t|
β0 exp

(
−a|t|β

)
as t→ +∞, (4.6)

(ii) φ̃K(.) has a compact support ] − τ, τ [,
(iii) φ̃K is an even, real, decreasing and bounded function over [0, +∞[ with

φ̃K(0) = 1, φ̃K admits (p+1) bounded derivatives such that φ̃K(τ) = . . . = φ̃
(p−1)
K (τ) = 0

and φ̃
(p)
K (τ) 6= 0.
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Assumption (i) specifies the asymptotic behaviour of the noise and will be satisfied
for e.g. Gaussian noises (with β0 = 0 and β = 2) or those following a Cauchy law (β0 = 0
and β = 1). Conditions (ii) and (iii) are technical and will be fulfilled for K̃ with Fourier
transform such that φ̃K(t) = (τ 2 − t2)2 1I[−τ,τ ](t).

Properties of kernel Wh for such noises are given by Stefanski (1990) and extended to
any dimension d in the following lemma.

Lemma 4.2

Under assumptions A4.4, as hn → 0 we get

‖Wh‖∞ = O
(
(nΛn)1/2hd

n

)
(4.7)

‖Wh‖q = O
(
(nΛn)1/2h(1−β/q)d

n

)
for 2 ≤ q <∞, (4.8)

where Λn is defined by

Λn = n−1h2d[(r+1)β+β0−1]
n e2ad(τ/hn)β

. (4.9)

4.3 Asymptotic results of convergence for f̂n

A surprising result concerns the asymptotic bias of the estimator f̂n defined by (4.3)
which does not depend on the noise distribution. We denote by C2,d(b) the space of
twice continuously differentiable real valued functions f , defined on IRd , and such that
‖f‖∞ ≤ b and ‖f (2)‖∞ ≤ b where f (2) denotes any partial derivative of order 2 for f .

Theorem 4.1

If f ∈ C2,d(b) and if hn → 0 such that nh2
n → +∞, then assumptions A4.1 and

A4.2(i)-(ii) imply that

E f̂n(x) − f(x) = O(h2
n), n→ +∞.

In order to study the asymptotic variance of our estimator, we now have to treat separately
the two classes of noise distributions introduced above.

4.3.1 Ordinary smooth noise distributions

First we deal with ordinary smooth noise distributions of order β satisfying relation (4.4).

Theorem 4.2

Under assumptions A4.1, A4.2, A4.3 and if ξε is bounded, then for any hn → 0
such that nh(2β+1)d

n → +∞, we get

Var f̂n(x) = O

(
1

nh
(2β+1)d
n

)
+O

(
cn

n2h2βd
n

)
, n→ +∞.
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Note that the covariance term depends on cn: cn = O (n) is a sufficient condition for the
variance of our estimator to tend to zero. Moreover, the smallest is cn, more rates will be
close to the optimal ones of the i.i.d. case (see Fan, 1991). Theorems 4.1 and 4.2 imply
the following corollary which gives the asymptotic quadratic error of the estimator.

Corollary 4.1

Under assumptions of theorem 4.1 and theorem 4.2, as n→ ∞ we get

(1) for cn = O
(
n

4+d(2β+2)
4+d(2β+1)

)
and hn = n− 1

4+d(2β+1) ,

E
(
f̂n(x) − f(x)

)2
= O

(
n− 4

4+d(2β+1)

)
;

(2) if n−
4+2d(β+1)
4+d(2β+1) cn → +∞ then for hn = c

1
4+2βd
n n− 1

2+βd

E
(
f̂n(x) − f(x)

)2
= O

((
cn
n2

) 2
2+βd

)
.

Remark that if condition (1) is satisfied in corollary 4.1, then we find again the optimal
rates (i.e. independent of the choice of the estimator) of the i.i.d. case with d = 1 (see
Fan, 1991). Such assumption will be satisfied for e.g. the r-adic function defined by
ϕr(x) = rx (mod 1) since it can be shown that cn does not exceed n (see Smili, 1990).
Furthermore, the no-noise case may be deduced from corollary 4.1 by putting β = 0, thus,
under asumptions of theorems 4.1 and 4.2 we get that

(i) cn = O
(
n

4+2d
4+d

)
implies a mean-square error of order O

(
n− 4

4+d

)
,

(ii) n− 4+2d
4+d cn → +∞ implies a mean-square error of order O (n−2cn) .

4.3.2 Super smooth noise distributions

We now establish the asymptotic mean square error of our estimator when the noise has
a super smooth distribution of order β given by (4.6).

Theorem 4.3

Under assumptions A4.1 A4.2 and A4.4, as n→ +∞ we have

Var f̂n(x) = O (Λn) +O

(
Λnh

(1−β)d
n

n

)
+O

(
1

nhd
n

)
+O

(
Λncn
n

)
,

where Λn is given by (4.9).

In order to get convergence of the variance to zero, we now have to choose hn decreasing to
zero logarithmically, thus the term of bias becomes dominant and then the mean-square
error is given by
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Corollary 4.2

Under assumptions of theorems 4.1 and 4.3, for cn = O
(
nθ
)
and hn = τ

(
2ad
θ′

)1/β
(lnn)−1/β

with θ, θ′ such that 0 < θ < 2 and 0 < θ′ < 2 − θ, we have

E
(
f̂n(x) − f(x)

)2
= O

((
1

lnn

)4/β
)
.

We obtain the same rates as Fan (1991) who has shown in the i.i.d. case with d = 1 that
these rates are optimal in presence of such kind of noise. Remark that condition upon cn
is still satisfied for the r-adic function.

5 Models with small noise

We have seen in the previous section that rates of convergence for our estimator are very
sensitive with respect to the law of the noise. In particular for a Gaussian noise, rates
seem too poor (corollary 4.2) for ensuring good estimation. However frequently, one may
suppose that the noise has low level and then it is negligible. In this section, we intend
to fix the maximum level of noise for which usual nonparametric estimation remains con-
sistent with classical rates.

In this section, we consider models (2.1) and (2.3) with respectively “small” εt and ∆t.
For sake of simplicity, only real-valued processes will be considered but our results can be
extended to any dimension d.

As we no more follow a deconvolution approach, we will use for both models the classical
kernel density estimator (see Rosenblatt, 1956)

fn(x) =
1

nhn

n−1∑

i=0

K
(
x− Yi

hn

)
(5.10)

where the Yi’s (i = 0, . . . , n) are real-valued observations arising respectively from models
(2.1) and (2.3) and where K is a real positive lipschitzian kernel satisfying the same
conditions as kernel K̃ introduced in section 4.

5.1 Model with errors-in-variables

Fan (1992) shows that for i.i.d. variables and small Gaussian noise, the deconvolution
kernel estimator reaches the optimal i.i.d. rates. We now generalize this result in several
ways: we consider a large class of densities for the noise (including the Gaussian one)
and then, we study the asymptotic behaviour of the usual kernel estimator (whose use
is easier than the deconvolution one) for systems given by (4.1) and (4.2). Note that for
stationary, mixing or irregularly observed continuous-time processes, similar results may
be found in Blanke (1997).
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In concret terms, we suppose that we observe Y0, . . . , Yn−1 given by

Yi = Xi + σεi. (5.11)

with (Xt) satisfying relation (4.2). This model is similar to (2.1).

Furthemore we consider the following assumptions:

Assumptions A5.1

(i) {Xt, t ∈ ZZ} is a real process.
(ii) {εt, t ∈ ZZ} are i.i.d. real random variables with unknown density ξε.
(iii) {Xt, t ∈ ZZ} and {εt, t ∈ ZZ} are independent.

We now show that if σ is small enough (σ = βn → 0 as n → +∞), we may consistently
estimate the invariant density f when only observations Y0, . . . , Yn−1 are given. Note that
such models may be associated with instruments which are more and more accurate.

It is important to note that in assumptions A5.1, the law of the noise is no more supposed
to be known. Assumptions will only be made upon its two first moments.

Assumptions A5.2

(i)
∫
IR
uξε(u) du = 0,

(ii)
∫
IR
u2ξε(u) du < +∞,

(iii) f ∈ C2,1(b).

The following theorem gives the level of noise under which optimal rates still remain.

Theorem 5.1

Under assumptions A4.2, A5.1 and A5.2, if furthermore βn = O
(
n−4/5

)
then the

choice hn = n−1/5 implies that

E (fn(x) − f(x))2 = O
(
n− 4

5

)
+O

(
cn
n2

)
as n→ +∞.

For higher order level noise (i.e. when n4/5βn → +∞), optimal rates may still be obtained
but under stronger conditions upon cn.

Theorem 5.2

Under assumptions A4.2, A5.1 and A5.2,
1) if cn is such that cn = O

(
n4/5

)
and hn = n−1/5, then for βn = O(hn) we get

E (fn(x) − f(x))2 = O
(
n− 4

5

)
n→ +∞;

2) if n−4/5cn → +∞, then for hn = (cn/n
2)

1/6
and βn = O(hn) we get

E (fn(x) − f(x))2 = O

((
cn
n2

)2/3
)

n→ +∞.
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Note that if assumptions of theorem 5.1 (with cn = O
(
n6/5

)
) or theorem 5.2-(1) hold

then we find the optimal rates of convergence for nonparametric density estimation in the
i.i.d. case (see e.g. Farrel, 1972). Furthermore for processes with cn of order n (such as the

r-adic ones) the worst asymptotic rates are of order n−4/5 for small βn: βn = O
(
n−4/5

)

and of order n−2/3 for larger βn given by βn = O
(
n−1/6

)
.

5.2 Model with propagation of errors

We now consider the model close to (2.3) given by:

Yt = ϕ(Yt−1) + σεt. (5.12)

We denote by f the invariant density (when it exists) associated to the no-noise model
Yt = ϕ(Yt−1). Our goal is to estimate f when observations are given by (5.12) with
σ = βn → 0 as n→ +∞. Assumptions over the noise are still the same as in section 5.1.
Furthermore we will suppose that ϕ is a a.e. differentiable function. For such models, we
give some levels of noise under which optimal rates of convergence are reached.

Theorem 5.3

Suppose that assumptions A4.2 and A5.2 hold, if furthermore
(i) ‖ϕ′‖∞ = 1 and βn = O

(
n−13/10

)

or
(ii) 1 < ‖ϕ′‖∞ < +∞ and βn = O (e−an) with a > ln ‖ϕ′‖∞,

then the choice hn = n−1/5 implies that

E (fn(x) − f(x))2 = O
(
n− 4

5

)
+O

(
cn
n2

)
as n→ +∞.

Remark that in usual cases, we have 1 < ‖ϕ′‖∞ < +∞. Theorem 5.3 indicates that
for such models, the noise should have very low level in order to reach optimal rates of
convergence.

6 Proofs

6.1 Proof of Proposition 3.1

We use a similar of the one developed by Lasota-Mackey (1994, p. 417-419). Let us set:

Mn =
1

n

n−1∑

i=0

Πi(µ0) =
1

n

n∑

i=1

µi

12



and let (hk) be a sequence which is dense in the space C0(E) of continuous bounded
functions over E, then

|hk(Mn)| =
∣∣∣∣
∫
hkdMn

∣∣∣∣ ≤ ‖hk‖∞ , k ≥ 1 .

Then, for each k, there exists (Mnk
) ⊂ (Mn) such that the sequence (hk(Mnk

)) converges.
By diagonalization we may claim that there exists (Mnn

) such that (hk(Mnn
)) converges

for each k ≥ 1.

Therefore there exists an unique measure µ∗ ∈ P(E) such that we have the weak conver-
gence of Mnn

to µ∗, (we refer to Theorem 12.2.2 and Remark 12.2.2 in Lasota-Mackey,
1994).

Let us now verify that µ∗ is invariant for Π. Since we may set that the set B is compact,
E −B is then open and using a well-known property (see Billingsley, 1969), we get:

µ∗(E −B) ≤ lim inf Mnn
(E −B)

≤ 1 − inf
n
µn(B) ≤ 1 − (1 − ε) = ε.

Now we can write:

Mnn =
1

kn

kn−1∑

i=0

Πiµ0, kn ր ∞ .

Thus,

ΠMnn
−Mnn

=
1

kn

(Πknµ0 − µ0) ,

and if h ∈ C0(E)

|ΠMnn
(h) −Mnn

(h)| =
∣∣∣∣
1

kn

(Πknµ0(h) − µ0(h))
∣∣∣∣

≤
2‖h‖∞
kn

.

Hence, when h > 0, using (A2) and the convergence of Mnn
towards µ∗, when kn → ∞,

we get:
(Πµ∗)(h) = µ∗(h) , h ∈ C0 ,

thus
Πµ∗ = µ∗ .

6.2 Proof of theorem 4.1

We have to show that the bias is independent of the noise distribution.

E f̂n(x) =
1

nhd
n

n−1∑

j=0

EWh

(
x− Yj

hn

)

13



=
1

n

(
1

2πhn

)d n−1∑

j=0

E

(∫

IRd
e−i<t,

x−Yj

hn
> φK(t)

φε(t/hn)
dt

)
.

For characteristic functions such that φ̃K(t)/φ̃ε(t/h) ∈ L1(IR) for all h, we get by Fubini’s
theorem

E f̂n(x) =
1

n

(
1

2πhn

)d n−1∑

j=0

∫

IRd
e−i<t, x

hn
>φYj

(t/hn)
φK(t)

φε(t/hn)
dt.

Independence implies that φYj
(t/hn) = φXj

(t/hn)φε(t/hn) so if we set t/hn = s, we get

E f̂n(x) =
1

n

(
1

2π

)d n−1∑

j=0

∫

IRd
e−i<s,x>φXj

(s)φK(shn) ds

=
1

n

(
1

2π

)d n−1∑

j=0

∫

IRd
e−i<s,x>φKh∗Πjf0

(s) ds

=
1

n

n−1∑

j=0

∫

IRd
Kh (x− y) Πjf0(y) dy

=
1

nhd
n

n−1∑

j=0

EK
(
x−Xj

hn

)
. (6.13)

1) Assume first that X0 has the invariant density f , i.e. f0 = f , this implies that
fj = Πjf0 = f for all j. Then we get

1

hd
n

EWh

(
x− Yj

hn

)
=

1

hd
n

∫

IRd
K
(
x− y

hn

)
f(y) dy.

For f belonging to C2,d(b) we get by Taylor’s formula
(
Ef f̂n(x) − f(x)

)2
= O

(
h4

n

)
(6.14)

where Ef denotes expectation under f .

2) Let Eft
be the expectation under ft, then for f0 6= f we get

Eft
f̂n(x) − Ef f̂n(x) =

1

nhd
n

n−1∑

j=0

∫

IRd
K
(
x− y

hn

) [
Πjf0(y) − f(y)

]
dy

≤
1

n

n−1∑

j=0

‖Πjf0 − f‖∞.

Assumption A4.2(ii) implies that
∑∞

j=0 ‖Π
jf0 − f‖∞ < +∞ so

(
Eft

f̂n(x) − Ef f̂n(x)
)2

= O
(

1

n2

)

which becomes neglictible as soon as nh2
n → +∞, then theorem 4.1 is proved with majo-

ration
(
Eft

f̂n(x) − f(x)
)2

≤ 2
(
Eft

f̂n(x) − Ef f̂n(x)
)2

+ 2
(
Ef f̂n(x) − f(x)

)2
.
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6.3 Proof of theorem 4.2

The variance of our estimator can be decomposed into two terms Vn and Cn given by

Var f̂n(x) = Vn + Cn (6.15)

where

Vn =
1

n2h2d
n

n−1∑

i=0

VarWh

(
x− Yi

hn

)
, (6.16)

Cn =
1

n2h2d
n

∑

i6=j

Cov
(
Wh

(
x− Yi

hn

)
,Wh

(
x− Yj

hn

))
. (6.17)

6.3.1 Study of Vn

1) Assume firstly that f0 = f (this implies gt = g0 for all t). We get

1

n2h2d
n

n−1∑

i=0

VarWh

(
x− Yi

hn

)
=

1

nh2d
n

VarWh

(
x− Y0

hn

)

≤
1

nh2d
n

∫

IRd
W 2

h

(
x− y

hn

)
g0(y) dy

≤ ‖ξε‖∞
‖Wh‖

2
2

nhd
n

= O

(
1

nh
(2β+1)d
n

)

since the density of the noise is bounded and ‖Wh‖2 is given by lemma 4.1.

2) Assume now that f0 6= f , we have gi = fi ∗ ξε. Let Vargi
and Varg be the

variances under densities gi and g = f ∗ ξε. We now write

1

n2h2d
n

n−1∑

i=0

(
Vargi

Wh

(
x− Yi

hn

)
− Varg Wh

(
x− Yi

hn

))
:= A+B

where A and B are given by

A =
1

n2h2d
n

n−1∑

i=0

[∫

IRd
W 2

h

(
x− y

hn

)
gi(y) dy −

∫

IRd
W 2

h

(
x− y

hn

)
g(y) dy

]
(6.18)

B =
1

n2h2d
n

n−1∑

i=0

[(∫

IRd
K
(
x− y

hn

)
f(y) dy

)2

−
(∫

IRd
K
(
x− y

hn

)
fi(y) dy

)2
]
.(6.19)

Study of term A

A =
1

n2h2d
n

n−1∑

i=0

∫

IRd
W 2

h

(
x− y

hn

)
(gi(y) − g(y)) dy

15



=
1

n2h2d
n

n−1∑

i=0

∫

IRd
W 2

h

(
x− y

hn

)(∫

IRd
ξε(u) [fi(y − u) − f(y − u)] du

)
dy

≤
1

n2h2d
n

n−1∑

i=0

∫

IRd
W 2

h

(
x− y

hn

)
‖fi − f‖∞ dy

≤
+∞∑

i=0

‖Πif − f‖∞
‖Wh‖

2
2

n2hd
n

= O

(
1

n2h
(2β+1)d
n

)
= o

(
1

nh
(2β+1)d
n

)

by assumption A4.2(ii) and lemma 4.1.

Study of term B

B =
1

n2h2d
n

n−1∑

i=0

(∫

IRd
K
(
x− y

hn

)
(f(y) + fi(y)) dy

)(∫

IRd
K
(
x− y

hn

)
(f(y) − fi(y)) dy

)

≤
‖K‖∞
n2hd

n

∞∑

i=0

‖fi − f‖∞

= O

(
1

n2hd
n

)
= o

(
1

nh
(2β+1)d
n

)

by assumption A4.2(ii).

Finally assumptions A4.1, A4.2(i)-(ii) and A4.3 imply since n→ +∞

1

n2h2d
n

n−1∑

i=0

VarWh

(
x− Yi

hn

)
= O

(
1

nh
(2β+1)d
n

)
. (6.20)

6.3.2 Study of Cn

We have

Cn =
2

n2h2d
n

∑

i=0<j≤n−1

Egi,j
Wh

(
x− Yi

hn

)
Wh

(
x− Yj

hn

)
−Egi

Wh

(
x− Yi

hn

)
Egj
Wh

(
x− Yj

hn

)

≤ I + J (6.21)

where

I=
2

n2h2d
n

∣∣∣∣∣∣

∑

i=0<j≤n−1

Egi,j
Wh

(
x− Yi

hn

)
Wh

(
x− Yj

hn

)
−EgWh

(
x− Yi

hn

)
EgWh

(
x− Yj

hn

)∣∣∣∣∣∣
(6.22)

J=
2

n2h2d
n

∣∣∣∣∣∣

∑

i=0<j≤n−1

EgWh

(
x− Yi

hn

)
EgWh

(
x− Yj

hn

)
−Egi

Wh

(
x− Yi

hn

)
Egj
Wh

(
x− Yj

hn

)∣∣∣∣∣∣
(6.23)
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Study of term I

I=
2

n2h2d
n

∣∣∣∣∣∣

∑

i=0<j≤n−1

∫∫

IR2d
Wh

(
x− y

hn

)
Wh

(
x− z

hn

) (
g(Yi,Yj)(y, z) − g(y)g(z)

)
dydz

∣∣∣∣∣∣
.(6.24)

The sum being finite, we get by independence of the εi’s

I =
2

n2h2d
n

∣∣∣∣
∫∫

IR2d
Wh

(
x− y

hn

)
Wh

(
x− z

hn

)



∫∫

IR2d
ξε(y − s)ξε(z − t)

∑

i=0<j≤n−1

(
dP(Xi,Xj)(s, t) − dµ(s)dµ(t)

)

 dydz

∣∣∣∣∣∣

≤
2

n2
‖ξε‖

2
∞‖Wh‖

2
1

∫∫

E×E

∣∣∣∣∣∣

∑

i=0<j≤n−1

(
dP(Xi,Xj)(s, t) − dµ(s)dµ(t)

)
∣∣∣∣∣∣

= O

(
cn

n2h2βd
n

)
(6.25)

with assumption A4.2(iii) and lemma 4.1 since the density of the noise is supposed to be
bounded.

Study of term J

The bias is independent of the noise distribution, so (6.13) implies that

J ≤
2

n2h2d
n

∑

i=0<j≤n−1

∣∣∣∣EgWh

(
x− Yi

hn

)
EgWh

(
x− Yj

hn

)
−Egi

Wh

(
x− Yi

hn

)
Egj

Wh

(
x− Yj

hn

)∣∣∣∣

=
2

n2

∑

i=0<j≤n−1

∣∣∣((Kh ∗ f)(x))2 − ((Kh ∗ fi)(x)) ((Kh ∗ fj)(x))
∣∣∣ ,

where we have set Kh(.) = h−dK(./h).

By using inequality |a1a2 − b1b2| ≤ |a2||a1 − b1| + |b1||a2 − b2|, we get

J ≤
2

n2

∑

i=0<j≤n−1

{ ∣∣∣∣
∫

IRd
Kh(x− z)f(z) dz

∣∣∣∣
∣∣∣∣
∫

IRd
Kh(x− y) (f(y) − fi(y)) dy

∣∣∣∣

+
∣∣∣∣
∫

IRd
Kh(x− y)fi(y) dy

∣∣∣∣
∣∣∣∣
∫

IRd
Kh(x− z) (f(z) − fj(z)) dz

∣∣∣∣
}

≤
4‖K‖∞
nhd

n

+∞∑

i=0

‖f − Πif0‖∞

= O

(
1

nhd
n

)
= o

(
1

nh
(2β+1)d
n

)
, (6.26)

with assumption A4.2(ii). Equations (6.20), (6.21)-(6.26) now yield to theorem 4.2.
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6.4 Proof of theorem 4.3

We make use of same notations as in the proof of theorem 4.2.

6.4.1 Study of term Vn

1) Assume that f0 = f , then we have

1

n2h2d
n

n−1∑

i=0

Varg Wh

(
x− Yi

hn

)
≤

1

nh2d
n

∫
W 2

h

(
x− y

hn

)
g(y) dy

≤
‖Wh‖

2
∞

nh2d
n

= O (Λn)

by using lemma 4.2.

2) If f0 6= f , the decomposition A+B given by (6.18) and (6.19) implies

A = O

(
Λnh

(1−β)d
n

n

)

with lemma 4.2 and

B = O

(
1

n2hd
n

)
.

Finally under assumptions A4.2(ii) and A4.4 we get when n→ +∞

1

n2h2d
n

n−1∑

i=0

VarWh

(
x− Yi

hn

)
= O (Λn) +O

(
Λnh

(1−β)d
n

n

)
+O

(
1

n2hd
n

)
. (6.27)

6.4.2 Study of term Cn

Term J in (6.23) is still the same since it does not depend on the noise distribution, so
we get

J = O

(
1

nhd
n

)
. (6.28)

For term I given by (6.22), Fubini’s theorem implies that

I ≤
2‖Wh‖

2
∞

n2h2d
n

∫∫

IR2d

∣∣∣∣∣∣

∑

i<j

(
dP(Xi,Xj)(t, s) − dµ(t)dµ(s)

)
∣∣∣∣∣∣

= O
(

Λncn
n

)
(6.29)

under assumption A4.2(iii) and lemma 4.2. Theorem 4.3 is then proved by using relations
(6.21) and (6.27) to (6.29).
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6.5 Proof of theorem 5.1

Suppose that we have observed Z0, . . . , Zn−1 given by the “ideal” model:
{
Zt = ϕ(Zt−1)
Z0 = X0.

One may construct the associated estimator

f̃n(x) =
1

nhn

n−1∑

i=0

K
(
x− Zi

hn

)
.

Now the mean-square error of our estimator f̂n is bounded by

E
(
f̂n(x) − f(x)

)2
≤ 2E

(
f̂n(x) − f̃n(x)

)2
+ 2E

(
f̃n(x) − f(x)

)2
.

It’s easy to show (see the remark following corollary 4.1) that under assumptions A4.2
and for hn = n−1/5 we have

E
(
f̃n(x) − f(x)

)2
= O

(
n−4/5

)
+O

(
cn
n2

)
.

Thus we have only to consider the term E
(
f̂n(x) − f̃n(x)

)2
. Since K is supposed to be

Lipschitzian, Cauchy-Schwarz’s inequality implies

E
(
f̂n(x) − f̃n(x)

)2
≤

C

nh4
n

n−1∑

i=0

E (Yi − Zi)
2 ,

where C is a positive generic constant. We have Yi = ϕ(i)(X0)+βnεi and Zi = ϕ(i)(Z0) =
ϕ(i)(X0), so

E
(
f̂n(x) − f̃n(x)

)2
≤
Cβ2

n

h4
n

.

Thus the choice hn = n−1/5 and βn = O
(
n−4/5

)
implies

E
(
f̂n(x) − f̃n(x)

)2
= O

(
n−4/5

)

and finally

E
(
f̂n(x) − f(x)

)2
= O

(
n−4/5

)
+O

(
cn
n2

)
.

6.6 Proof of theorem 5.2

6.6.1 Study of the bias term

(1) When f0 = f , the bias of the estimator is given by

E fn(x) − f(x) =
1

hn

∫

IR
K
(
x− y

hn

) [∫

IR
f(y − u)

1

βn

ξε

(
u

βn

)
du− f(x)

]
dy

=
∫

IR
K(v)

[∫

IR
f(x− vhn − u)

1

βn

ξε

(
u

βn

)
du− f(x)

]
dv. (6.30)
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Assumptions A5.2 and Taylor’s formula imply for 0 < θ < 1,
∫

IR
f(x− vhn − tβn)ξε (t) dt− f(x)

=
∫

IR
[f(x− vhn − tβn) − f(x)] ξε(t) dt

=
∫

IR

[
(−vhn − tβn) f

′

(x) +
(vhn + tβn)2

2
f

′′

(x− θ(vhn + tβn))

]
ξε(t) dt

= J1(v) + J2(v) + J3(v) + J4(v) + J5(v) (6.31)

where the Ji(v) are respectively given by

J1(v) = −vhnf
′

(x),

J2(v) = −βnf
′

(x)
∫

IR
tξε(t) dt,

J3(v) =
∫

IR

v2h2
n

2
f

′′

(x− θ(vhn + tβn)) ξε(t) dt,

J4(v) =
β2

n

2

∫

IR
t2f

′′

(x− θ(vhn + tβn)) ξε(t) dt,

J5(v) = hnβn

∫

IR
vtf

′′

(x− θ(vhn + tβn)) ξε(t) dt.

By assumptions A5.2 and since the kernel K is symetric we get:
∫

IR
K(v)J1(v) dv = 0 (6.32)

∫

IR
K(v)J2(v) dv = 0. (6.33)

Furthermore, we have successively,

∫

IR
K(v)J3(v) dv =

h2
n

2

∫∫

IR2
v2K(v)f

′′

(x− θ (v hn + t βn)) ξε(t) dtdv,

∫

IR
K(v)J4(v) dv =

β2
n

2

∫∫

IR2
t2f

′′

(x− θ (hn v + βn t)) ξε(t)K(v) dtdv,
∫

IR
K(v)J5(v) dv = hnβn

∫∫

IR2
tvK(v)f

′′

(x− θ (hn v + βn t)) ξε(t) dtdv.

Since f
′′

is supposed to be continuous and bounded, Lebesgue’s theorem implies when
n→ +∞

lim
n→+∞

h−2
n

∫

IR
K(v)J3(v) dv =

1

2
f

′′

(x)
∫

IR
v2K(v) dv, (6.34)

lim
n→+∞

β−2
n

∫

IR
K(v)J4(v) dv =

1

2
f

′′

(x)
∫

IR
t2ξε(t) dt, (6.35)

lim
n→+∞

β−1
n h−1

n

∫

IR
K(v)J5(v) dv = 0. (6.36)
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We finally get by relations (6.32)-(6.36):

(i) When βn = hn,

lim
n→+∞

h−2
n (E fn(x) − f(x)) =

1

2
f

′′

(x)
(∫

IR
v2K(v) dv +

∫

IR
t2ξε(t) dt

)
.

(ii) When βn = o(hn),

lim
n→+∞

h−2
n (E fn(x) − f(x)) =

1

2
f

′′

(x)
∫

IR
v2K(v) dv.

2) Assume now that f0 6= f , we have

Eft
fn(x) − Ef fn(x) =

1

nhn

n−1∑

j=0

∫

IR
K
(
x− y

hn

) [
Πjf0(y) − f(y)

]
dy

≤
1

n

n−1∑

j=0

‖Πjfo − f‖∞

which with assumption A4.2(ii) implies

Eft
fn(x) − Ef fn(x) = O

(
1

n

)

which is neglictible as soon as nh2
n → +∞.

6.6.2 Study of variance term

The proof is quite similar to those of theorem 4.2. We make use of same notations and
only main changes are outlined. Note that kernel K is now use instead of Wh and d equals
to 1. We consider decomposition (6.15) with Cn and Vn respectively given by (6.16) and
(6.17).

Study of Vn

1) Assume firstly that f0 = f , we get

1

n2h2
n

n−1∑

i=0

VarK
(
x− Yi

hn

)
≤

1

nh2
n

∫

IR2
K2

(
x− y

hn

)
g(y) dy

Since f is supposed to be continuous, the same property holds for g and Bochner’s lemma
implies that

lim sup
n→+∞

nhn

n2h2
n

n−1∑

i=0

VarK
(
x− Yi

hn

)
≤ g(x)

∫

IR
K2(v) dv (6.37)
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2) Assume now that f0 6= f , then we get gi = fi ∗
1

βn
ξε(./βn) and terms A and B are

bounded by

A ≤
‖K‖2

2

n2hn

n−1∑

i=0

‖Πif − f‖∞

= O
(

1

n2hn

)
= o

(
1

nhn

)

with assumption A4.2(ii). In the same way,

B ≤
‖K‖∞
n2hn

∞∑

i=0

‖fi − f‖∞

= o
(

1

nhn

)
.

Finally assumptions A4.1, A4.2(i)-(ii) and A5.2 imply since n→ +∞

lim sup
n→+∞

nhn

n2h2
n

n−1∑

i=0

VarK
(
x− Yi

hn

)
≤ g(x)

∫

IR
K2(v) dv. (6.38)

Study of Cn

For the term I given by relation (6.24), we obtain by Fubini’s theorem and boundedness
of K

I ≤
2

n2h2
n

‖K‖2
∞

∫∫

E×E

∣∣∣∣∣

n−1∑

i=0

(
dP(Xi,Xj)(s, t) − dµ(s)dµ(t)

)∣∣∣∣∣

= O

(
cn
n2h2

n

)
(6.39)

by assumption A4.2(iii).

For term J of relation (6.23), we have

J ≤
4‖K‖∞
nhn

n−1∑

i=0

∣∣∣∣∣

∫

IR
Kh(x− y)

∫

IR

1

βn

ξε(t/βn)
[
f(y − t) − Πif0(y − t)

]
dtdy

∣∣∣∣∣

≤
4‖K‖∞
nhn

∞∑

i=0

‖f − Πif0‖∞

= O
(

1

nhn

)
. (6.40)

Finally (6.15)-(6.17), (6.21) and (6.38)-(6.40) imply that

Var fn(x) = O
(

1

nhn

)
+O

(
cn
n2h2

n

)
for n→ +∞.
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6.7 Proof of theorem 5.3

The proof is quite similar to those of theorem 5.1. We consider the “ideal” model (i.e.
without noise): {

Zt = ϕ(Zt−1)
Z0 = Y0.

We suppose that one has n observations Z0, . . . , Zn−1 and we construct the estimator of
the invariant density associated to this model:

f̃n(x) =
1

nhn

n−1∑

i=0

K
(
x− Zi

hn

)
.

Using the same decomposition as in the proof of theorem 5.1 we get

E
(
f̂n(x) − f(x)

)2
≤ 2E

(
f̂n(x) − f̃n(x)

)2
+ 2E

(
f̃n(x) − f(x)

)2
.

For the second term, we have under assumptions A4.2 and with hn = n−1/5 that

E
(
f̃n(x) − f(x)

)2
= O

(
n−4/5

)
+O

(
cn
n2

)
.

For the first term, since K is supposed to be Lipschitzian, Cauchy-Schwarz’s inequality
implies

E
(
f̂n(x) − f̃n(x)

)2
≤

C

nh4
n

n−1∑

i=0

E (Yi − Zi)
2 .

With the help of Taylor’s formula, it can be established by recurrence that:

Yi = ϕ(i)(Y0) + βnθi∆i

where ∆i is given by:
{

∆i = εi + ∆i−1ϕ
′(ϕ(i−1)(Y0) + βnθi−1∆i−1)

∆0 = 0

with 0 < θi < 1 for any i.
Note that for any i, ∆i is independent of εi+1, thus one obtains successively

E ∆2
i ≤ E ε2

i + ‖ϕ′‖2
∞E ∆2

i−1

E (Yi − Zi)
2 ≤ β2

n E ∆2
i

E (Yi − Zi)
2 ≤ β2

n E (ε2)
i−1∑

j=0

‖ϕ′‖2j
∞.

These results imply that

E
(
f̂n(x) − f̃n(x)

)2
≤
Cβ2

nE (ε2)

nh4
n

n−1∑

i=1

i−1∑

j=0

‖ϕ′‖2j
∞.

The behaviour of ‖ϕ′‖2
∞ now yields to theorem 5.3.
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Appendix

1) Consider the linear autoregressive process

Xt = ρXt−1 + εt, t ∈ ZZ, |ρ| < 1.

By reccurence, one obtains
Xt = ρtX0 + δt, t ≥ 0

where
δt = εt + ρ εt−1 + . . .+ ρt−1 ε1, t ≥ 1

and δ0 = 0. For “small” δt one gets the approximation

Yt = ρt Y0, t ≥ 0

where Y0 = X0. Then it’s easy to see that lim
t→+∞

Yt = 0.

2) Now let us consider a (possibly) non linear autoregressive process such as

Xt = ϕ(Xt−1) + εt, t ≥ 1

where ϕ is a measurable function and X0 is a given random variable.
We intend to approximate this model with a dynamical system such as Yt = ϕ(t)(Y0) + δt
where ϕ(t) = ϕo . . . o ϕ, t times.

We can write

X2 = ϕ(X1) + ε2

= ϕ (ϕ(X0) + ε1) + ε2.

Let assume that ε1 is small and that ϕ is an a.e. continuously differentiable function. We
assume furthermore that X1 has a density. Then, we have P

(
X1 ∈ D̄ϕ

)
= 0 where D̄ϕ is

the set of x such that ϕ′(x) is not defined.

Thus,

ϕ (ϕ(X0) + ε1) = ϕ (ϕ(X0)) + ε1ϕ
′ (ϕ(X0) + θε1)

∼ ϕ(2)(X0) + ε1ϕ
′ (ϕ(X0))

so we get approximatively

X2 ∼ ϕ(2)(X0) + ε2 + ε1ϕ
′ (ϕ(X0)) .

Now setting δ2 = ε2 + ε1ϕ
′ (ϕ(X0)), the next step gives

X3 = ϕ(X2) + ε3

= ϕ (ϕ(X1) + ε2) + ε3

∼ ϕ
(
ϕ(2)(X0) + δ2

)
+ ε3

∼ ϕ(3)(X0) + δ2ϕ
′
(
ϕ(2)(X0)

)
+ ε3. (0.41)
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Note that without approximations, one obtains:

X3 = ϕ(X2) + ε3

= ϕ (ϕ(X1) + ε2) + ε3

= ϕ [ϕ (ϕ(X0) + ε1) + ε2] + ε3

= ϕ [ϕ (ϕ(X0)) + ε1ϕ
′ (ϕ(X0) + θε1) + ε2] + ε3

= ϕ(3)(X0) + γ1ϕ
′ [ϕ (ϕ(X0)) + θ1γ1] + ε3 (0.42)

where we have set γ1 = ε1ϕ
′ (ϕ(X0) + θε1) + ε2 and θ = θ(X0, ε1), θ1 = θ1(X0, ε1, ε2)

with θ, θ1 ∈ [0, 1].
Now (0.41) can be deduced from (0.42) by setting θ and θ1 equal to 0.

More generally, one gets the following approximation:

Xk ∼ ϕ(k)(X0) + εk + εk−1ϕ
′
(
ϕ(k−1)(X0)

)
+ . . .

+εjϕ
′
(
ϕ(k−1)(X0)

)
ϕ′
(
ϕ(k−2)(X0)

)
· ·ϕ′

(
ϕ(j)(X0)

)
+ . . .

+ε1ϕ
′
(
ϕ(k−1)(X0)

)
. . . ϕ′ (ϕ(X0)) .

Finally, if we set Γk = ϕ′
(
ϕ(k)(X0)

)
, we have

Xk ∼ ϕ(k)(X0) + εk + Γk−1εk−1 + Γk−1Γk−2εk−2 + . . .+ Γk−1Γk−2 . . .Γ1ε1.
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