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Abstract

The purpose of this paper is to study the self-similar properties of discrete-time long memory
processes. We apply our results to specific processes such as GARMA processes and GIGARCH
processes, heteroscedastic models and the processes with switches and jumps.

Keywords : Long Memory Processes, Short Memory Processes, Self-similar, Asymptotically
Second-order Self-similar.

1 Introduction

In the past decades there has been a growing interest in studying self-similar processes
and asymptotically self-similar processes, which has been a subject in literature (eg. Beran
1994, Samorodnitsky and Taqqu 1994). However, most of the works concern continuous-time
processes. In this paper, we are devoted to study the relationship between long memory and
self-similarity for discrete-time series and we present some new results. We prove that if a
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process is both covariance stationary and long memory, then it is asymptotically second-order
self-similar. On the other hand, if a process is covariance stationary and short memory, then
it is not asymptotically self-similar. We apply these results to the k-factor GARMA process
and the k-factor GIGARCH process, the ARMA process, the GARCH process, the model
with switches and the model with breaks, etc. What’s more, for the processes with breaks
and jumps, although they are theoretically short memory, they are empirically long memory
processes. Consequently, theoretically they are not asymptotically second-order self-similar,
while empirically they are asymptotically second-order self-similar. We propose in this paper a
new notion to describe this kind of property which is the “spurious asymptotically second-order
self-similar" behavior.

The paper is organized as follows. In section two, we recall some concepts and give some
new results. Section three is devoted to the study of the self-similar properties for discrete-time
series.

2 Concepts and main results

In this part, we recall some definitions and give some new results on self-similarity.

2.1 Concepts of long memory and short memory

Definition 2.1 A covariance stationary process (X;); is called short memory process, if its
autocorrelation function p(k) satisfies 332 (p(k) < oco.

Definition 2.2 A covariance stationary process (X;); is called long memory process if it has an
autocorrelation function p(k) which behaves like a power function decaying to zero hyperbolically
as

p(k) ~Cy(k) - k™ as k—o00, 0 <a<l1, (1)
where ~ represents the asymptotic equivalence, and C,(k) is a function which changes slowly

to infinity, i.e. for all a € R, C,(k)(ax)/Cy(k)(z) — 1, when x — oo (orz — 0).

These concepts have been studied a lot in literature, for example, by Beran (1994), Guégan
(2005).

2.2 Concepts of self-similarity

Self-similarity provides an elegant explanation and interpretation for an empirical law that
is commonly referred as the Hurst’s effect. Let (X;); be a covariance stationary time series.
Denote

xM=1/m > Xi k=12 (2)



the corresponding aggregated sequence with level of aggregation m (> 1). Denote p™ (k) the
autocorrelation function of the process (Xt(m))t.

Definition 2.3 A strictly stationary stochastic process (X,); is exactly self-similar (or asymp-
totically self-similar) if for all t,
Xt _d ml—HXt(m)

holds for all m (or as m — oo ), where (Xt(m))t is defined as in (2) and 1/2 < H < 1.

Definition 2.4 Let (X;); be a covariance stationary process,

(1) The process (X;); is called exactly second-order self-similar, or s.o.s.s, if mlfHXt(m) has the
same autocorrelation as X, for all m and all t. Thus we have Var(X™)) = Var(X)m??=2 and
P (k) = p(k) where 1/2 < H<1,m>1,k=0,1,2,---, and p(k) ~ Ck*" =2 as k — oo.
(2) The process (X;); is called asymptotically second-order self-similar, or a.s.o.s.s, if

1
lim p™ (k) = Sk + D2 — 2k (k= 1)*1], ¥ k> 0. (3)

m—00

So the autocorrelation function of the process (X;); is such that :
1
p(k) = 5[(k + 1) —2k*H (k- 1)*H], VE>0, (4)

We can also use the relationship(3) and (4) as the definition of second-order self-similarity
processes. The notion of exactly (asymptotically) self-similar concerns all the finite-dimensional
distributions of a strict stationary process, while the notion of exact (asymptotical) second-
order self-similarity concerns only the variance and autocorrelation function of a covariance
stationary process.

2.3 Main Results

Lemma 2.5 Let (X;); be a covariance stationary process, if this process is short memory as
is defined by definition|2.1, then it is not asymptotically second-order self-similar.

Proof : For a short memory process (X;);, its autocorrelation function decays exponentially
to zero, so it does not satisfy the equation (4)), which means that the process (X;); is not
asymptotically second-order self-similar. []

Lemma 2.6 Let (X;); be a covariance stationary long memory process with % < H < 1, then
this process is asymptotically second-order self-similar. Furthermore, under Gaussianity, the
process is asymptotically self-similar.



Proof : For a covariance stationary process (X;);, its autocorrelation function decays hyperbo-

lically, i.e. limy_, ,ﬁ,—% =c, % < H < 1. According to the results of Tsybakov and Georganas
(1997), we deduce that lim, .. p™ (k) = L[(k + 1) = 2k*" + (k= 1)*"], Vk = 1,2,--- .
Thus the process is asymptotically second-order self-similar following the definition 2.4l [

From the lemma 2.6, the following result is straightforward :

Lemma 2.7 Let (X;); be a covariance stationary long memory process with % < H < 1,4f
the spectral density of the process blows up at the origin, then the process is asymptotically
second-order self-similar. Under Gaussianity, it is asymptotically self-similar.

3 Examples of self-similar processes

In this part, we investigate the classical discrete-time processes and their self-similar pro-
perties. The study concerns the long memory processes under stationarity, for example, fGn,
k—factor GARMA process, k—factor GIGARCH process, and some short memory processes
such as processes with switches, processes with breaks, and also processes with threshold.

3.1 Fractional Gaussian noise (fGn)

Definition 3.1 A process (Xy)iez is called a fractional Gaussian noise, or fGn, if it satisfies,
forallt € Z, Xy = By(t) — Bu(t — 1), where { By (t) }er is a fractional Brownian motion.

The fractional Gaussian noise (fGn) is the unique stationary Gaussian process which is
exactly self-similar process with zero mean, which has been studied, for instance, by Beran

(1994), Samorodnitsky and Taqqu (1994).

3.2 k-factor GARMA process

Definition 3.2 A stationary process (X;); is called a k-factor GARMA process, if it has the
following representation

k
¢(B)[[(1 - 2u:B + B*)" X, = 6(B)e, (5)
i=1
where k is a finite integer, |u;| <1 for alli =1,--- k, (&) is a white noise with mean zero

and variance o2, and ¢(B) and 0(B) are polynomials of order p and q respectively, d; € R, B
1s the backshift operator satisfying BX; = X;_1.

Woodward, Cheng and Gray (1998) proved that a stationary k-factor GARMA process
exhibits long memory behavior, if u; are distinct, all the roots of the polynomials ¢(B) and
0(B) are distinct and lie outside the unit circle and if (i) 0 < d; < § and |u;| < 1 or if (ii)
0<d; < }l and |u;| =1, fori=1,--- k.



Proposition 3.3 Let (X;); be a covariance stationary and long memory k-factor GARMA
process, then it is asymptotically second-order self-similar. Furthermore, under Gaussianity, it
1s also asymptotically self-similar.

Proof : Due to lemma|2.6] a covariance stationary and long memory k-factor GARMA process

is asymptotically second-order self-similar. The conclusion is the same for particular k-factor
GARMA process like GARMA process, Gegenbauer process and FARIMA process. [

3.3 Heteroscedastic Processes
3.3.1 k-factor GIGARCH processes

Definition 3.4 A process (X;); is called a k-factor GIGARCH process, if it has the following
representation
(B)TE_ (I — 2u; B + B*)% (X, — ) = 0(B)z (6)

where e, = &oy with (&)ez a white noise process with unit variance and mean zero, at2 =

ao+Xj_jae; 4+ X5_1bjor_;, i the mean of the process (Xy)iez, ¢(B) and 6(B) polynomials in
B of order p and q respectively, B the backshift operator satisfying BX; = Xy_1, d = (dy, ..., dy)
the memory parameters and uw = (uq, ..., uy) the frequency location parameters, d; € R, |u;| < 1,
1=1,--- k.

Guégan (2000, 2003) proposed this model and has given out the corresponding covariance
stationary condition and long memory conditions.

Proposition 3.5 Let (X;); be a covariance stationary and long memory k-factor GIGARCH
process, then it is asymptotically second-order self-similar. Furthermore, under Gaussianity, it
1s also asymptotically self-similar.

Proof : For a covariance stationary and long memory k-factor GIGARCH process, according
to lemma 2.6, a k-factor GIGARCH process is asymptotically second-order self-similar. []

3.3.2 GARCH processes and related processes

Definition 3.6 A process (X;); is a generalized autoregressive conditional heteroscedastic pro-
cess with order p and q respectively, or a GARCH(p,q) process, if it has the following repre-
sentation X; = o6, and

(2

ol =ap+ X ;X7 + zyzlﬁjatz_j = ap + a(B)X? + b(B)o? (7)

where ag > 0, oy > 0,0 =1,---,q, 3; > 0,7 =1,---,p, {e:} ~ IID(0,1), and &, is inde-
pendent of {X;_, k > 1} for allt, B is the backshift operator, a(B) and b(B) are polynomials
in B of order q and p respectively.



This model has been introduced by Bollerslev (1986) and has several particular cases : if
B;j = 0 in (7), we get an ARCH process (Engle 1982). If Y77 | a; + >0, 3; = 1, we get an
IGARCH process (Bollerslev 1988).

Proposition 3.7 Let (X;); the covariance stationary GARCH process introduced in (7), then
it is not asymptotically second-order self-similar.

Proof : If the GARCH model is covariance stationary, then it is short memory process. Thus,
following the lemma [2.5, it is not asymptotically second-order self-similar. The conclusion is

the same for particular GARCH models like ARCH and IGARCH models. []

3.4 Processes with switches and jumps

Structural breaks have been observed in many economic and financial time series. A lot of
models have been proposed in order to capture the existence of structural changes and complex
dynamic patterns. Let (X;); be a process whose recursive scheme is

Xi = ps, + &1 (8)
where (us,); is a process we specify below and (g;); is a strong white noise, independent of
(s, ):- With respect to the process (s, ), we distinguish two cases :

1. (us,); depends on a hidden ergodic Markov chain (s;);,
2. If (ps,)e = pu, then we will assume that this process depends on a probability p.

The first class of models considered above includes “models with switches" and the second
class includes “models with breaks". For most of these processes, they are covariance stationary
and short memory. Nevertheless, some processes exhibit empirically a kind of long memory
behavior when we observe the behavior of the sample autocorrelation function.

3.4.1 Processes with switches

The processes with switches have been studied in literature by Hamilton (1988), Diebold
and Inoue (2001), Guégan (2003, 2006), etc. We consider a two-state Markov Switching model
(X;); defined by the following equations :

Xt = Mgy + ¢stXt—1 + Os,E¢, (9)

where p,, ¢s, and o, (i = 1,2) are real parameters, o; are positive and (e;); is a strong white
noise with mean m € R and variance o € R* , and (&), is independent of the hidden ergodic
Markov chain (s;);, which is characterized by its transition probabilities p;;, defined by :

Plsy = jlsi—1 = 1] = py (10)

with 0 <p; < land Y2 py=1i=12



Proposition 3.8 Let {X;}; be a process defined by (9) and (10), then if max;—q2{pa|¢1]* +
piald2|?} < 1, the model is not asymptotically second-order self-similar.

Proof : Yang (2000) proved that under the above conditions, the process {X;}; is covariance
stationary . Under stationarity, this model is known to be theoretically short memory. Thus,
following lemma (2.5, it is not asymptotically second-order self-similar. [J

Actually, there are many other interesting models with switches contained in equation (8),
for example : the mean switching model(X; = p,, + &), the mean variance switching model
(X} = g, + 04,6¢), the sign model (X; = sign(X;_ 1) + &, where g, ~** N(0,0?%)). For all
of these processes, if they are covariance stationary, then they are theoretically short memory
processes, although empirically they exhibit long memory behavior. Likewise, they are not
asymptotically second-order self-similar theoretically.

3.4.2 Processes with breaks

For processes with breaks, many people have investigated their properties, for example,
Engle and Smith (1999), Granger and Hyung (2004), Hyung and Franses (2005), Guégan
(2003, 2006). Assume the process (X;); is defined by

Xt :/vbt+5t (11)

where the process (j,); = p: depends on a probability p. Different dynamics of the process
(11¢)¢ correspond to different break models, for example : the Binomial model, the random walk
model with a Bernouilli process, the STOPBREAK model, the stationary random level shift
model, the mean-plus-noise model, etc.

Under stationarity, these models are short memory and cannot be asymptotically second-
order self-similar theoretically.

3.4.3 Processes with threshold
Consider the general form of the processes with threshold :
Xi = f(Xi1)(1 = G(Xi-4,7,0) + 9(Xi-1)G(Xi-a, 7, €) + & (12)

where the function f and g can be any linear or nonlinear functions of the past values of X; or
e;. The process (g;); is a strong white noise and G is an indicator function or some continuous
function. For a given threshold ¢ and the position of the random variable X; ; with respect to
this threshold ¢, the process (X;); contains different models, for example, the SETAR model,
the STAR model ( Tong 1990).

Proposition 3.9 For the process with threshold defined as in (12), if the functions f and g
correspond to short memory process, then it is not asymptotically second-order self-similar.
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Proof : If the functions f and g correspond to short memory process, then the process is short
memory. Thus, following lemma 2.5, it is not asymptotically second-order self-similar.[]

Now we consider the long memory SETAR model, defined as follows :
X, =(1-B) %M L(X, g <e)+eP [l — L(X, 4 <0), (13)

and the assumptions :

(Hs) : the process (5§1))t (i = 1,2) is a sequence of independent identically distributed random
variables.

(Hg) : the long memory parameter d is such that 0 < d < 1/2.

Proposition 3.10 Under the assumptions (Hs) and (Hg), the process (X;): defined by the
relation(13)) is globally stationary, and then it is asymptotically second-order self-similar. Fur-
thermore, under Gaussianity, it is asymptotically self-similar.

Proof : Under the assumptions (Hj;) and (Hg), the stationary model defined in (13) is long
memory in the covariance sense. According to lemma it is asymptotically second-order
self-similar. [

3.4.4 A New Concept

For the models with switching and models with breaks introduced above, theoretically
they are not asymptotically second-order self-similar. However, empirically, they exhibit long
memory behavior with the sample autocorrelation function which decreases in an hyperbolic
way towards zero. Since we often call this long memory behavior the “Spurious long memory"
behavior, we can also call this self-similar behavior the “spurious asymptotical second-order
self-similar" behavior.
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