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Abstract

In this paper, we analyze the possible confusion in terms of long mem-

ory behavior of the autocorrelation function of a Markov switching

model. Such a model is known to have a short memory behavior. An-

alyzing the value of sum of the transition probabilities and the number

of switches inside such a model, we show their impact to create long

memory. The ability of the true Markov switching model to predict

is compared with the forecasts obtained from a long memory process

adjusted on data derived from the former model. It is shown that, in

certain cases, this spurious long memory behavior can be benefit to get

better forecasts.
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1 Introduction

From a long time, structural breaks have been observed in many economic

and financial time series. Recently, a huge literature proposing models ca-

pable to capture existence of changes’ structure has been developed. One of

the most popular models able to take into account sudden changes in times

series being the Markov Switching model introduced by Hamilton (1988).

Nevertheless, other competitive models have also been developed, see for

instance Granger and Terasvirta (1999), Diebold and Inoue (2001), Breidt

and Hsu (2002) or Granger and Hyung (2004). All these models point out

the fact that they can exhibit also long memory in covariance sense or in

Allan’s sense (Allan, 1966) with respect to specific assumptions on their pa-

rameters or only through simulations, see Guégan (2004) for some review

on this kind of situation. Or one of the characteristic of these different

models is the quick decay of their autocorrelation function, which implies

a short memory behavior and thus a good capability to predict for short

term prediction and a bad performance for the long term forecast predic-

tion. Thus, if it is possible to observe a slow decay of the autocorrelation

for these models although they are short memory, some confusion can arise

in terms of modelling. The possible confusion between long memory and

existence of jumps inside models with short memory behavior stands in the

fact that a slow decay of the empirical autocorrelation function would not

necessarily indicate the presence of long memory, but might be due to breaks.

This long memory behavior property in the data due to structural breaks or

regime switches is called "spurious long memory" in some papers. Diebold

and Inoue (2001), in their paper mention that it is the case for the switching

model if we impose some specific assumptions on the transition probabilities.
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We consider, in this paper a particular Markov switching model and we

show, without specific assumptions on the transition probabilities related to

the size of the sample, that through the simulations this model exhibits a

long memory behavior in the covariance sense and can be confused with a

FI(d) model (see Granger and Joyeux, 1980 and Hosking, 1981) in terms of

modelling. But we will see also that this confusion is not as prejudicial as

we can think because, in certain cases that we specific latter, the forecasts

are better using the spurious model in place of the true model.

To illustrate our approach, we investigate the sum of the transition probabil-

ities and the occurrence in states changes. Our intuition is that according to

the means values and the sum of the transition probabilities, we can observe

different behaviors of the autocorrelation function. We also think that the

more the process switches from one state to the other, the more the decay of

the autocorrelation function becomes quick. In our simulations, we increase

the number of times for which the series changes from one state to the other

through a panel of transition probabilities in order to check those ideas.

The paper is organized as follows. Section 2 introduces the models explored

in the paper and recalls some properties of these models. In Section 3,

through a simulation experiment, we analyze graphically the autocorrelation

functions’ behavior in order to detect when this Markov switching model

exhibits short or long memory. In Section 4, we adjust a FI(d) process to the

previous simulated Markov switching processes and analyze the estimations

obtained for the long memory parameter d. In Section 5, we compare the

forecast performance of the estimated FI(d) model and the true Markov

switching model. Section 6 concludes.
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2 Real or spurious long memory?

As we specify in the introduction, it has been observed that stationary mod-

els with jumps or specific states which are theoretically short memory in

covariance sense can exhibit long memory. Here, to illustrate this situation,

we use a simple Markov switching model and we analyze the role of its differ-

ent parameters to create long memory behavior. In this Section, we specify

the notion of long memory we consider and the model with which we work

all along this paper.

There exist different criteria to define the existence of long memory behavior

inside real data, see Guégan (2004) for a survey. The definition we use here

characterizes the long memory behavior in terms of asymptotic decay of the

autocorrelation function.

Definition 1 Let (Xt)t be a stationary process for which the following holds:

there exists a real number d ∈]0, 1/2[ and a constant C > 0 such that the

autocorrelation function Γ(h) satisfies

lim
h→∞

Γ(h) = Ch2d−1.

Then (Xt)t is a stationary process with a long memory behavior in covari-

ance.

The autocorrelation function of such a process (Xt)t has an asymptotic hy-

perbolic decay. Empirically it is very difficult to observe such asymptotic

decay, thus in this article, for convenience and because we work with fi-

nite samples, we assume that if a process has an empirical autocorrelation

function Γ̂X(h), for which Γ̂X(h) 6= 0 ∀h > 10, then the series has a long

memory behavior, otherwise, we assume that it has a short memory behavior.
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Now we specify the Markov switching model under study. Let (Xt)t the

process defined by the following equation, ∀t:

Xt =





µ1 + εt if st = 1,

µ2 + εt if st = 2.
(1)

In the model (1), there exist two states in level which represent expansion and

recession for instance in a time series. The process (st)t is an hidden ergodic

Markov chain, characterized by its transition matrix P , whose elements are

the fixed transition probabilities pij , defined ∀i, j = 1, 2, by:

pij = P [st = j|st−1 = i], 0 ≤ pij ≤ 1,
2∑

i,j=1

pij = 1. (2)

The process (Xt)t switches from level µ1 to level µ2 with respect to this

Markov chain. The process (εt)t in (1) is a centered Gaussian strong white

noise with variance one, independent of the Markov chain (st)t. The autocor-

relation function of the Markov switching process (1) decreases exponentially

towards zero. Indeed:

Lemma 1 The autocorrelation function Γ(h) of the process (Xt)t defined by

(1) is equal to, ∀h:

Γ(h) =
(µ1 − µ2)

2(1 − p11)(1 − p22)ρ
h

(2 − p11 − p22)2[π1µ2
1 + π2µ2

2 + 1 − (π1µ1 + π2µ2)2]
, (3)

where

ρ = −1 + p11 + p22, (4)

and, π1 = 1−p22

2−p11−p22
and π2 = 1−p11

2−p11−p22
are the non conditional probabilities.

The autocorrelation function Γ(h), can be rewritten as:

Γ(h) = Cµi,pii
ρh, i = 1, 2,
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with

Cµi,pii
=

(µ1 − µ2)
2(1 − p11)(1 − p22)

(2 − p11 − p22)2[π1µ2
1 + π2µ2

2 + 1 − (π1µ1 + π2µ2)2]
, i = 1, 2.

Thus, the autocorrelation function’s decay of the model (1) depends on the

means levels µi and the transition probabilities pii, i = 1, 2. Its convergence’s

rate is in ρh = (−1 + p11 + p22)
h and ρ varies between -1 and 1 according

to the values of the transition probabilities pii, i = 1, 2. Thus, in case of

two high transition probabilities, ρ is close to 1, and the autocorrelation

function decreases slowly. When p11 + p22 is close to 1, the decay of the

autocorrelation function is quicker because ρ is close to 0: this situation can

arise even if the two transition probabilities are weak. Now, it is important

to remark that the values chosen for the transition probabilities pii influence

the number nst
of changes inside the two states: this is this number which

influences the behavior of the autocorrelation function. It does not exist

a fairly relationship between this number and the transition probabilities,

so in order to understand this link we are going to make some simulations

making varying the pii and thus the nst
, inside the model (1). This will

permit us to determine some range of values for which the long memory

behavior is observed. Then, we will measure this behavior adjusting a long

memory process on the simulated data and we will compare the forecasting

performances both from the true Markov switching and the estimated long

memory process.

3 How to create a long memory behavior from the

model (1) ?

In order to investigate the autocorrelation function’s behavior of simulated

Markov switching processes such (1), we make varying the transition prob-
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abilities pii, i = 1, 2, and the levels µi. All along this Section, we impose

p = p11 = p22. (5)

In the expression (4), it is the sum of the transition probabilities pii, i = 1, 2

which appears and thus this sum determines the value of ρ. This sum will

be an important task for the following because it influences the behavior of

the autocorrelation function of model (1). Indeed, according to the value of

ρ ∈ ]-1, 1[, when h → ∞, ρh decreases slowly, quickly or switches constantly

between positive and negative values. We are also interested to examine

the influence of the values of nst
on the decay of the autocorrelation func-

tion. Even if the relationship between this number nst
and the transition

probabilities pij , i, j = 1, 2 has not a clear analytical form, the intuition is:

the more the transition probabilities pij are high, the less the series switches

from one state to the other, and then the weak nst
is. In the literature, it has

been mentioned that the larger nst
is, the quicker the autocorrelation func-

tion’s decay is, see Granger and Terasvirta (1999), Gourieroux and Jasiak

(2001) and Granger and Hyung (2004). Here we specify this kind of intuition.

The simulations’ experiment is the following: for two pairs of levels: (µ1, µ2) =

(5,−5) and (µ1, µ2) = (0.5,−0.5), and 3 sample sizes: T = 1000, T = 5000

and T = 25000, making varying the transition probability from p = 0.99 to

0.01, decreasing 0.01 at each step, we simulate a lot of models (1). For each

p defined in (5), we get a state vector st which provides a number nst
. At

each step, we investigate the autocorrelation function of the simulated series

in order to study how the quantity p11+p22 and the number nst
influence the

asymptotic behavior of the autocorrelation function of the model (1). We

analyze below the results obtained for T = 1000. The results obtained for

T = 5000 and T = 25000 are nearly similar and given in Appendix 7.1, see
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(e) ρ = −0.96 (f) ρ = −0.9

Figure 1: Behaviors of the autocorrelation functions of some simulated series

issued from model (1), with respect to ρ. Left column: (µ1, µ2) = (0.5,−0.5)

and right column: (µ1, µ2) = (5,−5).

Tables 5 and 6. Empirically, we observe that when T = 1000, and p varies

from 0.99 to 0.01, then the number of switches nst
varies from 7 to 990. The

below analysis is only graphical.

1. (µ1, µ2) = (0.5,−0.5).

• When p varies from 0.99 to 0.91, then 0.82 ≤ ρ ≤ 0.98 and nst

varies from 7 to 105. We observe graphically on Figure 1 (a), a

slow decay of the autocorrelation function, and thus some long

memory behavior.

• For p varying from 0.9 to 0.1, then −0.8 ≤ ρ ≤ 0.8 and nst
is
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such that: 112 ≤ nst
≤ 889. The behavior of the autocorrelation

functions of the simulated series on Figure 1 (c), is close to a short

memory behavior, although some lags remain slightly significant.

• When 0 < p < 0.1, then −1 < ρ < −0.8 and nst
varies from

920 to 990. In that case, some kind of seasonality appears on

the autocorrelation functions on Figure 1 (e), which is probably

created by the fact that ρ is close to -1.

• Thus, it appears that the model (1) exhibits empirically a long

memory behavior when 0.8 < ρ < 1 and a short memory behavior

when −0.8 < ρ < 0.8.

2. (µ1, µ2) = (5,−5).

• When p varies from 0.99 to 0.81, this corresponds to 0.62 ≤ ρ ≤

0.98 and 7 ≤ nst
≤ 192. The autocorrelation functions decrease

slowly.

• When p varies from 0.8 to 0.7, then 0.4 ≤ ρ ≤ 0.6 and 208 ≤

nst
≤ 285. Various situations arise. Although most of the auto-

correlation functions decrease quickly towards 0, some others still

decline slowly.

• When 0.7 < p < 0.76, which corresponds to 0.4 < ρ < 0.52 and

247 ≤ nst
≤ 297, the autocorrelation functions given on Figure 1

(d) decrease very quickly and this decreasing rate increases when

0.25 < p < 0.7, i.e. when 309 ≤ nst
≤ 750 and −0.5 < ρ < 0.4.

• When 0 < p < 0.24, then −1 < ρ < −0.52 and 760 ≤ nst
≤ 990,

and we observe some kind of seasonality inside the autocorrelation

functions.
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• In summary, for ρ > 0.6, we are in presence of a slow decay of the

autocorrelation function, for −0.5 < ρ < 0.5, the autocorrelation

function exhibits a quick decay, and for ρ < −0.5, we create

seasonality in the autocorrelation function as Figure 1 (f) shows.

3. When we compare the results obtained for these two classes of levels:

(µ1, µ2) = (0.5,−0.5) and (µ1, µ2) = (5,−5), we see that for fixed

transition probabilities p, there exists a slower decay of the autocorre-

lation functions of the model (1) in the latter case. This difference of

behavior can be observed on Figures 1 (a) and (b). Thus, the levels

(µ1, µ2) have also an impact on the convergence’s speed of the auto-

correlation function of the model (1).

In summary, by varying p, and thus ρ, we show evidence of the influence of

the sum of the transition probabilities and of the means’ values µi, i = 1, 2

on the asymptotic behavior of the autocorrelation function of the model (1).

The parameter ρ is not the only cause of the speed convergence of the au-

tocorrelation function of the model (1). This is obvious from the expression

(3). Indeed, for a fixed value of p defined in (5), if (µ1, µ2) = (0.5,−0.5),

then C = 0.2, and for (µ1, µ2) = (5,−5), then C ≃ 0.96. Or Γ(h) = Cρh,

thus, the autocorrelation function decreases quicker in the former case than

in the latter case. This explains also, when ρ is close to - 1, why the auto-

correlation function can exhibit some seasonnality.

Now, if we analyze the results with respect to the nst
values, when the

shifts are rare, we observe that the empirical autocorrelation functions of

the model (1) decrease slowly. For a sample size T = 1000, this behavior

remains until nst
= 105 for (µ1, µ2) = (0.5, −0.5) and until nst

= 192 for
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(µ1, µ2) = (5, −5). In both cases, compared to the sample size T = 1000,

these values of nst
correspond to a great number of shifts. This appears in

contradiction with some remark made in the literature saying that only a

small number of shifts provoke long memory, see Diebold and Inoue (2001)

for instance. Our intuition is that weak transition probabilities can create

the phenomenon of anti-persistence inside the data and high transition prob-

abilities create a long memory behavior. To characterize the notion of high

transition probabilities is difficult because other parameters provoke also this

long memory behavior.

All the results discussed previously are summarized in Table 1. For T = 5000

and for T = 25000, the results are reported in Tables 5 and 6 in the Ap-

pendix 7.1.

ρ -1 -0.82 -0.52 0.6 0.8 1

(0.5, -0.5) AP SM LM

(5, -5) AP SM LM

Table 1: Autocorrelation functions behavior for the model (1) according to the

values of ρ and (µ1, µ2), for T = 1000. LM stands for long memory, SM for short

memory and AP for anti-persistence.

4 Estimation of the long memory parameter d̂

In order to measure the existence of long memory behavior inside the sim-

ulated previous models (1), in this Section we adjusted on these simulated

11



data sets, a FI(d) process defined by:

(1 − B)dXt = εt, (6)

where B represents the lag operator, (εt)t a strong white noise. The frac-

tional difference operator (1 − B)d, for d ∈ R, being defined by:

(1 − B)d =
∞∑

i=0

(
d
i

)
(−B)i. (7)

We proceed by Monte-Carlo experiment. For each sample size T = 1000, 5000

and 25000 and each transition probability p defined in (5), decreasing from

1 to 0.01, by step 0.01, and two sets of levels (µ1, µ2) = (0.5,−0.5) and

(µ1, µ2) = (5,−5), we replicate 100 simulations of processes issued from

the model (1). For each experiment, we fit a FI(d) process defined by equa-

tions (6)-(7), and in fine, we retain the estimated parameter d̂ obtained by

averaging all the estimated parameters. The long memory parameter d is

estimated using the Whittle approach, see Yajima (1985).

On Figure 2, we exhibit the estimated parameters d̂ with their confidence

interval for the sample size T = 1000. We can remark:

• For p varying from 0.99 to nearly 0.5, which corresponds to 7 ≤ nst
≤

510, the estimated parameter d̂ is positive. Nevertheless, we observe

differences in the estimation according to the means values µi. Indeed,

for (µ1, µ2) = (0.5,−0.5), we have 0 < d̂ < 0.5; for (µ1, µ2) = (5,−5),

d̂ is positive, but can be greater than 1. The confidence interval are

very large.

• For (µ1, µ2) = (0.5,−0.5), d̂ = 0 for p varying from 0.55 to 0.53,

which corresponds to nst
varying from 460 to 473 and 0.06 ≤ ρ ≤ 0.1.

For (µ1, µ2) = (5,−5), d̂ = 0 only for p = 0.5, which corresponds to

nst
= 510 and ρ = 0.
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Figure 2: Estimated memory parameters d̂ (solid line) and their confidence

interval (dotted line) for the switching model (1). The abscissa represent the

transition probability p from 1 to 0.01 with a step of 0.01 and T = 1000.

• For p < 0.5, that is when ρ < 0 and nst
≥ 518, then d̂ is negative.

This range of values characterizes existence of anti-persistence.

• Notice that the switch from long memory to anti persistence, looking

at the values of d̂, occurs for the same transition probabilities in both

cases.

• We obtain similar results for T = 5000 and T = 25000, see Figure 5 in

Appendix 7.2.

To apply a FI(d) model on the simulated switching process (1) permits to

confirm that, for some range of transition probabilities, some long memory

behavior can be detected and measured. Thus, even if the Markov switching
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model can be classified as a short memory process, existence of spurious long

memory is detected. The value d̂ = 0 is obtained in few cases. This method

reveals also that it is possible to get some d̂ which are greater than 0.5. This

should imply that the data are non stationary, but we know that they are

issued from a stationary process.

Now, we can think that this spurious long memory, detected by the previous

method, can have dramatic incidence when we make such mistake on real

data, particularly if we need to make forecasts from the observed data sets.

We detail such incidence in the next Section.

5 Forecasting

In this Section, we compare the forecasting performances of the true Markov

switching model (1) and the estimated FI(d) model, for simulated data

sets issued from model (1), for two pairs of levels (µ1, µ2) = (5,−5) and

(µ1, µ2) = (0.5,−0.5), and for different transition probabilities p, using

T = 1000.

To forecast data which exhibit long memory in the covariance sense is now

well documented in the literature for FI(d) processes or Gegenbauer pro-

cesses, see for instance Guégan and Ferrara (2001). To compute the pre-

dictor X̂t+h|h from the FI(d) model, we use an expression derived from (6)

using the estimated parameter d̂.

Forecasting with Markov switching model is a more complicated work. Fol-

lowing the works of Krolzig (1997), we define the optimal predictor X̂t+h|h

14



for the model (1) as:

X̂t+h|h = µ1π1 + µ2π2 + (µ1 − µ2)ρ
hζ̂t|t (8)

where ζ̂t|t is the vector of filtered regime probabilities P [st = i|Xt, . . . , X0],

i = 1, 2, based on information up to time t. In practice, the vector ζ̂t|t can

be calculated recursively following the algorithm given in Hamilton (1988).

We obtain them by iterating the following equation:

ζ̂t|t =
(ζ̂t|t−1 ⊙ ηt)

1′2(ζ̂t|t−1 ⊙ ηt)
,

where ⊙ represents the element-by-element multiplication, 12 = (1 1)′ and

(ηt)t is a process whose components are the conditional densities of the pro-

cess (Xt)t:

ηt =




1√
2π

exp −(Xt−µ1)2

2

1√
2π

exp −(Xt−µ2)2

2



 .

To assess the prediction performance of the model FI(d) and the switching

model (1), we perform the following procedure. First, the two models are

estimated on samples size T = 800, and the forecasts are computed for the

horizons h = 1, . . . , 10. We roll the forecast origin forward 10 observations

and repeat the procedure 20 times in order to obtain forecasts for the horizons

T = 801, . . . , 1000. We compute the Root Mean Squared Errors (RMSE) for

each forecast horizon. The results are given in the Tables 2 and 3, and we

detail now these results.

1. (µ1, µ2) = (5,−5).

• When p = 0.99 (i.e. nst
= 7), the model (1) provides better

forecasts at each horizon than the FI(d) model.
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h, p 0.99 0.95 0.85 0.75 0.65 0.55 0.45 0.35 0.25 0.15 0.05

FI(d) 1 20.039 7.667 11.097 4.928 5.084 5.009 4.821 4.782 5.611 5.571 4.191

2 13.187 6.868 7.984 5.771 4.894 5.204 5.490 4.627 4.997 4.913 5.266

3 11.834 6.217 6.748 4.662 4.936 5.309 5.280 4.909 5.383 5.101 4.904

4 10.111 6.044 6.204 4.944 5.042 5.300 4.829 5.443 5.153 4.890 5.336

5 9.327 5.396 5.673 5.005 5.351 4.881 5.197 5.017 5.410 4.816 5.061

6 8.794 4.938 5.807 4.736 4.922 4.721 5.500 5.396 5.324 5.162 5.147

7 8.894 5.126 5.471 5.715 4.864 5.196 5.189 5.338 5.072 4.827 4.938

8 8.195 5.395 4.906 5.175 4.870 5.212 5.157 5.222 5.060 5.203 4.956

9 7.817 4.846 5.116 5.285 5.495 5.131 5.157 4.886 5.107 5.293 4.969

10 7.855 5.163 4.928 5.802 5.511 5.39 4.985 4.879 5.471 5.054 5.303

SW 1 0.717 3.887 4.456 4.710 4.864 5.071 4.906 4.293 5.580 5.193 2.701

2 0.831 3.996 5.434 5.482 4.954 5.192 5.444 4.537 5.062 4.665 2.118

3 1.205 4.498 5.051 4.519 4.830 5.290 5.300 4.784 4.995 4.475 3.131

4 1.135 4.468 5.232 5.126 4.955 5.286 4.755 5.287 5.374 4.787 3.670

5 0.862 5.703 5.229 5.173 5.275 4.910 5.176 4.947 5.309 4.584 3.787

6 0.737 5.138 5.292 5.019 4.994 4.724 5.500 5.464 5.397 5.165 4.150

7 1.374 5.226 5.034 5.419 4.894 5.256 5.271 5.287 5.038 4.750 4.058

8 1.274 5.273 5.118 5.017 4.957 5.255 5.163 5.219 4.997 5.269 4.015

9 0.928 4.838 5.433 5.102 5.496 5.177 5.179 4.783 5.085 5.066 4.574

10 2.377 4.710 5.127 5.521 5.308 5.343 4.981 4.959 5.421 5.194 4.677

Table 2: RMSE of the forecasts obtained for the model FI(d) and for the

model (1) for the couple (µ1, µ2) = (5,−5). Bold values represent values for

which the difference between the two models is inferior to 0.5.

• This remains true for high transition probability p and small fore-

casting horizons h.

• The same result appears for p = 0.05, which corresponds to nst
=

950 and ρ = −0.9.

• Nevertheless, when h becomes larger, even for high transition

probability, the FI(d) model becomes competitive with the switch-

ing model and can give better forecasts than the model (1).

• When the shifts are more frequent, for p varying from 0.75 to

0.15 for instance, which corresponds to 258 ≤ nst
≤ 834 and
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−0.7 ≤ ρ ≤ 0.5, the predictions’ performance of the two models

are quite similar.

2. (µ1, µ2) = (0.5,−0.5). The forecasts obtained for the FI(d) model are

almost as good as those obtained for the switching model (1), except

in a few cases.

Tables 2 and 3 provide the forecasts for the values of the process(Xt)t, but

working with switching models, practitioners are also interested in knowing

the ability of the model to predict the "good" state in which the data have

to be. Thus, at each step of the procedure, we have computed the proba-

bility to predict the true state in which the data have to be. The results

are provided in Table 4. For instance, for the lag h = 1 and the transition

probability p = 0.99, the model (1) correctly predicts to be in the state 1

in 95% of the cases. This allows us to measure the quality of forecasting of

Markov switching model at each horizon h. For (µ1, µ2) = (5,−5), the qual-

ity of the prediction diminishes with the transition probability p or with the

horizon h. Nevertheless, for (µ1, µ2) = (0.5,−0.5), this quality of prediction

is weak whatever the horizon h and the transition probability p 6= 0.99. This

confirm the weak ability of the Markov switching model to predict with a

high probability the next state for the data.

In summary, it appears that the switching models provide better forecasts

for high transition probabilities and small horizon h if the estimated means

levels µ̂i, i = 1, 2 are far from each other. Nevertheless, for long horizons, the

long memory model provides similar forecasts. In case of close means values,

(µ1, µ2) = (0.5,−0.5), the switching model has not a bigger capability to

forecast than the FI(d) model.
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h, p 0.99 0.95 0.85 0.75 0.65 0.55 0.45 0.35 0.25 0.15 0.05

FI(d) 1 1.261 1.303 1.193 0.762 1.042 1.092 1.125 1.216 0.938 1.18 1.263

2 1.13 1.301 1.141 0.924 1.196 1.16 1.033 1.222 0.892 1.097 1.056

3 0.779 1.165 1.28 0.814 1.088 1.134 1.087 0.919 0.975 0.878 1.277

4 1.302 1.183 0.914 1.029 1.065 1.249 1.401 1.181 1.193 1.086 1.155

5 1.409 1.116 1.022 0.707 1 0.959 0.927 1.07 1.154 1.092 0.958

6 1.169 1.071 1.05 1.136 1.206 1.297 1.311 1.01 1.162 1.053 0.766

7 1.142 0.952 1.119 1.238 1.075 1.057 1.218 1.18 1.005 1.682 1.292

8 1.212 0.997 0.863 1.102 1.123 1.041 1.118 1.195 1.237 1.138 0.838

9 0.881 1.351 1.019 1.037 1.175 0.865 1.345 1.234 0.904 0.69 1.167

10 0.789 1.211 1.076 0.96 0.971 1.344 1.217 1.006 1.52 1.16 1.125

SW 1 1.247 1.321 1.184 0.762 1.061 1.094 1.125 1.249 0.923 1.19 1.037

2 1 1.327 1.120 0.932 1.182 1.161 1.039 1.216 0.94 1.163 1.388

3 0.825 1.129 1.259 0.817 1.093 1.141 1.088 0.909 1.005 0.846 0.721

4 1.249 1.169 0.922 1.026 1.07 1.24 1.396 1.177 1.185 1.107 1.321

5 1.506 1.111 1.018 0.713 1.011 0.955 0.928 1.078 1.153 1.097 0.951

6 1.176 1.083 1.067 1.137 1.227 1.299 1.312 1.011 1.167 1.069 1.375

7 1.137 0.955 1.120 1.231 1.088 1.055 1.22 1.193 0.987 1.692 1.299

8 1.163 1 0.865 1.105 1.094 1.047 1.116 1.176 1.243 1.128 0.879

9 0.922 1.359 1.017 1.044 1.22 0.865 1.343 1.204 0.9 0.684 1.053

10 0.883 1.21 1.084 0.955 0.978 1.344 1.218 1 1.522 1.169 1.24

Table 3: RMSE of the forecasts obtained for the model FI(d) and for the

model (1) for the couple (µ1, µ2) = (0.5,−0.5). Bold values represent values

for which the difference between the two models is inferior to 0.25.

6 Conclusion

In the literature, many studies have shown that stationary processes with

structural breaks can produce slowly decaying autocorrelations and can be

assimilated to long memory processes. This phenomenon is observed in many

economic and financial time series (Baillie, 1996, Ooms and Doornik, 1999

and Starica, 2004). Considering a Markov switching model, we show theoret-

ically that the means values as well as the sum of the transition probabilities

have a huge influence on the autocorrelation function’s behavior. In this
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h, p 0.99 0.95 0.85 0.75 0.65 0.55 0.45 0.35 0.25 0.15 0.05

(5, -5) 1 0.95 0.8 0.7 0.55 0.6 0.6 0.65 0.25 0.55 0.5 0.15

2 0.95 0.75 0.55 0.5 0.75 0.7 0.3 0.3 0.6 0.55 0.15

3 0.95 0.7 0.55 0.45 0.45 0.25 0.35 0.4 0.55 0.45 0.2

4 0.95 0.7 0.55 0.45 0.4 0.35 0.5 0.4 0.3 0.45 0.25

5 0.95 0.55 0.5 0.55 0.4 0.45 0.45 0.55 0.25 0.45 0.25

6 0.95 0.65 0.6 0.4 0.45 0.55 0.5 0.4 0.45 0.5 0.2

7 0.95 0.65 0.65 0.45 0.6 0.45 0.3 0.5 0.4 0.55 0.2

8 0.95 0.65 0.3 0.6 0.5 0.5 0.6 0.65 0.35 0.5 0.2

9 0.95 0.7 0.4 0.55 0.25 0.5 0.4 0.65 0.3 0.45 0.25

10 0.9 0.75 0.45 0.45 0.5 0.4 0.65 0.4 0.65 0.55 0.35

(0.5, -0.5) 1 0.85 0.7 0.65 0.55 0.65 0.65 0.55 0.4 0.55 0.55 0.25

2 0.85 0.65 0.5 0.55 0.6 0.45 0.4 0.55 0.55 0.5 0.25

3 0.85 0.6 0.35 0.45 0.45 0.45 0.55 0.45 0.65 0.6 0.3

4 0.85 0.65 0.5 0.45 0.4 0.45 0.5 0.55 0.4 0.35 0.35

5 0.85 0.5 0.45 0.6 0.35 0.55 0.55 0.5 0.75 0.6 0.35

6 0.85 0.5 0.45 0.45 0.5 0.55 0.6 0.6 0.35 0.4 0.3

7 0.85 0.5 0.55 0.5 0.45 0.65 0.3 0.3 0.6 0.55 0.3

8 0.85 0.5 0.6 0.7 0.55 0.6 0.6 0.55 0.4 0.5 0.3

9 0.85 0.55 0.6 0.55 0.6 0.7 0.4 0.55 0.6 0.75 0.35

10 0.8 0.6 0.55 0.45 0.45 0.3 0.65 0.5 0.45 0.35 0.35

Table 4: Probability computed to be in the actual "good" state, for an

horizon h and a probability p, using the model (1).

paper, from simulations and according to the values of the different param-

eters of the switching model under study, we exhibit several behaviors for

this Markov switching model’s autocorrelation function: long memory be-

havior, short memory behaviors and anti-persistence. With a first graphical

approach, we are unable to decide precisely for which transition probability

p, we are in presence of long or short memory behavior. Thus, we estimate

an FI(d) model on several series simulated from the Markov switching model

(1) in order to get a measure of the long memory parameter d̂ and see if it

permits to decide when we are in presence of long or short memory behav-

ior. An important result is that d̂ = 0 arises only in few cases and thus
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the presence of short memory behavior for the model (1) is rarely accepted.

Then, we have compared the predictions obtained from the Markov switch-

ing model and the long memory process. We show that in certain cases the

long memory process provides better forecasts, in particular for long term

horizon: in that case we cannot speak of spurious long memory process.

In this paper, we consider the Markov switching model defined by the equa-

tion (1). It will be interesting to transpose this study on Markov switching

model with autoregressive parameters. Moreover, we have also restricted

our study to the case p11 = p22, but it will be interesting to consider many

pairs of transition probabilities, because it is possible that two processes,

whose transition probabilities are different but having the same sum, can

exhibit similar autocorrelation functions’ behaviors. For instance, choose

for (p11, p22) = (0.9, 0.6) and (p11, p22) = (0.75, 0.75), then ρ = 0.5 in

both cases. For these two couples of transition probabilities, the simu-

lated series switch from one state to the other respectively 143 and 271

times. Thus, the series behave very differently. For each couple of means

(µ1, µ2) = (0.5,−0.5) and (µ1, µ2) = (5,−5), we observe, on Figure 3,

that although the values of the transition probabilities are different with the

same sum, the autocorrelation functions of the simulated processes issued

from model (1) behave similarly. Thus, in terms of modelization, the model

cannot be identified even if this situation agrees with the theoretical expres-

sion of the autocorrelation function (3).

Markov switching models are also a useful tool to detect periods of different

volatilities inside the data. By considering the previous approach, we study

how periods of different volatilities have an impact on the short or long
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(a) (p11, p22) = (0.9, 0.6), nst
= 143.
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(b) (p11, p22) = (0.75, 0.75), nst
= 271.

Figure 3: Autocorrelation functions issued from the model (1) with p11 +

p22 = 1.5. Left column: (µ1, µ2) = (0.5,−0.5) and right column: (µ1, µ2) =

(5,−5).

memory behavior of Markov switching models. Consider the simplest model

which has a switch on the volatility parameter defined by:

Xt = µ + σst
εt. (9)

Its autocorrelation function is similar to the white noise’s one:

Γ(h) = 0, ∀h > 0.

Thus, this model will always have a short memory behavior and cannot ex-

hibit a long memory behavior. This is really the big difference between the

model (1) and the model (9). The simulations are in accord with this result.

To illustrate this property, we provide on Figure 4, the trajectories and the

autocorrelation functions of two simulated series issued from model (9) with

two different pairs of volatilities: (σ1, σ2) = (1, 4) and (σ1, σ2) = (1, 20) for

p = 0.99 and T = 1000. The difference between the trajectories of Figures 4

(a) and (b) stands in the range of the values. Notice that the switches inside
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the data are rare, indeed nst
= 10 here. Whereas the processes have periods

of high and low volatilities, their autocorrelation functions are similar to the

white noise’s one, and thus exhibit a short memory behavior. This means

that, in presence of high and low volatility inside real data, spurious long

memory behavior would be rare.
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(a) (σ1, σ2) = (1, 4) (b) (σ1, σ2) = (1, 20)

Figure 4: Trajectories and autocorrelation functions of two simulated series

issued from model (9), with µ = 2 and p = 0.99, for T = 1000. Here,

nst
= 10.
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7 Appendix

7.1 Tables

Here, we provide a summary on the autocorrelation function’s behavior for

the model (1), detected graphically with respect to ρ, for the large sample

size: T = 5000 and T = 25000.

ρ -1 -0.76 -0.6 0.48 0.68 1

(0.5, -0.5) AP SM LM

(5, -5) AP SM LM

Table 5: Autocorrelation functions’ behavior for the model (1) according to ρ

and (µ1, µ2). LM stands for long memory, SM for short memory and AP for

anti-persistence, T = 5000.

ρ -1 -0.76 -0.54 0.48 0.6 1

(0.5, -0.5) AP SM LM

(5, -5) AP SM LM

Table 6: Autocorrelation functions’ behavior for the model (1) according to ρ

and (µ1, µ2). LM stands for long memory, SM for short memory and AP for

anti-persistence, T = 25000.

7.2 Figures

We provide here the behavior of the estimated long memory parameter d

when the sample size is large: T = 5000 and T = 25000.
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(b) T = 5000, (µ1, µ2) = (5,−5).
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(c) T = 25000, (µ1, µ2) = (0.5,−0.5).
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(d) T = 25000, (µ1, µ2) = (5,−5).

Figure 5: Estimated memory parameters d̂ (solid line) and their confidence interval

(dotted line) for the switching model (1). The abscissa represent the transition

probabilities p from 1 to 0.01 with a step of 0.01, T = 5000 and T = 25000.
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