
HAL Id: halshs-00194670
https://shs.hal.science/halshs-00194670

Submitted on 7 Dec 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From sure to strong diversification
Alain Chateauneuf, Ghizlane Lakhnati

To cite this version:

Alain Chateauneuf, Ghizlane Lakhnati. From sure to strong diversification. 2005. �halshs-00194670�

https://shs.hal.science/halshs-00194670
https://hal.archives-ouvertes.fr


Maison des Sciences Économiques, 106-112 boulevard de L'Hôpital, 75647  Paris Cedex 13
http://mse.univ-paris1.fr/Publicat.htm

ISSN : 1624-0340

UMR CNRS 8095

       

From sure to strong diversification

Alain CHATEAUNEUF, CERMSEM

Ghizlane LAKHNATI, CERMSEM

2005.35



From Sure to Strong Diversification

Alain Chateauneuf∗ Ghizlane Lakhnati†

Résumé

Ce papier présente une caractérisation de l’aversion faible pour le
risque en termes de préférence pour la diversification certaine. De
même, nous montrons que l’aversion forte pour le risque peut être car-
actérisée en affaiblissant la préférence pour la diversification, introduite
par Dekel [11], en ce que nous appelons de la préférence pour la diver-
sification forte.
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Abstract

This paper presents a characterization of weak risk aversion in
terms of preference for sure diversification. Similarly, we show that
strong risk aversion can be characterized by weakening preference for
diversification, as introduced by Dekel [11], in what we name prefer-
ence for strong diversification.
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13, France. E-mail: Lakhnati@univ-paris1.fr

1



1 Introduction

In the literature on decision under risk, the main two classical concepts of
intrinsic risk aversion are weak risk aversion and strong risk aversion (see
Cohen [10] for an extensive survey of risk aversion concepts in expected and
non-expected utility models).
The main purpose of this paper is to characterize independently of any model
-model-free- these two concepts in terms of preference for diversification.
The paper is organized as follows: in the second section, we introduce the
framework and recall some definitions. In order to encompass a large range
of commonly used preferences including non-Fréchet differentiable ones, we
follow Chew and Mao [9] and consider compact continuous preferences. In
section 3, we deal with risk aversion and we show that weak risk aversion is
equivalent to preference for sure diversification, a concept introduced in the
context of uncertainty by Chateauneuf and Tallon [6], which stipulates that
if the decision maker is indifferent between several assets and can attain
certainty by a convex combination of these assets, he should prefers that
safe asset to any of the ones in the combination.
Section 4 is concerned with strong risk aversion. Dekel [11] made the point
that preference for portfolio diversification (which states that if a decision
maker is indifferent between several assets, he should prefer any convex com-
bination of these assets to any of the initial ones) is an important feature
when modeling markets of risky assets. He also observed that the equiva-
lence between diversification and risk aversion established in the Expected
Utility framework does not hold in more general frameworks. There, diver-
sification implies risk aversion but the converse is false. In fact, in the first
part of this section, we show that strong risk aversion is merely equivalent
to preference for diversification among two identically distributed assets,
what we name preference for strong diversification. In the second part, we
intend to emphasize how our results differ from those of Dekel [11], since
Dekel’s framework consists in the space of probability distribution whereas
our framework consists in the space of random variables and we show that
in our framework, convexity of preference is equivalent to preference for di-
versification, hence convexity of preference implies strong risk aversion.
Section 5 concludes.
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2 Notation, Definitions and Preliminary Results

2.1 Framework

We consider a decision maker (DM) faced with choices among risky assets
X, the set V of such assets consisting of all bounded real random variables
defined on a probability space(S,A, P ) assumed to be sufficiently rich to
generate any bounded real-valued random variables. S is the set of states of
nature, A is a σ-algebra of events, and P is a σ-additive non atomic proba-
bility measure on (S,A).
For X ∈ V, FX will denote the cumulative distribution function of X :
FX(t) = P (X ≤ t), and E(X) the mathematical expectation of X : E(X) =∫

xdFX(x).

We adopt the topology of convergence in distribution (weak topology): A
sequence (Xn)n in V converges in distribution to X, denoted by Xn →d X,
if the sequence of distribution functions FXn converges to distribution func-
tion FX at every continuity point of the latter. In other words V is endowed
with the topology τd generated by the semi-metric d : (X, Y ) ∈ V2 →
d(X, Y ) = dL(FX , FY ) where dL is the Lévy distance defined on P the set
of probability distributions functions F on R with compact supports. Let
us recall (see e.g. Billingsley [4]) that the Lévy distance metrizes the weak
toplogy on P.

Let � be the preference relation over V of a DM. Thus for any pair of
assets X, Y :
X � Y means that X is preferred to Y by the DM.
X � Y means that X is strictly preferred to Y and
X ∼ Y means that X and Y are considered as equivalent by the DM.

Let us suppose first that the preference relation verifies the three following
axioms, which are usual and natural requirements, whatever the attitude
towards risk may be:
A.1)� non trivial weak order.1

1A non trivial weak order is a relation between the elements of V which is:

• Transitive: ∀X, Y, Z ∈ V, X � Y, Y � Z implies X � Y.

• Complete: ∀X, Y ∈ V, X � Y or Y � X.
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A’.2)� is continuous in distribution: ∀X ∈ V, the sets

{Y ∈ V, X � Y } and {Y ∈ V, Y � X}

are closed in the topology of convergence in distribution.
A’.3) Monotonicity:
A’.3.1)∀α, β ∈ R, α.S∗ � β.S∗ ⇔ α ≥ β.2

A’.3.2)∀X, Y ∈ V, X =d Y ⇒ X ∼ Y.

It is worthy of note that under A.1) and A’.3.2), the preference relation
� on V induced on P a natural preference relation �P defined by F �P G
if and only if there exist X, Y ∈ V2 such that FX = F, FY = G and X � Y .
Since �P will inherit properties possessed by �, this will allow us to trans-
late on (V, τd,�) fundamental properties obtained by Chew and Mao [9] on
(P, τdL

,�P) as those just quoted below or else lemma 4.3 in section 4.
The existence of a numerical representation of this complete, transitive and
continuous preference ordering follows from Debreu [12]:

Lemma 2.1 There exists a continuous monotone preference functional I :
V → R for a binary relation � if � is a continuous and monotonic weak
order.

Let Ve be the subset of elementary discrete random variables on V, with
values xi, 1 ≤ i ≤ n and whose probability law can be written as:
L(X) = (x1,

1
n ;x2,

1
n ; ...;xn, 1

n).

A sequence (Xn)n in V is uniformly bounded if: ∃K ⊂ R compact set,
such that: Xn ∈ V(K) for each n. V(K) denotes the subset of random
variables with values in K.
A preference ordering � on V is compact continuous if X � (� Y ) when-
ever a uniformly bounded sequence (Xn)n converges in distribution to X
and Xn � (� Y ) for each n.
The corresponding preference functional I on V is continuous in distribu-
tion on V(K) for every compact set K. Then Ve(K) is dense in V(K) in
the sense of the weak topology (see Chew and Mao [9]).
As noted by Chew and Mao [9], many widely used examples of expected
utility preferences are compact continuous but not continuous in distribu-
tion, if the utility function u(.) is discontinuous or unbounded. Moreover
commonly used preferences are compact continuous. Consequently, in the

2For A ∈ A, De Finetti ’s use of A∗ to denote the characteristic function of A :
[A∗(s) = 1 if s ∈ A, A∗(s) = 0 if s /∈ A] will be adopted.
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remainder of this paper, the weaker axiom A.2 will be substituted to axiom
A’.2:

A.2) Compact continuity:
A.2.1) Xn, X, Y ∈ V, Xn is uniformly bounded, Xn →d X and Xn � Y ⇒
X � Y
A.2.1) Xn, X, Y ∈ V, Xn is uniformly bounded, Xn →d X and Y � Xn ⇒
Y � X

Notice (see Chew and Mao [9]) that an obvious consistent extension ar-
gument based on lemma 2.1 leads to lemma 2.2.

Lemma 2.2 There exists a compact continuous and monotone utility rep-
resentation for a compact continuous and monotonic preference ordering on
V.

2.2 Definitions

Now, let us recall some basic definitions:

Definition 2.1 The DM is weakly risk averse if:

∀X ∈ V, E(X).S∗ � X.

Definition 2.2 Let X, Y ∈ V, X is said to dominate Y for the second order
stochastic dominance to be denoted X �SSD Y if:∫ x

−∞
FX(t)dt ≤

∫ x

−∞
FY (t)dt; ∀x ∈ R.

The commonly used partial order called general mean preserving increase in
risk (MPIR), denoted �2 as below, is defined by:

X, Y ∈ V, X �2 Y if X �SSD Y and E(X) = E(Y ).

The compatibility of � with �2 is known as strong risk aversion.

Definition 2.3 The DM is strongly risk averse if:

∀X, Y ∈ V, X �2 Y ⇒ X � Y.
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3 Preference for sure diversification

In this section, we intend to prove that preference for sure diversification,
as introduced by Chateauneuf and Tallon [6], is equivalent to weak risk
aversion, independently of any model.

3.1 Weak risk aversion and sure diversification

Let us first give the definition of sure diversification:

Definition 3.4 � exhibits preference for sure diversification if for any X1, X2,
..., Xn on V; α1, α2, ..., αn ≥ 0 such that

∑n
i=1 αi = 1 and a ∈ R

[X1 ∼ X2 ∼ ... ∼ Xn and
∑n

i=1 αiXi = a.S∗] ⇒ a.S∗ � Xi, ∀i.

Thus, sure diversification means that if the decision maker can attain cer-
tainty by a convex combination of equally desirable assets, then he prefers
certainty to any of these assets.

Theorem 3.1 For a DM, with compact continuous and monotone prefer-
ence �, the following two assertions are equivalent:
(i) � exhibits preference for sure diversification.
(ii) The DM is weakly risk averse.

Proof:

(ii) ⇒ (i)
We suppose (i) false i.e: There exists X1, X2, ..., Xn ∈ V, X1 ∼ X2 ∼ ... ∼
Xn; αi ≥ 0,

∑n
i=1 αi = 1; a ∈ R such that

∑n
i=1 αiXi = a.S∗ andXi � a.S∗.

From hypothesis (ii) E(Xi).S∗ � Xi then E(Xi).S∗ � a.S∗, ∀ 1 ≤ i ≤ n.
Hence monotonicity implies that: E(Xi) > a, ∀ 1 ≤ i ≤ n.
a =

∑n
i=1 αia <

∑n
i=1 αiE(Xi) = E(

∑n
i=1 αiXi) = E(a.S∗) = a. So a < a

is absurd, then (i) is true. Therefore (ii) ⇒ (i).

(i) ⇒ (ii)
Here we prove the result first on Ve, and then extends it to V.
Let X ∈ Ve, we intend to prove that E(X).S∗ � X.
Let X ∈ Ve such that L(X) = (x1,

1
n ;x2,

1
n ; ...;xn, 1

n). P non atomic implies
that there exists a partition (Ai)1≤i≤n of S, Ai ∈ A and P (Ai) = 1

n , hence
X =

∑n
i=1 xiA

∗
i .

Let us construct, for 1 ≤ i ≤ n, Xi through a permutation of the xi’s in the
following way:

Xi = xiA
∗
1 + xi+1A

∗
2 + ... + xnA∗n−i+1 + x1A

∗
n−i+2 + ... + xi−1A

∗
n.
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Since Xi =d Xj forall 1 ≤ i, j ≤ n, one obtains by monotonicity X1 ∼ ... ∼
Xn.
Take αi = 1

n , hence
∑n

i=1 αiXi = 1
n

∑n
i=1 xi.S

∗ = E(X).S∗. From (i), comes
that:
E(X).S∗ � Xi, ∀i. Since X =d X, this complete this part of proof.
Take now X ∈ V, ∃K ⊂ R compact set such that X ∈ V(K). Since Ve(K)
is dense in V(K), it is possible to pick a sequence Xn ∈ Ve(K) such that Xn

is uniformly bounded and Xn →d X. Clearly E(Xn).S∗ � Xn. Then, from
the compact continuity axioms, we conclude that E(X).S∗ � X, ∀X ∈ V.

3.2 RDEU models

Rank Dependent Expected Utility theory (RDEU) was axiomatized first by
Quiggin [13] then by Yaari [17], Segal [15] and Allais [3]. More general
axiomatics have been developed by Chateauneuf [5] and Wakker [16].
The RDEU model can be defined as follows:

Definition 3.5 A decision maker satisfies RDEU theory if and only if his
preference relation � can be represented by a real valued function such that
for every X and Y of V:

X � Y ⇔ Ef (u(X)) ≥ Ef (u(Y ))

where Ef (u(Z)) is defined for every Z ∈ V by:

Ef (u(Z)) =
∫ 0

−∞
[f(P (u(Z) > t))− 1]dt +

∫ +∞

0
f(P (u(Z) > t))dt.

where f is a unique increasing continuous mapping: [0, 1] → [0, 1] such that
f(0) = 0 and f(1) = 1 and u : R → R, the utility function assumed to be
cardinal (i.e: defined up to a positive affine transformation) increasing and
continuous.
For all discrete random variable Z with probability Law:
L(Z) = (z1, p1; ...; zi, pi; ...; zn, pn) where z1 < z2 < ... < zn, pi ≥ 0,

∑n
i=1 pi =

1
The formula reduces to:

Ef (u(Z)) = u(z1) +
n∑

i=2

[u(zi)− u(zi−1)]f(
n∑

j=i

pj).

On the one hand, if the perception function f is the identity function i.e:
f(p) = p, we have Ef (u(Z)) = E(u(Z)).
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On the second hand, if the utility function u is the identity function i.e:
u(x) = x, we have Ef (u(Z)) = Ef (Z), which is the Yaari functional.

Notice that:

In the RDEU models, the preference relation � is compact continuous since
u is continuous increasing and the perception function f is continuous in-
creasing.

Note that in the Yaari’s model the notion of weak risk aversion is equiv-
alent to f(p) ≤ p; ∀p ∈ [0, 1] (The DM is pessimistic), this result has been
proved by Quiggin [13], Yaari [17]. Chateauneuf and Cohen [7] have studied
the weak risk aversion in the RDEU model and has obtained a necessary
conditions on one side and a sufficient conditions in the other side. In the
particular case of u ∈ C1 and concave, weak risk aversion is equivalent to
f(p) ≤ p; ∀p ∈ [0, 1]. So, in Yaari’s model: � exhibits preference for sure
diversification if and only if f(p) ≤ p; ∀p ∈ [0, 1].
In RDEU model with u ∈ C1 and concave: � exhibits preference for sure
diversification if and only if the DM is pessimistic i.e: f(p) ≤ p; ∀p ∈ [0, 1].
Needless to say, in the EU theory a DM cannot be weakly risk averse without
being risk averse for all other types of risk aversion. It’s well known that,
aversion to risk in the EU model is characterized by concavity of the utility
function (see Rothschild and Stiglitz [14]). Hence in EU model, � exhibits
preference for sure diversification if and only if u is concave.

One may wonder if preference for sure diversification might be reduced to
considering only two assets (as this will be the case for the characterization
of strong risk aversion, see section 4) while still characterizing weak risk
aversion.
Abouda and Chateauneuf [1], [2] defined a new notion of diversification
called preference for perfect hedging which states that if a decision maker
prefers X to Y , he should prefer any convex combination of these two assets
to Y . In the Yaari’s theory, they obtain the equivalence with f(p)+f(1−p) ≤
1, ∀p ∈ [0, 1]. It is clear that f(p) ≤ p implies f(p) + f(1− p) ≤ 1, but the
converse is false.
Hence preference for sure diversification implies preference for perfect hedg-
ing but the converse is false.
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4 Preference for strong diversification

4.1 Strong risk aversion and strong diversification

Dekel [11] made the point that preference for -portfolio- diversification is an
important feature when modeling markets of risky assets, and he observed
that in the EU theory, strong risk aversion is equivalent to preference for
diversification.
Dekel [11] also observed that for alternative models preference for diversifi-
cation is usually stronger than -strong- risk aversion: preference for diver-
sification implies risk aversion but the converse is false. In this section we
will present a characterization of strong risk aversion, through a weakening
of preference for diversification (as introduced by Dekel [11]), that we name
preference for strong diversification.

Let us recall the definition of diversification proposed by Dekel:

Definition 4.6 (Dekel [11])
� exhibits preference for diversification if for any X1, X2, ..., Xn on V: X1 ∼
X2 ∼ ... ∼ Xn implies

∑n
i=1 αiXi � Xi where αi ≥ 0 and

∑n
i=1 αi = 1.

The diversification means that the decision maker will want to diversify as-
sets if they are equally desirable.

In this part of paper we strengthen (A’.3) by (A.3):

A.3) Strict Monotonicity: Strict Respect of first order stochastic domi-
nance(FSD):
A.3.1) ∀X, Y ∈ V, [X �FSD Y i.e. (P (X ≥ t) ≥ P (Y ≥ t), ∀ t ∈ R)] ⇒
X � Y.
A.3.2) ∀X, Y ∈ V, [X �FSD Y i.e.
(X �FSD Y and ∃ t0 ∈ R such that P (X ≥ t0) > P (Y ≥ t0))] ⇒ X � Y.

Notice that indeed, as for A’.3, A.3 implies indifference between equally
distributed risky assets:
∀X, Y ∈ V, X =d Y ⇒ X ∼ Y.

Let us recall a lemma which can be found in Chew and Mao [9], and which
will be useful in the sequel.

Lemma 4.3 For a compact continuous and strictly monotone preference
relation � on V.
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If � is compatible with �2 on Ve then � is compatible with �2 on V.

Indeed lemma 4.3 states that if X �2 Y ⇒ X � Y, ∀X, Y ∈ Ve, the same
will be true on V.

Let us introduce the definition of strong diversification.

Definition 4.7 Under risk, an investor exhibits strong diversification if:

X, Y ∈ V, X =d Y ⇒ αX + (1− α)Y � Y ; ∀α ∈ [0, 1]

This definition means that the DM will want to diversify between two assets
which are identically distributed. We thus obtain the main result of this
paper:

Theorem 4.2 Under risk, for � a compact continuous and strictly mono-
tone preference. The two assertions below are equivalent:
(i) � exhibits strong diversification.
(ii) The DM respects second order stochastic dominance, i.e:

[X, Y ∈ V, X �SSD Y ] ⇒ X � Y.

Proof

ii) ⇒ i)
Let X, Y ∈ V such that X =d Y and take α ∈ [0, 1]. Let now u concave
: R → R,
hence

∫
u(αX + (1− α)Y ) ≥ α

∫
u(X)dP + (1− α)

∫
u(Y )dP .

Since X =d Y ,
∫

u(X)dP =
∫

u(Y )dP . That is
∫

u(αX + (1 − α)Y )dP ≥∫
u(X)dP , for all concave u. Therefore αX + (1 − α)Y �SSD Y . So (ii)

gives αX + (1− α)Y � Y for all α ∈ [0, 1].

i) ⇒ ii)
According to lemma 4.3, it is enough to prove that if X, Y ∈ Ve and
X �2 Y then X � Y .
From indifference between equally distributed risky assets, we may assume
without loss of generality that:
X =

∑n
i=1 xiA

∗
i ; x1 ≤ x2 ≤ ... ≤ xn, Y =

∑n
i=1 yiA

∗
i ; y1 ≤ y2 ≤ ... ≤ yn,

where the Ai’s partition S in A and P (Ai) = 1
n , 1 ≤ i ≤ n.

Since X �2 Y we know that X can be obtained from Y through a finite
sequence of ”Pigou-Dalton” transfers, each Pigou-Dalton transfer being de-
fined by picking ε > 0 to same yj0 , and adding it to some yi0 such that
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yi0 < yj0 , while maintaining the order of the outcomes. It follows by transi-
tivity of �2, that it is enough to show that Yε =

∑i0−1
i=1 yiA

∗
i +(yi0 + ε)A∗i0 +

... + (yj0 − ε)A∗j0 +
∑n

j=j0+1 yjA
∗
j is preferred to Y .

Let Y
′

be defined from Y by merely substituting yj0 to yi0 and yi0 to yj0 ,
clearly Y =d Y

′
and there exists α ∈ (0, 1) such that Yε = αY

′
+ (1− α)Y ,

hence from (i) one obtains Yε � Y , which completes the proof.

4.2 Strong risk aversion and convex preferences

In this section we intend to emphasize how our results differ from those of
Dekel [11], since Dekel’s framework consists in the space P of probability
distribution whereas our framework consists in the space V of random vari-
ables.
A nice requirement for preferences � is convexity, since this is equivalent
to quasi-concavity of any functional I representing �, and indeed quasi-
concavity of a functional is a very tractable property.

Definition 4.8 Preference � is convex if:

∀X, Y ∈ V and α ∈ [0, 1] : X � Y ⇒ αX + (1− α)Y � Y.

Here we first show that in fact in our framework convexity of preferences
proves to be equivalent to the meaningful property of preference for diver-
sification.

Proposition 4.1 Let � on V satisfying A.1, A.2 and A.3. Then, the fol-
lowing two assertions are equivalent:
(i) � exhibits preference for diversification.
(ii) � is convex.

For sake of completeness, let us prove this proposition.

Proof:
(ii) ⇒ (i)
Let Xi ∈ V, i = 1, 2, .., n such that X1 ∼ X2 ∼ ... ∼ Xn, and let us prove
that

∑n
i=1 αiXi � X1. The result is true for n = 2. Assume it holds true

for n ≥ 2, and let us show it is true for n + 1.
Let X1 ∼ X2 ∼ ... ∼ Xn ∼ Xn+1 and αi > 0, i = 1, 2, .., n+1,

∑n+1
i=1 αi = 1.

Define βi = αi
1−αn+1

, i = 1, 2, ..., n. From the hypothesis,
∑n

i=1 βiXi � X1.

Hence
∑n

i=1
αi

1−αn+1
Xi � Xn+1. Since� is convex, (1−αn+1)

∑n
i=1

αi
1−αn+1

Xi+
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αn+1Xn+1 � Xn+1. That is
∑n+1

i=1 αiXi � X1.

(i) ⇒ (ii)
What remains to be proved is that:

∀X, Y ∈ V and ∀α ∈ [0, 1] : X � Y ⇒ αX + (1− α)Y � Y.

It is enough to prove that E :=
{
α ∈ [0, 1] |Y � αX + (1− α)Y

}
is empty.

Assume that E 6= ∅ and let α0 = supE. Note that E 6= ∅ implies α0 > 0.
Take K compact set ⊂ R such that αX + (1− α)Y ∈ V(K), ∀α ∈ [0, 1]; by
compact continuity of � it comes that Y � α0X + (1− α0)Y.
Note that α0 = 1 is impossible. Furthermore Y � α0X + (1 − α)Y0 is im-
possible, since compact continuity of � implies that there exists 1 ≥ α > α0

such that Y � αX + (1 − α)Y . Therefore α0X + (1 − α)Y0 ∼ Y and (i)
entails :
βα0X + (1− βα0)Y � Y , ∀β ∈ [0, 1], hence αX + (1− α)Y � Y , ∀α < α0,
this implies E = ∅ a contradiction, which completes the proof.

Straightforwardly, one obtains:

Corollary 4.1 Let I be a preference functional representing � on V, satis-
fying A.1, A.2 and A.3.Then, the following two assertions are equivalent:
(i) � exhibits preference for diversification.
(ii) I is quasi-concave.

As an immediate consequence of theorem 4.2, we obtain the clear-cut result
that convexity of � or equivalently preference for diversification, implies
strong risk aversion.

Corollary 4.2 Let I be a preference functional on V, compact continuous
and respecting strict first order stochastic dominance, then I quasi-concave
implies I exhibits strong risk aversion.

This can be compared to what happens if the preference relation �P is de-
fined on the space P of probability distributions. As shown by Dekel [11]
(see his section 4), on P, on one hand preference for diversification does
not imply convexity of preferences �P and on the other hand convexity of
preferences does not imply preference for diversification.
More importantly, let us supplement Dekel’s results by showing that con-
vexity of the preference relation �P on P is not sufficient to ensure strong
risk aversion.
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Counter-Example 1: On P convex preferences relation �P do not im-
ply strong risk aversion.

Let g : R → R and v : R → R be continuous, increasing and respectively
concave and strictly convex.
Define V on P by: ∀F ∈ P, V (F ) = g(

∫
vdF ); that the preference on P is

continuous in the topology of weak convergence, consistent with first order
stochastic dominance and concave (hence quasi-concave) is immediate.
Let A ∈ A such that P (A) = 1

2 and consider X = 2.A∗ and Y = 2.A
∗, clearly

X =d Y , V (FX) = V (FY ) = g(1
2v(2) + 1

2v(0)) and V (F 1
2
X+ 1

2
Y ) = g(v(1)).

v strictly convex i.e. 1
2v(2)+1

2v(0) > v(1) and g increasing implies V (F 1
2
X+ 1

2
Y )

< V (FX) = V (FY ); thus �P contradicts strong diversification, therefore
from theorem 2, V or equally �P does not exhibit strong risk aversion.

Nevertheless, since Dekel’s definition of preference for diversification is ex-
pressed in the framework V of random variables, he already obtained with a
method suited to P that preference for diversification implies risk aversion.
Let us add that, Dekel [11] has shown by a counter-example, that there exist
non convex preferences �P on P continuous in the sense of weak topology
and respecting first order stochastic dominance, which do exhibit risk aver-
sion.
Note that a RDEU DM is strongly risk averse if and only if u is concave
and f convex, this result is due to Chew, Karni and Safra [8]. Particulary,
in Yaari theory, the strong risk aversion is equivalent to f convex. Clearly
such a RDEU functional is concave and one may wonder if in the more
tractable framework of random variables, strong risk aversion would not be
equivalent to convexity of preferences. This is not the case: even in the
framework of random variables, proposition 1 of Dekel [11] remains true,
i.e. there exist preferences which do exhibit risk aversion but do not ex-
hibit diversification. Hence the preference functional is not quasi-concave.
This might be derived directly using Proposition 1 of Dekel [11], and setting
I(X) = V (FX), ∀X ∈ V, where V is the preference functional of Dekel.
For sake of completeness, we juste give below a direct counter-example build-
ing upon our characterization of strong risk aversion in theorem 4.2.

Counter-Example 2: Strong risk aversion does not imply convex pref-
erences �.

Let u : R → R and f : R → R be continuous, strictly monotone and
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respectively concave and convex.
Define I on V by:

∀X ∈ V, I(X) =
∫

u(X)dP + f(
∫

XdP )

Let � be the preference relation induced on V by I. It is immediate to verify
that � satisfies axioms A.1, A.2 and A.3.
That � exhibits risk aversion, then follows straightforwardly from theorem
4.2, since the definition of I entails that � exhibits strong diversification.
It remains to show that it is possible to define such an I, which will not be
quasi-concave.
Consider X, Y belonging to V such that X = 4.A∗2 and X = A∗1 + 2.A∗2
where A1, A2 is a partition of S in A, and P (A1) = P (A2) = 1

2 .
Let u : R → R be a continuous and concave function such that :
u(0) = 0, u(1) = 1, u(2) = 3

2 , u(4) = 2 and u is linear on [0, 1], [1, 2] and [2, 4].
Let f : R → R be a convex differentiable function such that:
f

′
(2) = 2 and f(2)− f(3

2) = 1
4 .

Simple computations show that I(X) = I(Y ).
Let g defined by: ∀α ∈ [0, 1], g(α) = I(αY + (1− α)X).
One obtains that g

′
+(0) is well-defined.

g
′
+(0) = 1

2 [u
′
+(0) − 2u

′
−(4) − f

′
(2)] i.e. g

′
+(0) = 1

2(1 − 2.14 − 2) = −3
4 < 0,

hence there exists α∗ ∈ (0, 1) such that I(α∗Y +(1−α∗)X) < I(Y ), therefore
I is not quasi-concave.

5 Conclusion

This paper presents two mains results, the first one is a characterization of
weak risk aversion in terms of preference for sure diversification, a notion
previously introduced in [7] in the context of uncertainty, the second one is
a characterization of strong risk aversion in terms of a new (to the best of
our knowledge) and simple notion of preference for strong diversification i.e.
for diversification among two identically distributed assets.
These results are derived in the tractable framework of random variables,
which allows us to obtain the equivalence between quasi-concavity of the
preference functional and preference for diversification. The former result
differs from Dekel [11], who derives his results in the framework of probabil-
ity distributions, where such an equivalence does not hold. Moreover unlike
Dekel, quasi-concavity of our preference functional implies strong risk aver-
sion. On the other hand, two central results obtained by Dekel, remain ro-
bust when dealing with random variables instead of probability distributions:
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preference for diversification implies strong risk aversion, quasi-concavity of
the preference functional is not needed for exhibiting strong risk aversion.
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