Duality and optimal strategies in the finitely repeated zero-sum games with incomplete information on both sides

Bernard de Meyer, Alexandre Marino

To cite this version:

Bernard de Meyer, Alexandre Marino. Duality and optimal strategies in the finitely repeated zero-sum games with incomplete information on both sides. 2005. halshs-00193996

HAL Id: halshs-00193996
https://halshs.archives-ouvertes.fr/halshs-00193996

Submitted on 5 Dec 2007

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Duality and optimal strategies in the finitely repeated zero-sum games with incomplete information on both sides

Bernard De MEYER, CERMSEM
Alexandre MARINO, CERMSEM

2005.27
Abstract. The recursive formula for the value of the zero-sum repeated games with incomplete information on both sides is known for a long time. As it is explained in the paper, the usual proof of this formula is in a sense non constructive: it just claims that the players are unable to guarantee a better payoff than the one prescribed by the formula, but it does not indicates how the players can guarantee this amount.

In this paper we aim to give a constructive approach to this formula using duality techniques. This will allow us to recursively describe the optimal strategies in those games and to apply these results to games with infinite action spaces.

1. Introduction

This paper is devoted to the analysis of the optimal strategies in the repeated zero-sum game with incomplete information on both sides in the independent case. These games were introduced by Aumann, Maschler [1] and Stearns [7]. The model is described as follows: At an initial stage, nature chooses as pair of states \((k, l)\) in \((K \times L)\) with two independent probability distributions \(p, q\) on \(K\) and \(L\) respectively. Player 1 is then informed of \(k\) but not of \(l\) while, on the contrary, player 2 is informed of \(l\) but not of \(k\). To each pair \((k, l)\) corresponds a matrix \(A^l_k := [A^l_{k,j}^{i,j}]_{i,j}\) in \(\mathbb{R}^{I \times J}\), where \(I\) and \(J\) are the respective action sets of player 1 and 2, and the game \(A^l_k\) is the played during \(n\) consecutive rounds: at each stage \(m = 1, \ldots, n\), the players select simultaneously an action in their respective action set: \(i_m \in I\) for player 1 and \(j_m \in J\) for player 2. The pair \((i_m, j_m)\) is then publicly announced before proceeding to the next stage. At
the end of the game, player 2 pays $\sum_{m=1}^{n} A_{k, l, i_m}^{j_m}$ to player 1. The previous description is common knowledge to both players, including the probabilities p, q and the matrices A_{k}^{l}.

The game thus described is denoted $G_n(p, q)$.

Let us first consider the finite case where $K, L, I,$ and J are finite sets. For a finite set I, we denote by $\Delta(I)$ the set of probability distribution on I. We also denote by h_m the sequence $(i_1, j_1, \ldots, i_m, j_m)$ of moves up to stage m so that $h_m \in H_m := (I \times J)^m$.

A behavior strategy σ for player 1 in $G_n(p, q)$ is then a sequence $\sigma = (\sigma_1, \ldots, \sigma_n)$ where $\sigma_m : K \times H_{m-1} \rightarrow \Delta(I)$. $\sigma_m(k, h_{m-1})$ is the probability distribution used by player 1 to select his action at round m, given his previous observations (k, h_{m-1}). Similarly, a strategy τ for player 2 is a sequence $\tau = (\tau_1, \ldots, \tau_n)$ where $\tau_m : L \times H_{m-1} \rightarrow \Delta(J)$. A pair (σ, τ) of strategies, join to the initial probabilities (p, q) on the states of nature induces a probability $\Pi_{(p, q, \sigma, \tau)}^{n}$ on $(K \times L \times H_n)$. The payoff of player 1 in this game is then:

$$g_n(p, q, \sigma, \tau) := E_{\Pi_{(p, q, \sigma, \tau)}^{n}}[\sum_{m=1}^{n} A_{k, l, i_m}^{j_m}],$$

where the expectation is taken with respect to $\Pi_{(p, q, \sigma, \tau)}^{n}$. We will define $V_n(p, q)$ and $\bar{V}_n(p, q)$ as the best amounts guaranteed by player 1 and 2 respectively:

$$V_n(p, q) = \sup_{\sigma} \inf_{\tau} g_n(p, q, \sigma, \tau)$$

and

$$\bar{V}_n(p, q) = \inf_{\tau} \sup_{\sigma} g_n(p, q, \sigma, \tau)$$

The functions V_n and \bar{V}_n are continuous, concave in p and convex in q. They satisfy to $V_n(p, q) \leq \bar{V}_n(p, q)$. In the finite case, it is well known that, the game $G_n(p, q)$ has a value $V_n(p, q)$ which means that $V_n(p, q) = \bar{V}_n(p, q) = V_n(p, q)$. Furthermore both players have optimal behavior strategies σ^* and τ^*:

$$V_n(p, q) = \inf_{\tau} g_n(p, q, \sigma^*, \tau)$$

and

$$\bar{V}_n(p, q) = \sup_{\sigma} g_n(p, q, \sigma, \tau^*)$$

Let us now turn to the recursive structure of $G_n(p, q)$: a strategy $\sigma = (\sigma_1, \ldots, \sigma_{n+1})$ in $G_{n+1}(p, q)$ may be seen as a pair (σ_1, σ^+) where

$$\sigma^+ = (\sigma_2, \ldots, \sigma_{n+1})$$

is in fact a strategy in a game of length n depending on the first moves (i_1, j_1). Similarly, a strategy τ for player 2 is viewed as $\tau = (\tau_1, \tau^+)$.

Let us now consider the probability π (resp. λ) on $(K \times I)$ (resp. $(L \times J)$) induced by (p, σ_1) (resp. (q, τ_1)). Let us denote by s the marginal distribution of π on I and let p^i be the conditional probability on K given i. Similarly, let t the marginal distribution of λ on J and let q^j be the conditional probability on L given j.

The payoff \(g_{n+1}(p, q, \sigma, \tau) \) may then be computed as follows: the expectation of the first stage payoff is just \(g_1(p, q, \sigma_1, \tau_1) \). Conditioned on \(i_1, j_1 \), the expectation of the \(n \) following terms is just \(g_n(p^{i_1}, q^{j_1}, \sigma^+(i_1, j_1), \tau^+(i_1, j_1)) \). Therefore:

\[
g_{n+1}(p, q, \sigma, \tau) = g_1(p, q, \sigma_1, \tau_1) + \sum_{i_1, j_1} s_{i_1} t_{j_1} g_n(p^{i_1}, q^{j_1}, \sigma^+(i_1, j_1), \tau^+(i_1, j_1)).
\]

At a first glance, if \(\sigma, \tau \) are optimal in \(G_{n+1}(p, q) \), this formula suggests that \(\sigma^+(i_1, j_1) \) and \(\tau^+(i_1, j_1) \) should be optimal strategies in \(G_n(p^{i_1}, q^{j_1}) \), leading to the following recursive formula:

Theorem 1.1.

\[
V_{n+1} = T(V_n) = \overline{T}(V_n)
\]

with the recursive operators \(\overline{T} \) and \(\overline{T} \) defined as follows:

\[
\overline{T}(f)(p, q) = \sup_{\sigma} \inf_{\tau_1} \left\{ g_1(p, q, \sigma_1, \tau_1) + \sum_{i_1, j_1} s_{i_1} t_{j_1} f(p^{i_1}, q^{j_1}) \right\}
\]

\[
\overline{T}(f)(p, q) = \inf_{\tau_1} \sup_{\sigma} \left\{ g_1(p, q, \sigma_1, \tau_1) + \sum_{i_1, j_1} s_{i_1} t_{j_1} f(p^{i_1}, q^{j_1}) \right\}
\]

The usual proof of this theorem is as follows: When playing a best reply to a strategy \(\sigma \) of player 1 in \(G_{n+1}(p, q) \), player 2 is supposed to know the strategy \(\sigma_1 \). Since he is also aware of his own strategy \(\tau_1 \), he may compute both a posteriori \(p^{i_1} \) and \(q^{j_1} \). If he then plays \(\tau^+(i_1, j_1) \) a best reply in \(G_n(p^{i_1}, q^{j_1}) \) against \(\sigma^+(i_1, j_1) \), player 1 will get less than \(\overline{V}_n(p^{i_1}, q^{j_1}) \) in the \(n \) last stages of \(G_{n+1}(p, q) \). Since player 2 can still minimize the procedure on \(\tau_1 \), we conclude that the strategy \(\sigma \) of player 1 guarantees a payoff less than \(\overline{T}(V_n)(p, q) \). In other words, \(\overline{V}_{n+1} \leq \overline{T}(V_n) \). A symmetrical argument leads to \(\overline{V}_{n+1} \geq \overline{T}(V_n) \).

Next, observe that \(\forall f : \overline{T}(f) \geq T(f) \). So, using the fact that \(G_n \) has a value \(V_n \), we get:

\[
\overline{V}_{n+1} \geq \overline{T}(V_n) = \overline{T}(V_n) \geq T(V_n) = T(V_n) \geq V_{n+1}
\]

Since \(G_{n+1} \) has also a value: \(V_{n+1} = \overline{V}_{n+1} = \overline{V}_{n+1} \), the theorem is proved.

This proof of the recursive formula is by no way constructive: it just claims that player 1 is unable to guarantee more than \(\overline{T}(V_n)(p, q) \), but it does not provide a strategy of player 1 that guarantee this amount.

To explain this in other words, the only strategy built in the last proof is a reply \(\tau^\circ \) of player 2 to a given strategy of player 1. Let us call \(\tau^* \) this reply of player 2 to an optimal strategy \(\sigma^* \) of player 1. \(\tau^\circ \) is a best reply of player 2.
against \(\sigma^* \), but it could fail to be an optimal strategy of player 2. Indeed, it prescribes to play from the second stage on a strategy \(\tau^+(i_1, j_1) \) which is an optimal strategy in \(G_n(p^{*i_1}, q^{j_1}) \), where \(p^{*i_1} \) is the conditional probability on \(K \) given that player 1 has used \(\sigma^*_1 \) to select \(i_1 \). So, if player 1 deviates from \(\sigma^* \), the true a posteriori \(p^{*i_1} \) induced by the deviation may differ from \(p^{*i_1} \) and player 2 will still use the strategy \(\tau^+(i_1, j_1) \) which could fail to be optimal in \(G_n(p^{i_1}, q^{j_1}) \). So when playing against \(\tau^0 \), player 1 could have profitable deviations from \(\sigma^* \). \(\tau^0 \) would therefore not be an optimal strategy. An example of this kind, where player 2 has no optimal strategy based on the a posteriori \(p^{*i_1} \) is presented in exercise 4, in chapter 5 of [5].

An other problem with the previous proof is that it assumes that \(G_{n+1}(p, q) \) has a value. This is always the case for finite games. For games with infinite sets of actions however, it is tempting to deduce the existence of the value of \(G_{n+1}(p, q) \) from the existence of a value in \(G_n \), using the recursive structure. This is the way we proceed in [4]. This would be impossible with the argument in previous proof: we could only deduce that \(\bar{V}_{n+1} \geq \bar{T}(V_n) \geq \bar{T}(V_n) \geq V_{n+1} \), but we could not conclude to the equality \(\bar{V}_{n+1} = V_{n+1} \)!

Our aim in this paper is to provide optimal strategies in \(G_{n+1}(p, q) \). We will prove in theorem 3.2 that \(V_{n+1} \geq T(V_n) \) by providing a strategy of player 1 that guarantees this amount. Symmetrically, we provide a strategy of player 2 that guarantees him \(T(V_n) \), and so \(T(V_n) \geq V_{n+1} \).

Since in the finite case, we know by theorem 1.1 that \(T(V_n) = V_{n+1} = T(V_n) \), these strategies are optimal.

These results are also useful for games with infinite action sets: provide one can argue that \(T(V_n) = T(V_n) \), one deduces recursively the existence of the value for \(G_{n+1}(p, q) \), since

\[
(2) \quad T(V_n) = T(V_n) \geq \bar{V}_{n+1} \geq V_{n+1} \geq T(V_n) = T(V_n).
\]

Since our aim is to prepare the last section of the paper where we analyze the infinite action space games, where no general min-max theorem applies to guarantee the existence of \(V_n \), we will deal with the finite case as if \(\bar{V}_n \) and \(V_n \) were different functions. Even more, care will be taken in our proofs for the finite case to never use a "min-max" theorem that would not applies in the infinite case.

The dual games were introduced in [2] and [3] for games with incomplete information on one side to describe recursively the optimal strategies of the uninformed player. In games with incomplete information on both sides, both players are partially uninformed. We introduce the corresponding dual games in the next section.
2. The dual games

Let us first consider the amount guaranteed by a strategy \(\sigma \) of player 1 in \(G_n(p, q) \). With obvious notations, we get:

\[
\inf_{\tau} g_n(p, q, \sigma, \tau) = \inf_{\tau=(\tau^1, \ldots, \tau^L)} \sum_{l} q_l \cdot g_n(p, l, \sigma, \tau^l) = \sum_{l} q_l \cdot y_l(p, \sigma) = \langle q, y(p, \sigma) \rangle,
\]

where \(\langle \cdot, \cdot \rangle \) stands for the euclidean product in \(\mathbb{R}^L \), and

\[
y_l(p, \sigma) := \inf_{\tau^l} g_n(p, l, \sigma, \tau^l).
\]

The definition of \(V_n(p, q) \) indicates that \(\forall p, q : \langle q, y(p, \sigma) \rangle = \inf_{\tau} g_n(p, q, \sigma, \tau) \leq V_n(p, q) \), and the equality \(\langle q, y(p, \sigma) \rangle = V_n(p, q) \) holds if and only if \(\sigma \) is optimal in \(G_n(p, q) \). In particular, \(\langle q, y(p, \sigma) \rangle \) is then a tangent hyperplane at \(q \) of the convex function \(q \rightarrow V_n(p, q) \).

In the following \(\partial V_n(p, q) \) will denote the under-gradient at \(q \) of that function:

\[
\partial V_n(p, q) := \{ y | \forall q' : V_n(p, q') \geq V_n(p, q) + \langle q' - q, y \rangle \}
\]

Our previous discussion indicates that if \(\sigma \) is optimal in \(G_n(p, q) \), then \(y(p, \sigma) \in \partial V_n(p, q) \).

As it will appear in the next section, the relevant question to design recursively optimal strategies is as follows: given an affine functional \(f(q) = \langle y, q \rangle + \alpha \) such that

\[
\forall q : f(q) \leq V_n(p, q),
\]

is there a strategy \(\sigma \) such that

\[
\forall q : f(q) \leq \langle y(p, \sigma), q \rangle?
\]

To answer this question it is useful to consider the Fenchel transform in \(q \) of the convex function \(q \rightarrow V_n(p, q) \): For \(y \in \mathbb{R}^L \), we set:

\[
V^*_n(p, y) := \sup_{q} \langle q, y \rangle - V_n(p, q)
\]

As a supremum of convex functions, the function \(V^*_n \) is then convex in \((p, y) \) on \(\Delta(K) \times \mathbb{R}^L \).

For relation (3) to hold, one must then have \(\alpha \leq -V^*_n(p, y) \), so that \(\forall q : f(q) \leq \langle q, y \rangle - V^*_n(p, y) \).

The function \(V^*_n(p, y) \) is related the following dual game \(G^*_n(p, y) \): At the initial stage of this game, nature choses \(k \) with the lottery \(p \) and informs player 1. Contrarily to \(G_n(p, q) \), nature does not select \(l \), but \(l \) is chosen privately
by player 2. Then the game proceeds as in \(G_n(p, q) \), so that the strategies \(\sigma \) for player 1 are the same as in \(G_n(p, q) \). For player 2 however, a strategy in \(G^*_n(p, y) \) is a pair \((q, \tau)\), with \(q \in \Delta(L) \) and \(\tau \) a strategy in \(G_n(p, q) \). The payoff \(g^*_n(p, y, \sigma, (q, \tau)) \) paid by player 1 (the minimizer in \(G^*_n(p, y) \)) to player 2 is then

\[
g^*_n(p, y, \sigma, (q, \tau)) := \langle y, q \rangle - g_n(p, q, \sigma, \tau).
\]

Let us next define \(W_n(p, y) = \sup_{q, \tau} \inf_{\sigma} g^*_n(p, y, \sigma, (q, \tau)) \) and \(\overline{W}_n(p, y) = \inf_{\sigma} \sup_{q, \tau} g^*_n(p, y, \sigma, (q, \tau)) \).

We then have the following theorem:

Theorem 2.1. \(\overline{W}_n(p, y) = V^*_n(p, y) \) and \(W_n(p, y) = \underline{V}^*_n(p, y) \).

Proof: The following prove is designed to work with infinite action spaces: the "min-max" theorem used here is on vector payoffs instead of on strategies \(\sigma \). Let \(Y(p) \) be the convex set

\[
Y(p) := \{ y \in \mathbb{R}^L \mid \exists \sigma : \forall l : y_l \leq y_l(p, \sigma) \},
\]

and let \(\overline{Y}(p) \) be its closure in \(\mathbb{R}^L \). Then

\[
\underline{V}_n(p, q) = \sup_{\sigma} \langle y(p, \sigma), q \rangle = \sup_{y \in Y(p)} \langle y, q \rangle = \sup_{y \in \overline{Y}(p)} \langle y, q \rangle.
\]

Now

\[
\overline{W}_n(p, y) = \inf_{\sigma} \sup_{q} \left\{ \langle y, q \rangle - \inf_{\tau} g_n(p, q, \sigma, \tau) \right\} = \inf_{\sigma} \sup_{q} \langle y - y(p, \sigma), q \rangle
\]

Since any \(z \in Y(p) \) is dominated by some \(y(p, \sigma) \), we find

\[
\overline{W}_n(p, y) = \inf_{z \in \overline{Y}(p)} \sup_{q} \langle y - z, q \rangle = \inf_{z \in \overline{Y}(p)} \sup_{q} \langle y - z, q \rangle
\]

Next, we may apply the "min-max" theorem for a bilinear functional with two closed convex strategy spaces, one of which is compact, and we get thus

\[
\overline{W}_n(p, y) = \sup_{q} \inf_{z \in \overline{Y}(p)} \langle y - z, q \rangle = \sup_{q} \{ \langle y, q \rangle - \underline{V}_n(p, q) \} = \overline{V}^*_n(p, y)
\]

On the other hand,

\[
\overline{W}_n(p, y) = \sup_{q, \tau} \inf_{\sigma} \{ \langle y, q \rangle - g_n(p, q, \sigma, \tau) \}
\]

\[
= \sup_{q} \{ \langle y, q \rangle - \inf_{\tau} \sup_{\sigma} g_n(p, q, \sigma, \tau) \}
\]

\[
= \underline{V}^*_n(p, y)
\]

This concludes the proof. \(\blacksquare \)

We are now able to answer our previous question: Let \(\sigma \) be an optimal strategy of player 1 in \(G^*_n(p, y) \). Then, \(\forall q, \tau: \overline{W}_n(p, y) \geq \langle y, q \rangle - g_n(p, q, \sigma, \tau) \),
therefore, $\forall q$:
\[
\langle y(p, \sigma), q \rangle = \inf_{\tau} g_n(p, q, \sigma, \tau) \geq y(p, q) - V^*_n(p, q) \geq f(q).
\]

Let us finally remark that if, for some $q, y \in \partial V_n(p, q)$, then Fenchel lemma indicates that $V_n(p, q) = \langle y, q \rangle - V^*_n(p, y)$, and the above inequality indicates that σ guarantees $V^*_n(p, q)$ in $G_n(p, q)$:

Theorem 2.2. Let $y \in \partial V_n(p, q)$, and let σ be an optimal strategy of player 1 in $G^*_n(p, y)$. Then σ is optimal in $G_n(p, q)$.

This last result indicates how to get optimal strategies in the primal game, having optimal strategies in the dual one.

3. The primal recursive formula

Let us come back on formula (1). Suppose σ_1 is already fixed. Given an array $y_{i,j}$ of vectors in \mathbb{R}^L, player 1 may decide to play $\sigma^+(i_1, j_1)$ an optimal strategy in $G^*_n(p^{i_1}, y_{i_1,j_1})$. As indicates relation (5), for all strategy τ^+:
\[
g_n(p^{i_1}, q^{i_1}, \sigma^+(i_1, j_1), \tau^+(i_1, j_1)) \geq \langle y(p^{i_1}, \sigma^+(i_1, j_1)), q^{i_1} \rangle \geq \langle y_{i_1,j_1}, q^{i_1} \rangle - V^*_n(p^{i_1}, y_{i_1,j_1})
\]

and so, if $\bar{y}_j := \sum_i s_i y_{i,j}$, formula (1) gives:
\[
g_{n+1}(p, q, \sigma, \tau) \geq g_1(p, q, \sigma_1, \tau_1) + \sum_{j_1} t_{j_1} \langle \bar{y}_{j_1}, q^{i_1} \rangle - \sum_{j_1} t_{j_1} \sum_i s_i V_n^*(p^{i_1}, y_{i_1,j_1})
\]

We now have to indicate how player 1 will chose the array $y_{i,j}$. He will proceed in two steps: suppose \bar{y}_j is fixed, he has then advantage to pick the $y_{i,j}$ among the solutions of the following minimization problem $\Psi(p, \sigma_1, \bar{y}_j)$, where
\[
\Psi(p, \sigma_1, \bar{y}_j) := \inf_{y, \bar{y}_j} \sum_i s_i V^*_n(p^{i}, y_i)
\]

Lemma 3.1. Let f_{p,σ_1} be defined as the convex function
\[
f_{p,\sigma_1}(q) := \sum_i s_i V_n^*(p^{i}, q).
\]

Then the problem $\Psi(p, \sigma_1, \bar{y}_j)$ has optimal solutions and
\[
\Psi(p, \sigma_1, \bar{y}_j) = f^*_{p,\sigma_1}(\bar{y}_j).
\]

Proof: First of all observe that $\forall q : V^*_n(p^{i}, y_i) \geq \langle y_i, q \rangle - V_n(p^{i}, q)$, and thus $\Psi(p, \sigma_1, \bar{y}_j) \geq \langle \bar{y}, q \rangle - f_{p,\sigma_1}(q)$. This holds for all q, so $\Psi(p, \sigma_1, \bar{y}_j) \geq f^*_{p,\sigma_1}(\bar{y}_j)$.

On the other hand, let q^* be a solution of the maximization problem:
\[
\sup_q \langle \bar{y}, q \rangle - f_{p,\sigma_1}(q),
\]

which completes the proof.
then \(\overline{y} \in \partial f_{p,\sigma_1}(q^*) \). Now, the functions \(q \to V_n(p^i, q) \) are finite on \(\Delta(L) \), and we conclude with Theorem 23.8 in [6] that

\[
\partial f_{p,\sigma_1}(q^*) = \sum_i s_i \partial V_n(p^i, q^*).
\]

In particular, there exists \(y_j^* \in \partial V_n(p^i, q^*) \) such that \(\overline{y} = \sum_i s_i y_j^* \). Now observe that:

\[
\Psi(p, \sigma_1, \overline{y}) \leq \sum_i s_i V^*_n(p^i, y_j^*) = \sum_i s_i \{\langle y_j^*, q^* \rangle - V_n(p^i, q^*)\} = \langle \overline{y}, q^* \rangle - f_{p,\sigma_1}(q^*) = f_{p,\sigma_1}(\overline{y})
\]

So both formula (6) and the optimality of \(y_j^* \) are prooven.

Suppose thus that player one picks optimal \(y_{i,j} \) in the problem \(\Psi(p, \sigma_1, \overline{y}_j) \). He guarantees then:

\[
g_{n+1}(p, q, \sigma, \tau) \geq g_1(p, q, \sigma_1, \tau_1) + \sum_{j_1} t_{j_1} \langle \overline{y}_{j_1}, q^{j_1} \rangle - \sum_{j_1} t_{j_1} f^*_{p,\sigma_1}(\overline{y}_{j_1})
\]

Next let \(A_{p,\sigma_1}^j \) denote the \(L \)-dimensional with \(l \)-th component equal to

\[
A_{p,\sigma_1}^j := \sum_{k,i} p_{k\sigma_1,k,i} A_{k,i}^j.
\]

With this definition, we get \(g_1(p, q, \sigma_1, \tau_1) = \sum_{j_1} t_{j_1} \langle A_{p,\sigma_1}^j, q^{j_1} \rangle \). Therefore:

\[
g_{n+1}(p, q, \sigma, \tau) \geq \sum_{j_1} t_{j_1} \langle A_{p,\sigma_1}^j + \overline{y}_{j_1}, q^{j_1} \rangle - \sum_{j_1} t_{j_1} f^*_{p,\sigma_1}(\overline{y}_{j_1})
\]

Suppose next that player 1 picks \(y \in \mathbb{R}^L \), and plays \(\overline{y}_{j_1} := y - A_{p,\sigma_1}^j \). Since \(\sum_j t_j q^j = q \), the first sum in the last relation will then be independent of the strategy \(\tau_1 \) of player 2. It follows:

\[
g_{n+1}(p, q, \sigma, \tau) \geq \langle y, q \rangle - \sum_{j_1} t_{j_1} f^*_{p,\sigma_1}(y - A_{p,\sigma_1}^j)
\]

We will next prove that choosing appropriate \(\sigma_1 \) and \(y \), player 1 can guarantee \(T(V_n)(p, q) \):

\[
g_{n+1}(p, q, \sigma, \tau) \geq \langle y, q \rangle - \sup_{t, r \in \Delta(L)} \sum_{j_1} t_{j_1} f^*_{p,\sigma_1}(y - A_{p,\sigma_1}^j)
\]

Let \(\overline{t} \) denote \(\sum_{j_1} t_{j_1} r^{j_1} \). The maximization over \(t, r \) can be split in a maximization over \(\overline{t} \in \Delta(L) \) and then a maximization over \(t, r \) with the constraint \(\tau = \sum_{j_1} t_{j_1} r^{j_1} \). This last maximization is clearly equivalent to a maximization
over a strategy τ_1 of player 2 in $G_1(p, \tau)$, inducing a probability λ on $(J \times L)$, whose marginal on J is t and the conditional on L are the r^{ji}. In this way,

$$\sum_{j_1} t_{j_1}(A^{j_1}_{p,\sigma_1}, r^{j_1}) = g_1(p, \tau, \sigma_1, \tau_1),$$

and we get:

$$g_{n+1}(p, q, \sigma, \tau) \geq \inf_{\tau} \{(y, q - \tau) + H(p, \sigma, \tau)\}$$

Replacing now f_{p,σ_1} by its value, we get:

(9) $$H(p, \sigma_1, q) = \inf_{\tau_1} \left(g_1(p, q, \sigma_1, \tau_1) + \sum_{j_1} t_{j_1} V_n(p, q, \tau_1)\right)$$

Since player 1 can still maximize over σ_1, we just have proved that player 1 can guarantee

(10) $$\sup_{\sigma_1} H(p, \sigma_1, q)$$

proceeding as follows:

1. He first selects an optimal σ_1 in (10), that is, an optimal strategy in the problem $T(V_n)(p, q)$.
2. He then computes the function $r \rightarrow H(p, \sigma_1, r)$ and picks $y \in \partial H(p, \sigma_1, q)$.
3. He next defines y_j as $y_j = y - A^j_{p,\sigma_1}$ and finds optimal $y_{i,j}$ in the problem $\Psi(p, \sigma_1, y_j)$ as in the proof of lemma 3.1.
4. Finally, he selects $\sigma^+(i, j)$ an optimal strategy in $G^*_n(p, y_{i,j})$.

The next theorem is thus proved.

Theorem 3.2. With the above described strategy, player 1 guarantees $T(V_n)(p, q)$ in $G_{n+1}(p, q)$. Therefore: $V_{n+1}(p, q) \geq T(V_n)(p, q)$

The first part of the proof of theorem 1.1 indicates that $V_{n+1}(p, q) \leq T(V_n)(p, q)$, and this result will hold even for games with infinite action spaces: it uses no min-max argument. We may then conclude:

Corollary 3.3. $V_{n+1}(p, q) = T(V_n)(p, q)$ and the above described strategy is thus optimal in $G_{n+1}(p, q)$.

It just remains for us to prove the following lemma:

Lemma 3.4. The function $H(p, \sigma_1, \tau)$ is convex in τ.
Proof: Let us denote Δ_τ the set of probabilities λ on $(J \times L)$, whose marginal λ_L on L is τ. As mentioned above, a strategy τ_1, joint to τ, induces a probability λ in Δ_τ, and conversely, any such λ is induced by some τ_1.

Let next e_l be the l-th element of the canonical basis of \mathbb{R}^L. The mapping $e : l \rightarrow e_l$ is then a random vector on $(J \times L)$, and $r^{j_1} = E_{\lambda}[e|j_1]$. Similarly, the mapping $A_{p,\sigma_1} : (l,j_1) \rightarrow A_{p,\sigma_1}^{j_1}$ is a random variable and $E_{\lambda}[A_{p,\sigma_1}] = g_1(p,\tau,\sigma_1,\tau_1)$. We get therefore

$$H(p,\sigma_1,\tau) := \inf_{\lambda \in \Delta_\tau} E_{\lambda}[A_{p,\sigma_1} + f_{p,\sigma_1}(E_{\lambda}[e|j_1])].$$

Let now $\pi_0, \pi_1 \geq 0$, with $\pi_0 + \pi_1 = 1$, let $\bar{\pi}, \pi_1, \pi_\pi \in \Delta(L)$, with $\pi_\pi = \pi_1 \pi_1 + \pi_0 \pi_0$. Let $\lambda_u \in \Delta_{\pi_u},$ for $u \in \{0,1\}$. Then $\pi, \lambda_1, \lambda_0$ induce a probability μ on $((0,1) \times J \times L)$: first pick u at random in $\{0,1\}$, with probability π_1 of u being 1. Then, conditionally to u, use the lottery λ_u to select (j_1, l). The marginal λ_x of μ on $(J \times L)$ is obviously in Δ_{π_x}. Next observe that, due to Jensen’s inequality and the convexity of $f_{p,\sigma_1}:

$$\sum_u \pi_u E_{\lambda_u}[A_{p,\sigma_1} + f_{p,\sigma_1}(E_{\lambda_u}[e|j_1])] = E_{\mu}[A_{p,\sigma_1} + f_{p,\sigma_1}(E_{\mu}[e|j_1,u])] \geq E_{\mu}[A_{p,\sigma_1} + f_{p,\sigma_1}(E_{\mu}[e|j_1])] = E_{\lambda}[A_{p,\sigma_1} + f_{p,\sigma_1}(E_{\lambda}[e|j_1])] \geq H(p,\sigma_1,\bar{\pi}_u)$$

Minimizing the left hand side in λ_0 and λ_1, we obtain:

$$\sum_u \pi_u H(p,\sigma_1,\bar{\pi}_u) \geq H(p,\sigma_1,\bar{\pi}_\pi)$$

and the convexity is thus proved.

\[\blacksquare\]

4. The dual recursive structure

The construction of the optimal strategy in $G_{n+1}(p,q)$ of last section is not completely satisfactory: the procedure ends up in point 4) by selecting optimal strategies in the dual game $G^*_n(p,y_{i,j})$ but it does not explain how to construct such strategies. The purpose of this section is to construct recursively optimal strategies in the dual game. It turns out that this construction will be "self-contained" and truly recursive: finding optimal strategies in G^*_{n+1} will end up in finding optimal strategies in G^*_n.

Given σ_1, let us consider the following strategy $\sigma = (\sigma_1,\sigma^+) \in G^*_{n+1}(p,y)$: player 1 sets $y_{j_1} = y - A^j_{p,\sigma_1}$ and finds optimal $y_{i,j}$ in the problem $\Psi(p,\sigma_1,y_{j_1})$ as in the proof of lemma 3.1. He then plays $\sigma^+(i_1,j_1)$ an optimal strategy in $G^*_n(p,y_{i_1,j_1})$. This is exactly what we prescribed for player 1 in the beginning
of last section. In particular, this strategy was not depending on \(q \) in the last section, so that inequality (8) holds for all \(q, \tau \):

\[
\sup_{j_i} f^*_{p, \sigma_1}(y - A_{p, \sigma_1}^{j_i}) \geq \langle y, q \rangle - g_{n+1}(p, q, \sigma, \tau) = g^*_{n+1}(p, y, \sigma, (q, \tau))
\]

So, with lemma 3.1, and the definition of \(\Psi \).

\[
g^*_{n+1}(p, y, \sigma, (q, \tau)) \leq \sup_{j_i} f^*_{p, \sigma_1}(y - A_{p, \sigma_1}^{j_i})
= \sup_{j_i} \Psi(p, \sigma_1, y - A_{p, \sigma_1}^{j_i})
= \sup_{j_i} \left[\inf_{y_i; \sum s_i y_i = y - A_{p, \sigma_1}^{j_i}} \sum s_i V^*_n(p^i, y_i) \right]
= \inf_{y_i; \sum s_i y_i = y - A_{p, \sigma_1}^{j_i}} \sup_{j_i} \sum s_i V^*_n(p^i, y_i, j_i)
\]

Notice that there is no "min-max" theorem needed to derive the last equation: We just allowed the variables \(y_i \) to depend on \(j_1 \): the new variables are \(y_{i,j} \).

With theorem 2.1, \(V^*_n(p^i, y_{i,j}) = W^*_n(p^i, y_{i,j}) \). It is next convenient to define

\[
m_{i,j} := y_{i,j} - y + A_{p, \sigma_1}^{j_i},
\]

so that \(\sum_i s_i m_{i,j} = 0 \), and to take \(m_{i,j} \) as minimization variables:

\[
g^*_{n+1}(p, y, \sigma, (q, \tau)) \leq \inf_{m_{i,j}; \sum s_i m_{i,j} = 0} \sup_{j_1} \sum s_i W^*_n(p^i, y - A_{p, \sigma_1}^{j_i} + m_{i,j})
\]

Let still player 1 minimize this procedure over \(\sigma_1 \). It follows:

Theorem 4.1. The above defined strategy \(\sigma \) guarantees \(T^*(W_n)(p, y) \) to player 1 in \(G_{n+1}^*(p, y) \), where, for a convex function \(W \) on \((\Delta(K) \times \mathbb{R}^k) \):

\[
T^*(W)(p, y) := \inf_{\sigma_1} \sup_{m_{i,j}; \sum s_i m_{i,j} = 0} \sum s_i W(p^i, y - A_{p, \sigma_1}^{j_i} + m_{i,j}).
\]

In particular: \(W^*_{n+1}(p, y) \leq T^*(W_n)(p, y) \)

We next will prove the following corollary:

Corollary 4.2. \(W^*_{n+1}(p, y) = T^*(W_n)(p, y) \) and the strategy \(\sigma \) is thus optimal in \(G_{n+1}^*(p, y) \).

Proof: If player 1 uses as strategy \(\sigma = (\sigma_1, \sigma^+) \) in \(G_{n+1}^*(p, y) \), player 2 may reply the following strategy \((q, \tau)\), with \(\tau = (\tau_1, \tau^+) \): for a given choice of \(q, \tau_1 \), he computes the a posteriori \(p_i^+, q_i^+ \) and plays a best reply \(\tau^+(i_1, j_1) \) against \(\sigma^+(i_1, j_1) \) in \(G_n(p^i, q^j) \). Since

\[
g_n(p^i, q^j, \sigma^+(i_1, j_1), \tau^+(i_1, j_1)) \leq V_n(p^i, q^j),
\]

we get

\[
g^*_n(p, y, \sigma, (q, \tau)) \geq \langle y, q \rangle - g_1(p, q, \sigma_1, \tau_1) - \sum_{i,j} s_i t_{i,j} V_n(p^i, q^j)
= \sum_{j_i} t_{j_i} (\langle y - A_{p, \sigma_1}^{j_i}, q^j \rangle - \sum_i s_i V_n(p^i, q^j))
\]
The reply \((q, \tau)\) of player 2 we will consider is that corresponding to the choice of \(q, \tau_1\) maximizing this last quantity. This turns out to be a maximization over the joint law \(\lambda\) on \((J \times L)\). In turn, it is equivalent to a maximization \((t, q^i)\), without any constraint on \(\sum_{j} t_j q^i_j\). So:

\[
g^*_n(p, y, \sigma, (q, \tau)) \geq \sup_t \sum_{j} t_j \sup_{q^i_1} \left((y - A^{j_1}_{t, \sigma_1}, q^i_1) - \sum_{i_1} s_{i_1} V_n(p^{i_1}, q^i_1) \right) = \sup_{j_1} f^*_n(y - A^{j_1}_{t, \sigma_1}).
\]

We then derive as in equations (11) and (12) that

\[
\sup_{j_1} f^*_n(y - A^{j_1}_{t, \sigma_1}) = \inf_{m_{i_1, j_1}} \sup_{\sum_{i_1} s_{i_1, m_{i_1, j_1} = 0}} \sum_{i_1} s_{i_1} \overline{W}_n(p^{i_1}, y - A^{j_1}_{t, \sigma_1} + m_{i_1, j_1}) \geq \overline{T}^* (\overline{W}_n)(p, y)
\]

So, with no strategy, player 1 will be able to guarantee a better payoff in \(G^*_{n+1}(y, p)\) than \(\overline{T}^* (\overline{W}_n)(p, y)\), and the corollary is proved.

We thus gave a recursive procedure to construct optimal strategies in the dual game. Now, instead of using the construction of the previous section to play optimally in \(G^*_{n+1}(p, q)\), player 1 can use theorem 2.2: He picks \(y \in \partial V^*_n(p, q)\), and then plays optimally in \(G^*_{n+1}(p, y)\), with the recursive procedure introduced in this section.

5. Games with infinite action spaces

In this section, we generalize the previous results to games where \(I\) and \(J\) are infinite sets. \(K\) and \(L\) are still finite sets. The sets \(I\) and \(J\) are then equipped with \(\sigma\)-algebras \(\mathcal{I}\) and \(\mathcal{J}\) respectively. We will assume that \(\forall k, l\), the mapping \((i, j) \rightarrow A^{k, j}_{i, \sigma_i}\) is bounded and measurable on \((\mathcal{I} \otimes \mathcal{J})\). The natural \(\sigma\)-algebra on the set of histories \(H_m\) is then \(\mathcal{H}_m := (\mathcal{I} \otimes \mathcal{J})^\times m\). A behavior strategy \(\sigma\) for player 1 in \(G_n(p, q)\) is then a n-uple \((\sigma_1, \ldots, \sigma_n)\) of transition probabilities \(\sigma_m\) from \(K \times H_{m-1}\) to \(I\) which means: \(\sigma_m : (k, h_{m-1}, A) \in (K \times H_{m-1} \times \mathcal{I}) \rightarrow \sigma_m(k, h_{m-1}, A) \in [0, 1]\) satifying \(\forall k, h_{m-1}, \sigma_m(k, h_{m-1}, \cdot)\) is a probability measure on \((I, \mathcal{I})\), and \(\forall k, A, \sigma_m(k, h_{m-1}, \cdot)\) is \(\mathcal{H}_m\) measurable. A strategy of player 2 is defined in a similar way. To each \((p, q, \sigma, \tau)\) corresponds a unique probability measure \(\Pi^\circ_{n(p, q, \sigma, \tau)}\) on \((K \times L \times H_n, \mathcal{P}(K) \otimes \mathcal{P}(L) \otimes \mathcal{H}_n)\).

Since the payoff map \(A^{k, j}_{i, \sigma_i}\) is bounded and measurable, we are allowed to define \(g_n(p, q, \sigma, \tau) := E_{\Pi^\circ_{n(p, q, \sigma, \tau)}}[\sum_{m=1}^n A^{k, j_{m}}_{i, \sigma_i}].\) The definitions of \(V_n, \overline{V}_n, \overline{W}_n\) and \(\overline{W}_n\) are thus exactly the same as in the finite case, and the a posteriori \(p^{i_1}\) and \(q^{i_1}\) are defined as the conditional probabilities of \(\Pi^\circ_{n(p, q, \sigma, \tau)}\) on \(K\) and \(L\) given \(i_1\) and \(j_1\). The sums in the definition of the recursive operators \(\overline{T}\) and \(\overline{F}\) are to be replaced by expectations:

\[
\overline{T}(f)(p, q) = \sup_{\sigma_1} \inf_{\tau_1} \left\{ g_1(p, q, \sigma_1, \tau_1) + E_{\Pi^\circ_{n(p, q, \sigma_1, \tau_1)}}[f(p^{i_1}, q^{i_1})] \right\}
\]
Let V denote the set of Lipschitz functions $f(p, q)$ on $\Delta(K) \times \Delta(L)$ that are concave in p and convex in q. The result we aim to prove in this section is the next theorem. For all $V \in V$ such that $V_n > V$, we will provide strategies of player 1 that guarantee him $T(V)$.

Theorem 5.1. If $V_n \geq V$, where $V \in V$, then $V_{n+1} \geq T(V)$.

Proof: Since $\forall \epsilon > 0$, $T(V - \epsilon) = T(V) - \epsilon$, it is sufficient to prove the result for $V < V_n$. In this case, we also have $\forall p, y$: $V^*(p, y) > \int V_n(p, y) = \mathbb{W}_n(p, y)$.

In the infinite games, optimal strategies may fail to exist. However, due to the strict inequality, $\forall p, y$, there must exist a strategy $\sigma^+_{p, y}$ in $G^*_n(p, y)$ that guarantees strictly less than $V^*(p, y)$ to player 1. Since the payoffs map $A^l_{k,i}$ is bounded and V^* is continuous, the set $O(p, y)$ of $(p', y') \in \Delta(K) \times \mathbb{R}^L$ such that $\sigma^+_{p, y}$ guarantees $V^*(p', y')$ in $G^*_n(p', y')$ is a neighborhood of (p, y). There exists therefore a sequence $\{ (p_m, y_m) \}_{m \in \mathbb{N}}$ such that $\cup_m O(p_m, y_m) = \Delta(K) \times \mathbb{R}^L$. The map $(p, y) \to \sigma^+(p, y)$ defined as $\sigma^+(p, y) := \sigma^+_{p_m, y_m}$, where m^* is the smallest integer m with $(p, y) \in O(p_m, y_m)$ satisfies then

- for all ℓ, the map $(p, y) \to \sigma^+_{\ell}(p, y)(k, h_{\ell-1})$ is a transition probability from $(\Delta(K) \times \mathbb{R}^L) \times K \times H_{\ell-1}$ to I.
- $\forall p, y$: $\sigma^+(p, y)$ guarantees $V^*(p, y)$ to player 1 in $G^*_n(p, y)$.

The argument of section 3 can now be adapted to this setting: Given a first stage strategy σ_1 and a measurable mapping $y: (i_1, j_1) \to y_{i_1, j_1} \in \mathbb{R}^L$, player 1 may decide to play $\sigma^+(p^{i_1}, y_{i_1, j_1})$ from stage 2 on in $G_{n+1}(p, q)$. Since $\sigma^+(p, y)$ guarantees $V^*(p, y)$ to player 1 in $G^*_n(p, y)$, we get

$$g_n(p^{i_1}, q^{j_1}, \sigma^+(i_1, j_1), \tau^+(i_1, j_1)) \geq \langle y_{i_1, j_1}, q^{j_1} \rangle - V^*(p^{i_1}, y_{i_1, j_1}).$$

Let s and t denote the marginal distribution of i_1 and j_1 under $\Pi^1_{(p, q, \sigma_1, \tau_1)}$. In the following $E_s[\cdot]$ and $E_t[\cdot]$ are short hand writings for $\int_{i_1} ds(i_1)$ and $\int_{j_1} dt(j_1)$. If $\bar{y}_{j_1} := E_s[y_{i_1, j_1}]$, formula (1) gives:

$$g_{n+1}(p, q, \sigma, \tau) \geq g_1(p, q, \sigma_1, \tau_1) + E_t [\langle \bar{y}_{j_1}, q^{j_1} \rangle - E_s[V^*(p^{i_1}, y_{i_1, j_1})]].$$

As in section 3, player 1 would have advantage to choose $i_1 \to y_{i_1, j_1}$ optimal in the problem $\Psi(p, \sigma_1, \bar{y}_{j_1})$, where

$$\Psi(p, \sigma_1, \bar{y}) := \inf_{y: \bar{y} = E_s[y_{i_1}]} E_s[V^*(p^{i_1}, y_{i_1})]$$

Lemma 3.1 also holds in this setting, with $f_{p, \sigma_1}(q) := E_s[V^*(p^{i_1}, q)]$. The only difficulty to adapt the prove of section 3 is to generalize equation (7). With the Lipschitz property of V, we prove in theorem 5.3 that there exists a measurable mapping $y: i \to \mathbb{R}^L$ satisfying $E_s[y_{i_1}] = \bar{y}$ and for s-a.e i_1: $y_{i_1} \in \partial V(p^{i_1}, q^*)$. We get in this way $\Psi(p, \sigma_1, \bar{y}) = f^*_{p, \sigma_1}(\bar{y})$.
We next prove that for all measurable map \(\overline{y} : j_1 \to \overline{y}_{j_1}, \forall \epsilon > 0 \), there exists a measurable array \(y : (i_1, j_1) \to y_{i_1,j_1} \) such that \(\forall j_1 : E_s[y_{i_1,j_1}] = \overline{y}_{j_1} \) and

\[
\forall j_1 : E_s[V^*(p^{i_1}, y_{i_1,j_1})] \leq f_{p,\sigma_1}^*(\overline{y}_{j_1}) + \epsilon
\]

(13)

The function \(f_{p,\sigma_1}^* \) is Lipschitz, and we may therefore consider a triangulation of \(\mathbb{R}^L \) in a countable number of \(L \)-dimensional simplices with small enough diameter to insure that the linear interpolation \(\overline{f}_{p,\sigma_1}^* \) of \(f_{p,\sigma_1}^* \) at the extreme points of a simplex \(S \) satisfies \(\overline{f}_{p,\sigma_1}^* \leq f_{p,\sigma_1}^* + \epsilon \) on the interior of \(S \). We define then \(y(\overline{y}, i) \) on \(S \times I \) as the linear interpolation on \(S \) of optimal solutions of \(\Psi(p, \sigma_1, \overline{y}) \) at the extreme points of the simplex \(S \). Obviously \(E_s[y(\overline{y}, i_1)] = \overline{y} \), and, due to the convexity of \(V^* \), we get \(E_s[V^*(p^{i_1}, y(\overline{y}, i_1))] \leq f_{p,\sigma_1}^*(\overline{y}) \). The array \(y_{i_1,j_1} := y(\overline{y}_{j_1}, i_1) \) will then satisfy (13).

With such arrays \(y \), Player 1 guarantees up to an arbitrarily small \(\epsilon \):

\[
\inf_{\tau_1} g_1(p, q, \sigma_1, \tau_1) + E_t \left[(\overline{y}_{j_1}, q^{j_1}) - f_{p,\sigma_1}^*(\overline{y}_{j_1}) \right]
\]

The proof next follows exactly as in section 3, replacing summations by expectations.

As announced in the introduction, the last theorem has a corollary:

Corollary 5.2. If \(\forall V \in \mathcal{V} : \overline{T}(V) = T(V) \in \mathcal{V} \), then, \(\forall n, p, q \), the game \(G_n(p, q) \) has a value \(V_n(p, q) \), and \(V_{n+1} = \overline{T}(V_n) \in \mathcal{V} \).

Proof: The proof just consists of equation (2).

It remains for us to prove the next theorem:

Theorem 5.3. Let \((\Omega, \mathcal{A}, \mu) \) be probability space, let \(U \) be a convex subset of \(\mathbb{R}^L \), let \(f \) be a function \(\Omega \times U \to \mathbb{R} \) satisfying

- \(\forall \omega : \) the mapping \(q \to f(\omega, q) \) is convex.
- \(\exists M : \forall q, q', \omega : |f(\omega, q) - f(\omega, q')| \leq M|q - q'| \).
- \(\forall q : \) the mapping \(\omega \to f(\omega, q) \) is in \(L^1(\Omega, \mathcal{A}, \mu) \).

The function \(f_\mu(q) := E_\mu[f(\omega, q)] \) is then clearly convex and \(M \)-Lipschitz in \(q \). Let next \(\overline{y} \in \partial f_\mu(q_0) \).

Then there exists a measurable map \(y : \Omega \to \mathbb{R}^L \) such that

1) for \(\mu \)-a.e. \(\omega : y(\omega) \in \partial f(\omega, q_0) \).
2) \(\overline{y} = E_\mu[y(\omega)] \)

Proof: Using a translation, there is no loss of generality to assume \(q_0 = 0 \in U \).

Then, considering the mapping \(g(\omega, q) := f(\omega, q) - f(\omega, 0) - \langle \overline{y}, q \rangle \), and the corresponding \(g_\mu(q) := E_\mu[g(\omega, q)] \), we get \(\forall \omega : g(\omega, 0) = 0 = g_\mu(0) \) and \(\forall q : g_\mu(q) \geq 0 \).
Let S denote the set of (α, X) where α and X are respectively \mathbb{R}- and \mathbb{R}^L-valued mappings in $L^1(\Omega, \mathcal{A}, \mu)$. Let us then define

$$\mathcal{R} := \{(\alpha, X) \in S | E_\mu[\alpha(\omega)] > E_\mu[g(\omega, X(\omega))]\}$$

Our hypotheses on f imply in particular that the map $\omega \mapsto g(\omega, X(\omega))$ is \mathcal{A}-measurable and in $L^1(\Omega, \mathcal{A}, \mu)$. Furthermore the map $X \mapsto E_\mu[g(\omega, X(\omega))]$ is continuous for the L^1-norm, so that \mathcal{R} is an open convex subset of S.

Let us next define the linear space T as:

$$T := \{(\alpha, X) \in S | E_\mu[\alpha(\omega)] = 0, \text{ and } \exists \bar{x} \in \mathbb{R}^L \text{ such that } \mu \text{-a.s. } X(\omega) = \bar{x}\}.$$

Now observe that $\mathcal{R} \cap T = \emptyset$. Would indeed (α, X) belong to $\mathcal{R} \cap T$, we would have μ-a.s. $X(\omega) = \bar{x}$, and $0 = E_\mu[\alpha(\omega)] > E_\mu[g(\omega, X(\omega))] = g_\mu(\bar{x}) \geq 0$.

There must therefore exist a linear functional ϕ on S such that

$$\phi(\mathcal{R}) > 0 = \phi(T).$$

Since the dual of L^1 is L^∞, there must exist a \mathbb{R}-valued λ and a \mathbb{R}^L-valued Z in $L^\infty(\Omega, \mathcal{A}, \mu)$ such that

$$\forall (\alpha, X) \in S : \phi(\alpha, X) = E_\mu[\lambda(\omega)\alpha(\omega) - \langle Z(\omega), X(\omega) \rangle].$$

From $0 = \phi(T)$, it is easy to derive that $E_\mu[Z(\omega)] = 0$ and that $\exists \bar{\lambda} \in \mathbb{R}$ such that μ-a.s. $\lambda(\omega) = \bar{\lambda}$.

Next, $\forall \epsilon > 0, \forall X \in L^1(\Omega, \mathcal{A}, \mu)$, the pair (α, X) belongs to \mathcal{R}, where $\alpha(\omega) := g(\omega, X(\omega)) + \epsilon$. So, $\phi(\mathcal{R}) > 0$ with $X \equiv 0$, implies in particular $\bar{\lambda} > 0$, and ϕ may be normalized so as to take $\bar{\lambda} = 1$. Finally, we get $\forall \epsilon > 0, \forall X \in L^1(\Omega, \mathcal{A}, \mu)$:

$E_\mu[g(\omega, X(\omega))] + \epsilon > E_\mu[\langle Z(\omega), X(\omega) \rangle]$ and thus, $\forall X \in L^1(\Omega, \mathcal{A}, \mu)$:

$E_\mu[g(\omega, X(\omega))] \geq E_\mu[\langle Z(\omega), X(\omega) \rangle]$.

For $A \in \mathcal{A}$ and $x \in \mathbb{R}^L$, we may apply the last inequality to $X(\omega) := \mathbb{I}_A(\omega)x$, and we get:

$E_\mu[\mathbb{I}_A g(\omega, x)] \geq E_\mu[\mathbb{I}_A (Z(\omega), x)]$. Therefore, for all $x \in \mathbb{R}^L$:

$\mu(\Omega_x) = 1$, where $\Omega_x = \{\omega \in \Omega : g(\omega, x) \geq \langle Z(\omega), x \rangle\}$. So, if $\Omega' := \cap_{x \in Q^L} \Omega_x$, we get $\mu(\Omega') = 1$, since Q^L is a countable set, and $\forall \omega \in \Omega'$, $\forall x \in Q^L$:

$g(\omega, x) \geq \langle Z(\omega), x \rangle$. Due to the continuity of $g(\cdot, \cdot)$, the last inequality holds in fact for all $\forall x \in \mathbb{R}^L$, so that $\forall \omega \in \Omega' : Z(\omega) \in \partial g(\omega, 0)$.

Hence, if we define $y(\omega) := \bar{y} + Z(\omega)$, we get μ-a.s.: $y(\omega) \in \partial f(\omega, 0)$ and $E_\mu[y(\omega)] = \bar{y} + E_\mu[Z(\omega)] = \bar{y}$. This concludes the proof of the theorem.

References

