N
N

N

HAL

open science

Generalized Choquet-like aggregation functions for
handling bipolar scales
Christophe Labreuche, Michel Grabisch

» To cite this version:

Christophe Labreuche, Michel Grabisch. Generalized Choquet-like aggregation functions for han-
dling bipolar scales. European Journal of Operational Research, 2006, 172 (3), pp.931-955.
10.1016/j.ejor.2004.11.008 . halshs-00186907

HAL Id: halshs-00186907
https://shs.hal.science/halshs-00186907
Submitted on 12 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://shs.hal.science/halshs-00186907
https://hal.archives-ouvertes.fr

Generalized Choquet-like aggregation
functions for handling bipolar scales

Christophe Labreuche T
Thales Research & Technology

Domaine de Corbeville
91404 Orsay Cedex, France

Michel Grabisch
Université Paris I Panthéon-Sorbonne
LIP6, 8 rue du Capitaine Scott,
75015 Paris, France

Abstract

We are interested in modeling interaction between criteria in Multi-
Criteria Decision Making when underlying scales are bipolar. Inter-
acting phenomena involving behavioral bias between attractive and
repulsive values are in particular considered here. We show in an ex-
ample that both the Choquet integral and the Cumulative Prospect
Theory (CPT) model fail to represent these interacting phenomena.
Axioms that enable the construction of the preferences of the decision
maker over each attribute, and the representation of his preferences
about aggregation of criteria are introduced and justified. We show
there is a unique aggregation operator that fits with these axioms. It
is based on the notion of bi-capacity and generalizes both the Choquet
integral and the CPT model.
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1 Introduction

Multi-criteria decision making (MCDM) is a branch of decision theory where
acts or alternatives are chosen considering several points of view or criteria,
assuming that the decision maker (DM) has all the information at his/her
disposal concerning the alternatives, i.e. they are fully described by a vector
of attributes which is supposed to be known without uncertainty. Two main
features of this kind of problem make it difficult to solve. The first one is
that attributes describing alternatives are heterogeneous, i.e. they represent
different physical (or economical, subjective, ... ) entities like price, size,
color, weight, etc. and may be numerical or not. Hence a first difficulty is to
make them commensurable in some sense. The second feature is that points
of view or criteria are more or less important to make decision, and most
often they are conflicting or interacting in some way, so that it is not obvious
how to combine them for making a final overall opinion.

Many approaches to MCDM have been proposed so far, among which out-
ranking approaches and multi-attribute utility theory (MAUT) approaches
are most representative [30]. Outranking approaches easily solve the com-
mensurateness problem by making pairwise comparisons, however the final
decision stage is hindered by the problem of combining preference relations,
and thus comes up against Arrow’s theorem. MAUT approaches [20] rely on
the construction of utility functions, which can be fairly difficult because of
commensurateness problems, but then easily reach a final decision by com-
bining utilities or scores of all criteria. Our approach is also based on MAUT
philosophy.

In most approaches criteria are combined by taking a weighted average,
and this implicitly prevents the modeling of interactions between those cri-
teria and conjunctive/disjunctive behavior. The use of the Choquet integral
w.r.t. a capacity as aggregation function, permits the representation of some
interaction among criteria [12]. For a complete construction of a MCDM
method based on the Choquet integral we refer to [23].

A further relevant aspect relates to the type of scale underlying scores
or utilities. Studies in psychology (see e.g. Osgood et al. [28]) have shown
that often the scales used to represent scores or utilities should be considered
as bipolar, since decision making is often guided by affect. According to
Slovic [35], affect is “the specific quality of ’'goodness’ and ’badness’, as felt
consciously or not by the decision maker, and demarcating a positive or
negative quality of stimulus”. Then it is natural to use a scale going from
negative (bad) to positive (good) values, including a central neutral value,
to encode the bipolarity of the affect. Such a scale is called a bipolar scale,
typical examples where the neutral value is taken as 0 being [—1,1] or R.



Therefore, it is important to derive models taking into account this di-
chotomy. The Choquet integral, which is invariant to a shift of the scale,
is insensitive to the neutral level, and thus cannot serve for this purpose.
However, one can add some sensitivity by a simple symmetrization of the
Choquet integral around 0, or more generally one can compute the positive
scores and the negative ones separately by two Choquet integrals w.r.t dif-
ferent capacities, thus enabling to model a different behavior of the decision
maker when faced with positive or negative scores. This is in fact the Cumu-
lative Prospect Theory (CPT) model, proposed by Tversky and Kahnemann
[37], in the field of decision under risk.

Although very general, the CPT model may fail to represent some behav-
ior, especially when alternatives have at the same time “good” scores (above
the neutral level) on some criteria and “bad” scores on other ones. Then if
some interaction occurs between the criteria with good scores (satisfied cri-
teria) and the ones with bad scores (unsatisfied criteria), the CPT model is
not able to represent the preference of the DM (such an example will be pre-
sented in Section 3). The reason is that in this model, positive and negative
scores are aggregated separately.

In [16], the notion of bi-capacity is proposed to resolve this problem.
Roughly speaking, a bi-capacity encodes the score of all possible combi-
nations of satisfied and unsatisfied criteria, so that it is able to represent
complex interaction phenomena. Then, the Choquet integral defined with
respect to a bi-capacity should enable the computation of the overall score
of any alternative, and encompass the CP'T model.

The aim of this paper is precisely to introduce this generalized Choquet
integral, to prove that it effectively solves situations where CPT fails, and to
provide an axiomatization and construction of a MCDM model using similar
techniques as presented in [23] for the Choquet integral.

The paper is organized as follows. Section 2 gives the necessary back-
ground on capacities, bi-capacities, the Choquet integral and the CPT model.
Section 3 describes a simple example of interaction between criteria, which
can be modeled by bi-capacities but not by the CPT model. The Choquet
integral w.r.t. a bi-capacity is constructed in Section 4 from some intra-
criterion and inter-criteria information asked to the DM. It is shown that
this new operator generalizes the CPT model. In section 5, we discuss on
the practicality of our approach. The determination of the reference levels
necessary to ensure commensurateness among criteria is discussed in Section
5.1. Section 5.2 describes the way utility functions u; can be constructed in
practice. Lastly, the determination of bi-capacities is discussed in Section
5.3.



2 Preliminaries

2.1 General framework for MCDM

We denote by Xi,...,X, the sets of possible values taken by representa-
tive attributes faithfully describing alternatives of interest, and by N :=
{1,...,n} the index set of attributes. X := X; X --- x X,, is the set of
potential alternatives, and we denote by > a binary relation on X expressing
the preference of the DM. The aim is to get a representation of > on X on
the basis of some information provided by the DM only on a subset A of X.
This representation takes the form of a function u : X — R such that for
any z,y € A, z > y if and only if u(z) > u(y). The most common form for
u is the decomposable form:

u(z) = F (u1(xy), ... ,un(z,)) Vo € X, (1)

and general conditions on > and X are known for such a model to exist
[22]. The functions u; : X; — R are called the utility functions, while
F : R* — R is called the aggregation function. Each utility function wu;
induces a complete preorder >=; on X;. Roughly speaking, utility functions
assign scores to each possible values of the attribute, and they have to be
commensurate, in the sense that a given score on two different attributes
means the same satisfaction for the DM. We call criterion an attribute with
its utility function (and by abuse, the attribute itself).

The construction of the utility functions and the determination of the
aggregation function are often carried out in two separate steps. The util-
ity functions are generally set up first, that is without the knowledge of
the aggregation function F'. However, the utility functions have no intrinsic
meaning to the DM and shall be determined from questions regarding only
the overall preference relation >. It is not assumed that the DM can isolate
attributes and give information directly on u;. This point is generally not
considered in the literature. The main reason is probably that due to the
use of a weighted sum as an aggregation function, the independence assump-
tion (preferential or cardinal independence) makes it possible in some sense
to separate each attribute, and thus directly construct the utility functions.
This becomes far more complicated when this assumption is removed. Be-
sides, these approaches are not relevant from a theoretical standpoint. To
our knowledge, the only approach that addresses this problem with the use
of a weighted sum is the so-called Macbeth approach designed by C. Bana e
Costa and J.C. Vansnick [1, 2, 3, 4]. A generalization of this approach to the
Choquet integral has been proposed in [23]. The Macbeth approach is also
considered in this paper.



Considering two alternatives z,y € X and A C N, we use the notation
(a,y_a) to denote the compound alternative z € X such that z; = z; if
i € A and y; otherwise. Similarly for two real vectors of scores w,t € R”,
we denote by (wa,t 4) the compound vector w’ € R” such that w] = w; for
i€ Aandt; fori & A.

2.2 Bipolar and unipolar scales

It may exist in X; a particular element or level 0;, called neutral level, such
that if x; >; 0;, then x; is considered as “good”, while if z; <; 0;, then z; is
considered as “bad” for the DM.

Such a neutral level exists whenever relation >; corresponds to two op-
posite notions of common language. For example, this is the case when >;
means “more attractive than”, “better than”, etc., whose pairs of opposite
notions are respectively “attractiveness/repulsiveness”, and “good/bad”. By
contrast, relations such as “more allowed than”, “belongs more to category
C than” do not clearly exhibit a neutral level.

A scale is said to be bipolar if X; contains such a neutral level. A unipolar
scale has no neutral level, but has a least level, i.e. an element or level denoted
also by 0; in X; such that z; >; 0; for all z; € X;.

The bipolarnature of a scale is often quite debatable, especially in MCDM.
In MCDM, the criteria have the meaning of some kind of satisfaction. The
[0, 1] unipolar representation of criteria classically used in MCDM has the in-
terpretation of a satisfaction degree. The two bounds of this scale depict “not
satisfied at all” and “perfectly satisfied” values respectively. However, values
around 0 are clearly “bad”, whereas values around 1 are clearly “good”. The
[0, 1] unipolar scale can thus be seen as a bipolar scale, with for instance the
neutral value % In Fuzzy Sets Theory, uninorms (mixing a ¢-norm on the
ill-satisfied situations and a t-conorm on the well-satisfied situations [21]) are
examples of bipolar operators applied to the fuzzy interval [0,1]. The cross-
over point in uninorms corresponds to the neutral level in bipolar scales. To
sum-up, scales used in MCDM can be viewed as either unipolar or bipolar
due to the particular meaning alloted to these scales. So, the choice of the
type of scale depends more on the choice of the reference points used on the
attributes than the true meaning of the attributes. We advocate the use of
bipolar scales if the DM behaves differently when faced to well-satisfied com-
pared to ill-satisfied values. Due to commensurateness between criteria, one
should use the same scale (and thus the same reference levels) on all criteria.
This suggests that if one attribute requires a bipolar scale, all attributes need
to be treated as bipolar. We assume henceforth that all scales are bipolar.
We make the assumption that the neutral elements 0; exist on all scales.



2.3 Aggregation on unipolar scales

In Cooperative Game Theory, a game on N is defined as a set function that
vanishes on the empty set. Let G'(IN) be the set of all games (also called
improper games) [29]:

gl(N)z{I/:ZN—HR, 1/((2))20} )

An interesting subclass of games is the ones that are non-decreasing and
normalized :

C'(N)={veG' (N), VACBCN, v(A) <v(B) and v(N) =1} .

Elements of C* (V) are called capacities [7] or equivalently fuzzy measures [13].
In MCDM, v(A) is interpreted as the overall assessment of the “binary”
vector of scores on criteria (14,0_4). Since the same scale is used for all
criteria and for the output assessment, one has v(#) = 0 and v(N) = 1.
Moreover, since this commensurate scale is a satisfaction scale (hence has
the following meaning: “the larger the better”), v is non-decreasing. Set
functions considered in MCDM are thus capacities. However, as we will see
later, bi-capacities are related to games that are neither non-decreasing nor
normalized.

The Choquet integral of w = (wy,...,w,) € R* defined w.r.t. a game
v € G'(N) has the following expression [7] :

n

Cy(wy, .- wa) = (wr) — wemry) v ({7(0), -+ ,7(n)}), (2)

=1

where w () := 0 and w,(1) < wrz) < -+ < Wern)-

We say that w,t € R* are comonotone if w; < w; = t; <t; forany i,j €
N. In other words, w,t are comonotone if they belong to I'; := {w € R" |
wry < Wy < 00 < wT(n)} for the same permutation 7. Thus, it is clear
from (2) that for comonotone acts w,t we have C,(w +t) = C,(w) + C,(?).
This property, called comonotonic additivity, is characteristic of the Choquet
integral, as shown by Schmeidler [31]. Hence the Choquet integral acts like
a weighted sum in each I, (for a fixed 7).

Let us now give an axiomatic justification of the Choquet integral on
interval scales (i.e. scales defined up to a shift and dilation) in the context
of MCDM. The main result comes from Marichal [25]. It characterizes the
Choquet integral as an aggregation function in IR"™. This result has been



improved by using a weaker axiom [23]. We present this characterization.
Since it has been done in the MCDM context, it concerns only capacities.

Consider a function F, : R™ — IR (indexed by a capacity v € C'(N))
dedicated to the aggregation of criteria on interval scales. So, F), shall satisfy
some reasonable conditions.

Linearity w.r.t. Capacities (LC): For any v,vy,...,1, €
C'(N) such that v = Y% | o; vy, with ay,...,q, € R, it holds
for all w € IR"

F,(w) = Zai F,.(w) .

(LC) is equivalent to the linearity axiom given in [25]. This latter states
that there exists 2" functions Fy : R" — IR (for all A C N) such that
F, =% ,cnV(A) F4. Marichal motivates his axiom saying that, in order to
keep the aggregation model as simple as possible, F,(w) (even though not
linear w.r.t. w) is assumed to be linear w.r.t. v.

(LC) can be explained in the following way. It is usual in MCDM to
write a capacity v as a linear combination of elementary capacities v;. Such
elementary capacities correspond to typical decision strategies. For instance,
a two-additive capacity [13] can be viewed as a convex combination of the
following three types of typical decision strategies: extreme intolerance and
tolerance between two criteria (leading to the minimum and the maximum
of the two criteria scores respectively), and dictatorship w.r.t. a criterion. A
capacity can also be written in terms of the unanimity games [13], using the
Mébius transform. Other decompositions are also possible [13]. Since the
elementary decision strategies are very intuitive for a DM, one would like to
define the aggregation function F,, for these strategies and deduce the overall
function F, by applying the same decomposition to the F,.’s. This yields
(LC). In the example of the decomposition w.r.t. the unanimity games, the

coefficients may be negative, which explains why one has o;,... ,a, € R in
(LC).

Monotonicity w.r.t. Capacities (MC): For any v € C*(N)
and Yw,t € R",



Increasingness of the aggregation function is a natural requirement [10].
In MCDM, all criteria are given on the same commensurate scale, and this
latter depicts the satisfaction degree of the DM. Hence, if an alternative w
has better partial scores than another one ¢, then w is preferred to ¢ over each
criterion. Hence, w is at least as good as ¢ for the DM, so that F, (w) > F,(t).
This is Pareto-optimality. We have already seen that non-decreasingness of
a game is also justified by the same argument. Increasingness of F, can only
be obtained when v is non-decreasing.

Properly Weighted w.r.t. Capacities (PWC): For any v €
Cl(N)7 FI/ (1AaOfA) = V(A): VACN.

For a weighted sum F, (w) = >_"" ; v({i})w;, one clearly has that F, (153, 0_g;) =

v({i}) and more generally F, (14,0_4) = > ,c4v({#}) = v(A), indicating
that the weight of a coalition A of criteria is defined as the overall evaluation
of the binary vector (14,0_4). The assignment of importance of coalitions
of criteria is tightly linked to the evaluation function. We obtain (PWC)
naturally.

Stable under Positive Linear transformations for Capac-
ities and binary acts (SPLC): For any v € C!(N), for all
ACN,a>0,and g € 1R,

F, ((a+ B)a, B-a) = aF, (14,0_4) +

The interval scale associated to a criterion ¢ is given up to a positive linear
transformation ¢;(w;) = r; w; + s;, with 7; > 0 and s; € R [22]. From a mea-
surement standpoint, the aggregation function shall be stable under positive
linear transformations : F,(riwy+S81, ... ,rwWy+58,) =7 F, (w1, ... ,w,)+s,
where ¢(f) = r f + s is the transformation applied to the overall evaluation.
Since all scales are commensurate, one may only apply the same transforma-
tion to all scales [25], leading to :

F,(rwi+s,...,rw,+8)=rF,(wy,... ,w,)+s. (3)

The original axiom from Marichal indicates that (3) holds for all w = (wy,
.., wy) € R", r >0 and s € R. Axiom (SPLC) is weaker in the sense
that (3) is required only on the binary acts.

We have the following result [23].



Theorem 1 {F,}, .1y satisfies (LC), (MC), (PWC) and (SPLC) if
and only if for any v € C*(N), we have F,(w) = C,(w) for all w € R™.

We now give a characterization of the Choquet integral for games instead
of being restricted to capacities. Moreover we consider only positive scores.
This result will be useful for bi-capacities. We introduce the following ax-
ioms. These are straightforward modifications of axioms (LC), (MC) and
(SPLC). We extend only the linearity axiom on games.

Linearity w.r.t. Games (LG™"): For any v,vy,... ,v, € G'(N)
such that v = >%_ o, v;, with ay,...,, € IR, it holds for all
w e RY

p
F,(w)=> a; F,(w) .
=1
Monotonicity w.r.t. Capacities for positive acts (MC™):

For any v € C'(N) and Vw,t € RY,

Stable under Positive Linear transformations with pos-
itive shifts for Capacities and binary acts (SPLC"): For
any v : C'(N), forall AC N, a >0, and 3 € Ry,

F, ((a+B)a, B-a) = aF, (14,0_4) + 3

Theorem 2 {F,}, .y, satisfies (LGT), (MCY), (PWC) and (SPLCY)
if and only if for any v € G'(N), F,(w) = C,(w) for all w € RY.

One observes that a characterization of the Choquet integral in R" for
games results by replacing (LC) in Theorem 2 with linearity w.r.t. a game.
The proof is based on the following result.

Lemma 1 If F': IR} — IR satisfies
(i) F is non-decreasing in IR’

(i1) F ((a+ B)a, B-a) = aF (14,0_4) + § for any A C N, a > 0 and
peRy



(i11) F(14,0_-4) € {0,1} forall AC N
(iv) F(Oy) =0 and F(1ly) =1

then F(w) = Cy(w) for all w € IRY}, where v is a capacity given by v(A) =
F(14,0 4) forall ACN.

This lemma is a slight modification of the following one.
Lemma 2 (Lemma 2 in [253]) If F : R" — R satisfies
(i) F is non-decreasing in R"

(it) F ((a+ B)a,f-4) = aF (14,0_4) + § for any A C N, a > 0 and
peRr

(11i) F(14,0_4) € {0,1} for all AC N
(iv) F(On) =0 and F(1y) =1

then F(w) = Cy(w) for all w € R", where v is a capacity given by v(A) =
F(14,0_4) for all AC N.

Proof of Lemma 1: The only difference between Lemmas 1 and 2 except
the restriction of R"} is the sign of 3 in (%). When we restrict ourself to acts
w in IR", condition (4) in Lemma 2 is used only with positive values of f3.
Henceforth, condition (i) in Lemma 2 can be replaced by condition (%) in
Lemma 1. m

Proof of Theorem 2: The proof is similar to that of Theorem 1 in [23] which
relies on Lemma 2. Lemma 2 is replaced here by Lemma 1. Moreover, we
use the decomposition of a game in terms of the unanimity games. Function
F,, where v is a unanimity game satisfies all conditions of Lemma 1. m

Let us conclude this section by describing the Macbeth approach on
unipolar scales [23]. The interval scale on criterion i is given up to a positive
linear transformation ¢;(w;) = r; w; + s;, (with r; > 0 and s; € IR) that
normalizes the scale. The non-normalized interval scales are constructed in-
dependently (intra-criterion construction). In order to fix the two degrees
of freedom r; and s; on each scale, two reference levels that have the same
meaning throughout the criteria are introduced. It is assumed that there
exists an element denoted by 0; which is considered as completely unsatis-
factory for the DM, and an element denoted by 1; that is considered as good
and completely satisfactory, even if more attractive elements could exist on

10



this point of view [23]. The scales are normalized by using the appropriate
transformations ¢; so as to enforce commensurateness between the levels,
that is u1(0,) = -+ = u,(0,) and u;(1;) = - -+ = u,(1,). This implies the
overall commensurateness between the criteria.

We will use different reference levels for bipolar scales but the approach
will be similar.

2.4 Aggregation on bipolar scales

The previous section has shown an important property of the Choquet in-
tegral, namely the (PWC) property, saying that for any binary vector
(14,0_4), it holds that C,(14,0_4) = v(A). This shows that binary vec-
tors are prototype vectors for unipolar scales, since the model is entirely
determined from the overall score assigned to these vectors.

Turning to bipolar scales, the question arises on how to score alternatives
having a “negative” (i.e. below the neutral level) score on some criteria, in
particular ternary vectors (14, —1p,0_(aup)), whose components take values
1 on A, —1 on B, and 0 elsewhere. Several solutions are possible.

The first one is to keep the formula of Choquet integral (2) as it is.
Since the Choquet integral commutes with positive affine transformations
(i.e. axiom (SPLC) extended to any vector of scores), no particular value
of the scale can play a particular role, and so the bipolarity of the scale will
be ignored.

The second solution is to aggregate separately positive and negative
scores. Assuming a symmetry in the model between the positive and nega-
tive parts of the scale, we are led to the so-called symmetric Choquet integral
[8] or Sipos integral [36]:

S, (w) :=C,(wt) — C,(w™),

where w* and w™ are respectively the positive and negative parts of w, i.e.
(w*), = max(w;,0), (w~), := max(—w;,0). The properties of the Sipos
integral in the MCDM framework are given in [14, 15].

The symmetry of the above model may be not suitable in certain situa-
tions of decision making (e.g. decision under risk or uncertainty, where the
behavior of individuals is fairly different for gains and losses). Tversky and
Kahnemann have proposed such a generalization [37], known as the Cumu-

lative Prospect Theory (CPT) model:

CPT(w) := Gy (w™) = Cuy(w™), (4)

11



where v; and v, are two capacities. For properties and characterizations of
the CPT model, we refer the reader to the references [37, 38, 39, 6].

As a simple example with three criteria will show, despite its generality,
the CPT model may fail to represent preferences of the DM, when complex
interaction between attributes occur. To give the intuition for this, we look
at the way ternary vectors are scored by the CPT model. Applying (4) to a
ternary vector (14, —1p,0_(aup)), We get:

CPT(lA, —lB,Of(AuB)) == Cul(lAaOAC) - CV2(1B’OBC) = Vl(A) — 1/2(B) .

Hence the way a ternary vector is scored is completely determined by the way
positive and negative binary vectors are scored, but one may wish to have
more freedom: some interaction phenomena could occur between the positive
and the negative parts, which may violate the above formula. By analogy
with unipolar scales, we may say that ternary vectors are the prototype
vectors of the bipolar case, and so the model should be based on the overall
score assigned to them. This amounts to define a function p which assigns
to each pair (A, B) of disjoint subsets A, B C N a number in [—1, 1], which
is the score assigned to the ternary vector (14, —15,0_(aup)). In u(A,B),
the attributes in A refer to measured satisfaction and the attributes in B to
measured dissatisfaction through the individual utilities. Natural conditions
are u(N,0) = 1, u(0, N) = —1 and p(0, @) = 0, since there is unanimity on all
criteria. Now due to dominance conditions, it is also natural to impose that
if A C B, then u(A,A’) < u(B,A’) (more criteria have a good score), and
(A’ A) > p(A', B) (more criteria have a bad score). A function p satisfying
all these conditions is called a bi-capacity. Let us state this more formally.
Let

Q(N)={(A,B) e P(N) xP(N) | An B = 0}.
The generalization of games leads to the notion of bi-game :
G(N) ={p: QN) = R, u(®,0) =0} .
A bi-capacity [16] is a normalized and non-decreasing bi-game

CH(N) = {p € G*(N), AC A' = u(A, B) < u(A', B),
BCB = u(A,B)> u(A4,B)), p(N,0) =1 and u(0, N) = —1}.

As said earlier, u(A, B) corresponds to the overall assessment of the ternary
vector (14, —1p,0_(aup)). There exists thus an isomorphism ® : Q(N) —

{-1,0, l}N, defined by
q)(A, B) - (1Aa_1B;0—(AUB)) . (5)

12



A
For AC N,let Y, :={w e R" ,ws >0 ,w_4 <0} and ¥ 4:= L 4N{—1,0,1}".
The Choquet integral w.r.t. a bi-capacity u proposed in [16] is now given.
Forany A C N, w € Xy ,

BC,(w) :=C,, , (wa,—w_4)

where v, 4(C) .= p(CNA,C\ A).

The axiomatic foundation of the expression of BC, will be given in Section
4. The asymmetric Choquet integral, the Sipos integral and the CPT model
are particular cases of the Choquet integral w.r.t. a bi-capacity. This will be
shown in Theorems 6, 5 and 4 respectively.

We end this section by some bibliographical remarks. In cooperative game
theory, equivalent concepts have been proposed. The first attempt seems to
be due to D. Felsenthal and M. Machover, who proposed ternary voting
games as a generalization of binary voting games [9]. Ternary voting games
are functions from Q(N) to {—1, 1} satisfying all conditions of bi-capacities
except u(f,0) = 0. Binary voting games model the result of a vote when
some voters are in favor of the bill and the other voters are against [33].
The main limitation of such games is that they cannot represent decision
rules in which abstention is an alternative option to the usual yes and no
opinions. This leaded D. Felsenthal and M. Machover to introduce ternary
voting games [9]. These voting games can be represented by a function with
two arguments, one for the yes voters and the other one for the no voters.
This concept was limited by the fact that the output value belongs only to
the range {—1,1}. This has been generalized by J.M. Bilbao et al in [5],
yielding the definition of bi-cooperative games. Bi-cooperative games satisfy
all conditions of bi-capacities.

The generalization of capacities in MCDM to bipolar scales has been
carried out independently in [16] and [19]. The concept of bipolar capacity is
defined in [19] as a couple of capacities, one for the positive part and one for
the negative part. Bipolar capacities are strictly equivalent to bi-capacities
when the Choquet integral is used to interpolate these weights [18].

3 A motivating example

3.1 Description of the example

The director of a University decides on students who are applying for gradu-
ate studies in economics where some prerequisites from school are required.
Students are indeed evaluated according to mathematics (M), statistics (S)
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and language skills (L). These three criteria serve as a basis for a preselection
of the candidates. The best candidates then have an interview with a jury
composed of members of the University to assess their motivation in studying
economics.

The preselection relies upon scoring the candidates on the three attributes.
These scores are computed from the marks they obtained during their last
academic year. The easiest way to preselect the candidates would be to
require that the marks are above some thresholds on the three attributes.
However, one should not use such basic rule since, for instance, a student
that has a weakness in one course but is very good in the other ones deserves
being preselected. The values we referred to as thresholds are in fact aspi-
ration levels. Scores above these levels are thus considered as ‘rather good’,
and scores below these levels are considered as ‘rather bad’.

In general, the applicants have a strong scientific background so that
mathematics and statistics are of more importance to the director. How-
ever, good students in the sciences with weak language skills should not be
attracted. Besides, mathematics and statistics are to some degree substitu-
able, since, usually, students good at mathematics are also good at statistics.
As a consequence, for students good in mathematics, the director prefers a
student good at languages to one good at statistics. In other words, when the
mark with respect to mathematics is good, the director thinks that languages
are more important than statistics. This leads to the following rule

(R1): For a student good at mathematics (M), L is more impor-
tant than S.

Consider now a student that has a weakness in mathematics. In this case,
since the applicants are supposed to have strong scientific skills, a student
good in statistics is now preferred to one good in languages. More precisely,
we have the following statement

(R2): For a student bad in mathematics (M), S is more important
than L.

From rules (R1) and (R2), the weight attached to attributes S and L
is conditional on attribute M being in one of the ranges good or bad. The
aspiration levels (neither good nor bad) have a central role in the attributes.
This suggests to use a bipolar scale with these levels as neutral values. All
the marks with respect to the courses are given on the same bipolar scale
from —10 to 10, with neutral value 0.

Consider the following student A
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mathematics | statistics
student A 4 6

languages
-3

According to rule (R1), student A is highly penalized by his performance in
languages. As a consequence, the director would prefer a student (with the
same mark in mathematics) who is a little bit better in languages even if the
student would be worse in statistics. This means that the director prefers
the following student to A

mathematics | statistics | languages
student B 4 5 -2
We have thus
A< B (6)
Consider the following two students
mathematics | statistics | languages
student C -1 6 -3
student D -1 5 —2

Following rule (R2), C is preferred to D even though C is very bad in
languages.

C >~ D (7)

There is an inversion of preferences between (6) and (7) in the sense
that the relative importance of languages compared to statistics depends on
the satisfaction level in mathematics. This behavior is a typical example of
interaction between criteria.

3.2 Representation attempt of the example

For our first attempt to model (6) and (7), let us try with the Choquet
integral. We have C,(A) = =3 + 7T ({M,S}) + 21 ({S}) and C,(B) = -2 +
6p ({M,S}) + o ({S}). This shows that (6) is equivalent to

p(IM,S}) + 1 ({S}) < 1.

Similarly, relation (7) is equivalent to

p({M,S}) + 1 ({S}) > 1,
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which contradicts previous inequality. Hence, the Choquet integral cannot
model both (6) and (7).

It is no surprise that the Choquet integral cannot model both (R1) and
(R2). This is due to the fact that the Choquet integral satisfies additivity
to comonotone acts. This property shows that the Choquet integral is able
to model rules of the following type :

(R1%): If M is the best satisfied criteria, L is more important
than S.

(R2%): If M is the worst satisfied criteria, S is more important
than L.

On the other hand, rules (R1) and (R2) make a reference to absolute values
(good/bad in Mathematics). The Choquet integral does not allow to model
this type of property. The Choquet integral fails to represent the expertise
that makes an explicit reference to an absolute value.

In our example, the marks of the four applicants are ranked in the same
way: Languages is the worst score, Mathematics is the second best score,
and Statistics is the best score. Those four students are comonotone and
thus are represented by the same weighted sum with exactly the same co-
efficients. Since the weighted sum cannot model interaction, the Choquet
integral clearly cannot model (6) and (7).

Bipolar aggregation functions might be more appropriate than the asym-
metric Choquet integral. Let us first try the symmetric Choquet integral.
We have $,(4") = C, (4,6,0)=C,.(0,0,3) = 4 ({M, S})+24 ({S) =3 ({L})
and S,(B') = 4 ({M,S}) + 1 ({S}) — 2 ({L}). Hence (6) is equivalent to

p({S}) <u({L}).

Similarly, relation (7) is equivalent to

p({S}) > n({L}),

which contradicts previous inequality. Henceforth, the Sipos§ integral is not
able to model both (6) and (7).

Let us try to model (6) and (7) with the CPT model. We have CPT(A'") =
Cui(4,6,0)=C5(0,0,3) = 4y ({M, S} +2p1 ({S})—3p ({L}) and CPT(B') =
4y ({M, S}) + 1 ({S}) — 22 ({L}). Hence (6) is equivalent to

pa ({5}) < p2 ({L}) -
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Similarly, relation (7) is equivalent to

p ({8}) > p2 ({L}) -
Henceforth, the CPT model too fails to model both (6) and (7).

Let us try to model (6) and (7) with the extension of the Choquet integral
to bi-capacities. We have BC),(4,6, —3) = C,, 5, (4,6,3) = 3v,,;m,5y ({M, S, L})+
ey (ML SH+2, vy (SH) = 3 (M, ST (1) e (1M, SY 0)'+24 ({8} ,0)
and BC,(4,5,—-2) = 2p ({M, S}, {L}) + 21 ({M, S}, 0) + p ({S},0). Hence
(6) is equivalent to

p({M, S}, 0) — p ({M, S}, {L}) > ({5}, 0)

Similarly, relation (7) is equivalent to

p ({8}, {L}) >0

There is no contradiction between these two inequalities. BC), is thus able to
model the example. Bi-capacities are able to model this kind of preference,
where the weight of one attribute compared to another one depends on a
third attribute being in one of the ranges ‘good’ or ‘bad’. More generally, bi-
capacities can model general preferences that are conditional on the nature
of the attributes levels being good or bad. Such general preferences are often
encountered in real applications.

4 Axiomatic construction of the generalized
Choquet integral

In this section, we describe in details the construction of a MCDM model
based on the generalized Choquet integral, and in particular axioms charac-
terizing it. We follow the methodology recalled at the end of Section 2.3 for
unipolar scale. For bipolar scales, we take as 0; the neutral level of X, as de-
fined in Section 2.2. The 1; element keeps the same meaning as for unipolar
scales (see the end of Section 2.3). On top of defining for each attribute X;
the elements 0; and 1;, we assume furthermore that there exists an element
denoted by —1; that is considered as bad and unsatisfactory. It is symmetric
to the level 1;. All levels have the same absolute meaning, so we impose:



We make the assumption that the absolute levels 1; and —1; exist on all
scales. The case when some attributes lack the existence of one of the two
levels 1; or —1,; is discussed in Section 5.1.

The structure of this section is the following. First, we define the kind of
information we need from the DM in order to build the model (Section 4.1),
namely intra-criterion and inter-criteria information, based on the absolute
levels —1;, 0; and 1;, which lead respectively to the utility functions and
the bi-capacity. Second, we give conditions so that the utility functions u;,
i = 1,...,n and the bi-capacity are ratio scales (Section 4.2). Following
that, we derive requirements on F, y and the u;’s from the intra-criterion
and inter-criteria conditions (Section 4.3). Finally, we propose a set of axioms
(Section 4.4) from which the general Choquet integral follows (Section 4.5).
Some properties of this general Choquet integral are presented (Section 4.6).

4.1 Required information

We describe first intra-criterion information.

We consider here the mapping (denoted by u;) from the attribute X; to
the satisfaction scale IR. Unlike the case of interval scales [23], we do not
construct u; in one single step. The positive part X;r ={x; € X;, z; =; 0;}
and negative part X, = {z; € X, , z; <; 0;} of X, are dealt with separately.
As a consequence, we introduce the two subsets X | and X|; (for i € N)
of X defined by

X5 ={(z,0) , ;€ X;*} , X|; ={(2:,0) , zi € X; } .

We ask the DM not only the ranking of the elements of X | and X |; but
also the difference of satisfaction degree between pairs of elements of X | and
X |7. The interval scale constructed on X | (respectively X |;) is denoted
by u; (resp. u; ). ul and u; are defined by :

(Intra,) Fore € {—,+}, and for all z;,y; € X7, uf(x;) > uf(y;) < (x;,0-;) =
(yi’ O—Z)
(Intray) For € € {—,+}, and for all z;,y;, z;, w; € X such that u(z;) >
uf(y;) and uf(w;) > ué(z;), we have
ug () — ui(4)

=: k* iy Y1y Z;z>0
w(w) —u(z) (@0 2)

if and only if the difference of satisfaction degree that the DM feels
between (z;,0 ;) and (y;,0 ;) is k(x;, yi, wi, 2;) times as large as the
difference of satisfaction between (w;,0_;) and (z;,0_;).
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(Intra.) v (0;) =0, v (1;) =1, u; (0;) =0 and u; (—1;) = —1.

Conditions u; (0;) = 0 and u; (0;) = 0 ensure that the two scales u;" and u;

match at the element 0.

In order to be able to construct two unique scales u} and w; from
(Intra,), (Intra,) and (Intra.), some consistency assumptions shall be
made :

(Intray) For € € {—,+}, and for all z;,y;,w;, 2, 75,5, € X such that
ui(@i) > ui(yi), wi(wi) > uf(z) and uf(r;) > ui(si),

ke(xia Yi, Wi, Zz) X ke(wia Ziy Tiy Si) = ke(gjia Yi, Tiy Si)-

Assumption (Intra.) implies that functions u; and u; cannot be constant.
In particular, one has u; (1;) # v (0;) and u; (—1;) # u; (0;). By (Intra,),
this gives

(1;,0-;) # (On) , (=1;0-;) # (On) . (8)

These conditions are essential for the construction of the utility functions
from X |} and X|; .

The scale u; is then defined by

(z:) = uf (z;) if z; € X'
Uildi) = u; (x;) otherwise.

We give now inter-criteria information.

The following subset of X depicts a variety of alternatives that mix sat-
isfactory elements with unsatisfactory ones :

Xi—r01y = {(1a, =14, 0_auar) , (4, 4) € Q(N)}.

The satisfaction degree of (14, —14,0_4u4) will be denoted by u(A,A’).
Unlike the case of X'| {01} := {(14,0_4)} used in the unipolar case, there are
now three special points whose value must be fixed: p(0,0) = 0, u(N,0) =1
and p(@, N) = —1. These conditions are rather natural since p(@,0) = 0
means that the act which is neutral on all attributes is also neutral, u(N, () =
1 means that the act which is satisfactory on all attributes is also satisfactory,
and p(0, N) = —1 means that the act which is unsatisfactory on all attributes
is also unsatisfactory. Since there are only two degrees of freedom on an
interval scale, one of these three points must be removed from the scale. We
decide to remove (f, N). Let Q*(N) := Q(N) \ {(#,N)}. As before, we
ask information from which one can obtain a satisfaction scale defined on
X410}~ Let p be defined on Q*(N) by
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(Intera) V(A’ AI)’ (B’ BI) €Qr (N)a :U’(Aa AI) > :U’(Ba BI) g (]'Aa —1u, O—AUA’) =
(]-Ba _]-Bla O—BUB’)-
(Intery) V(A4,4"),(B,B'),(C,C"),(D,D") € Q*(N) such that u(A4,A") >
(B, B") and u(C,C") > u(D, D'), we have
,U(A, AI) — M(B’ BI)
,U(C, CI) o M(D’ DI)
if and only if the difference of satisfaction degree that the DM feels be-
tween (14, —14,0_4u4) and (15, —1p,0_pup) is k(4,4,B,8',c,¢",D,D")

times as large as the difference of satisfaction between (1¢, —1¢r, 0_cucer)
and (1D7 _].DI’ O_DUDI).

(Inter.) u(0,0) =0, u(N,0) =1 and V(A, A’) € Q*(N), pu(A, 4') € [-1,1].

=: k(a,4,B,B',c,c',D,0") > 0

p defined by (Inter,) and (Inter;) corresponds to an interval scale. Condi-
tion (Inter.) fixes these two degrees of freedom. Henceforth, p is uniquely
determined by (Inter,), (Inter;) and (Inter.). One can now define y on
Q(N) as follows :

, A A i (A, A
“(A’A):{ L—L(1 | if EA,A’;

In order to be able to construct a unique scale from (Inter,), (Inter,)
and (Inter.), some consistency assumptions shall be made :

Q*(N)
@, N).

Im

(Inter,) VA, A", B,B',C,C",D,D',E,E',F,F' C N such that u(A4,A") >
u(B, B, 4(C,C") > u(D, D') and (B, ') > u(F, )

k(aa",B,B',c,c',D,0") X k(c,c',D,0,E,E F,F") = k(A,A",B,B ,E,E F,F").

For A C A’, the preference relation > should satisfy (14, —1p5,0_4up) <
(14, —15,0_4yg), so that one should have (A, B) < u(A’, B). Similarly,
for B C B, it is natural to have (14, —15,0_4u5) = (14, —1p,0_aup), and
thus u(A, B) > u(A, B'). Previous two conditions on yu are the monotonicity
conditions on pu.

From above arguments, p defined as previously is a bi-capacity.

Let us reflect on the last condition in (Inter.). Since (f), N) is removed
from Q*(NN), nothing ensures the monotonicity of y defined on Q(N). Since
(0, N) = —1, condition pu(A, A") € [-1,1] for (A, A’) € Q*(N) is necessary
and sufficient to obtain that p defined on Q(N) is monotonic.
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4.2 Measurement conditions

The element 0; separates the levels of attractiveness from those represent-
ing repulsiveness. The absolute meaning of the 0;s elements deters us from
shifting the scale. However, when only elements of the X;'s are considered,
the real meaning of 0; is lost and thus this latter can be shifted. In other
words, when we restrict ourself to positive values, u; can be changed into
auf + B, with @ > 0 and 3 > 0. The same holds when only negative values
are considered (with o > 0 and § <0).

By commensurateness arguments, one must change all u;s in qu;+ 3 with
the same « and (3 (one cannot change only one scale) when all arguments are
above the zero level (see the justification of (SPLC)). Let X := X x---x
Xand X~ := X[ x---x X, . The measurement conditions for interval scales
imply thus that the ratios Z((?):Z((’;)) for all z,y, z,t € X shall not be changed
if all the u;s are changed into au;+ [ with o > 0 and # > 0. We assume in this
paper that this property holds only for the acts that we are considering in our
construction, that is to say for z,y, z,t € X | and z,y,2,t € X|{_103NXT.
The same holds for the negative part. We have X113 = X {1013 N X7
and X—I {0,-1} = X—I {-1,01} N X = {(—lA,O,A) , AC N} This leads to
the following requirement :

(Intra,) The ratio % for all (z,y,2,t) € U;en (XJ;’)4 U (X-|{0,1})4

(respectively (J;.y (XJ;)4 U (X {0,,1})4) shall not be changed if all
the u;s are changed into au; + § with a > 0 and 3 > 0 (resp. 5 < 0).

This condition is no more than the requirement that the u;’s are commensu-
rate interval scales on X+ and X~.

In [23], we justified the fact that capacities correspond to ratio scales. The
argument can be carried over to the case of bi-capacities. As a consequence,
p could be changed into yu with v € IRT. As previously, the following
requirement is imposed :

(Inter,) The ratio Z((Z)):Z((?;)) forall (z,y, z,t) € (XJZTF)4 U (XJ;)4 U (X]{0,1})4

U (X} {0,_1})4 shall not be changed if 11 is changed into yu, with vy € R™.

4.3 Conditions on the model

It is now natural to write u as follows:

u(z) = Fu(ua(z1), - s un(@n)), 9)
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where F), is the aggregation operator. F, depends on p in a way that is not
known for the moment. From now on, we assume that the preferences of the
DM can be modeled by u given by (9).

We study the conditions on F), implied by the previous requirements.

We consider first the consequences of intra-criterion information on the
aggregation function F,.

Lemma 3 If u satisfies (9), and if conditions (Intra,), (Intra,), (Intra.),
(Intray), (Intra.), (Inter,), (Inter,), (Inter.), (Inter;) and (Inter.)
are fulfilled, then for all 0 € {—1,1}, ba;, 0b;,0¢;,0d; > 0, and for all a > 0,
aﬂ 2 07 A ]R+7

P (aa; + B8,8) — F,(ab+ 6,85)  a; —b

E, (aci+ 83,8:) — Fyu(adi+ B8,6:) c¢i—di (10)

Proof : For z; € X', u(x;,0 ;) and u; (z;) correspond to two possible
interval scales related to the same act (z;,0_;) € X|F. Henceforth, by
(Intra,), (Intra,), and (Intra,)

w (i, 0) —u(y:, 05)  uf(z) — uf (vi)
u(wi,0-3) —u(2,0-)  u (wi) —uf ()

All arguments z;, y;, w;, z; and 0_; are above the zero level. We have

Fy (uff (@3),u®,(0-)) — F, (u (i), u?,(0_9)) _ou(m) — U?(yz‘).
Fy (uf (wi), ut;(05)) — Fy (uf (2:),ur5(0.5)) g (wi) = u (2)

Replacing u;" by au; + Vi € N (see (Intra.)) and p by yu (see (Inter,)),
we obtain for « > 0 and > 0

F,, (auf(:rz) + B, [5’4) -F, (Oluf(yi) + 5, 54) uf (z:) — uf (v:)

F,, (auj(wi) + 5, ,3_1-) —F, (auj(zz) + 83, ﬂ_i) uf (w;) — ui (z)

Now, setting a; = u; (z;), Vi = u (vi), s = ul (w;) and d'; = u; (2;), we
have a';,b';, ¢;,d’; > 0. Hence, we obtain for all o’;, ¥';, s, d’; € Range(u;),

and for all o/ >0, 3> 0, and v € IR,
o

(dd's +5,6-i) = Fyu (Vi + 8,8) _ a'i = Vs
F

F [
v (i + B, Boi) — By (ds + B, =) ¢i—d'i
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For any 6 > 0, set o = %', a; = 0d';, b; = 6b';, ¢; = 0c/; and d; = dd';. The set
of all possible values of a; when 6 € IR* and d'; € Range(u;") is R.. Hence,
for all a;, b;, ¢;,d; > 0, and for all & > 0, 3 > 0, and v € R, (10) holds.

We obtain by a similar reasoning on v, that for all a;,b;,c;,d; < 0, and
for alla > 0, 8 <0, and v € R,, equation (10) also holds. m

We now give the consequences of inter-criteria information on the aggre-
gation function F),.

By conditions (Inter,) and (Inter;), u (14, —14,0_4u4) and p(A, A")
correspond to two possible satisfaction scales related to the act (14, —14/,0_404/) €
X1¢-1,01}- Hence

[ (1A7 _]-A’a O—AUA’) —Uu (]-Ba _]-B’a O—BUB') :LL(A’ AI) - :LL(B’ BI)
u(le,—1¢,0_cuer) —u(1p, —1p,0_pup)  w(C,C") — u(D,D')’

which gives

Fu (UA(lA), UA’(_]-A’); U—AUA'(O—AUA')) - Fy (UB(IB), UB'(—lB'), U—BUB'(O—BUB'))

F, (uc(1e),ue (—1¢), u—cuer (0_cuer)) — Flu (up(1p), up (—1pr),u_pup (0_pup’))
H(A,A) = (B, B) o
u(C,C") — u(D, D)

Lemma 4 If u satisfies (9), and if conditions (Intra,), (Intra,), (Intra.),
(Intra,), (Intra.), (Inter,), (Inter;), (Inter.), (Inter,;) and (Inter,) are
fulfilled, then for alla >0, 3 >0, v€ R,

F’W ((a + ﬁ)Av IB—A) — F’W ((a + 5)37 ﬂ—B) _ :U‘(Av @) - :U'(Ba @) (12)
F,((a+08)c,B-c) = Fyu((a+B)p,B-p) p(C, 0) — u(D,0)

and for alla <0, <0, v € R,,
F’W ((a + ﬂ)Aa B—A) B F’W ((a + 6)3’ IB—B) — ,u(@, A) B ,u(@, B) (13)
Ey((a+B)e,B-c) — Fyu((@+B)p,B-p) w0, C)—pn(®,D)

Proof : Consider first A’ = B’ = C' = D' = (). By the measurement
conditions given in section 4.2, one can change in (11) the utility functions
u; by au; + f (with @ > 0 and # > 0) when all arguments are above the zero
level, and also change u by yu (v € Ry ). This gives (12) foralla > 0, 5 > 0
and v € IR,. We obtain similarly (13) foralla <0, §<0and y € R,. m
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4.4 Axioms satisfied by the aggregation function

The mapping w — F),(w) must be increasing, exactly as in (MC).

Monotonicity w.r.t. Bi-Capacities (MBC): For any p €
C*(N), Yw,w' € R",

w; <w'y, Vie N = F,(w) < F,(w')

Since F), aggregates commensurate scales and F), corresponds to a com-
pensatory function and thus to some kind of average, it is natural to assume
that whenever p € C%(N)

Fu(B,...,8) =8, V8> 0. (14)

We introduce the following axioms.

Properly Weighted w.r.t. Bi-Capacities (PWBC): For any
p€CHN), F, (1a,—1a,0 4aua) = (A, A"), V(A A') € Q(N).

Stable under Positive Linear transformations with posi-
tive shifts for Bi-Capacities and binary acts (SPLBC™)):
For any p € C*(N) for all AC N, « > 0, and 3 > 0,

Fy((a+B)a,B-a) = aF,(14,0_4) + 3

Lemma 5 If u satisfies (9), and if conditions (14), (MBC), (Intra,),
(Intra,), (Intra.), (Intra,), (Intra.), (Inter,), (Inter;), (Inter.), (Inter,)
and (Inter,) are fulfilled, then (PWBC) and (SPLBC™) are satisfied.

Proof : Let p follow from the construction of a DM’s preferences based
on intra-criterion and inter-criteria information. p belongs to C?(N) by the
fundamental assumptions (MBC), (Inter,), (Inter.). Applying (12), (14)
and from Lemma 4 with y =1, B= D = () and C = N, we obtain

FH((a—i_ﬁ)AaﬁfA) = CV/,I,(A, @) +/8 ’ Va >0 ) Vﬂ > 0. (15)

By (Intra.) and (11) with B=B'=D=D'=C"=0,C =N,

F,(14,—14,0404) — F, (On)

Filly) - Foon) - MAA)
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Hence, by (14), condition (PWBC) is satisfied for that ;. Combining (15)
and (PWBC), we obtain (SPLBC™) for that u. Considering all potential
decision strategies, we get (PWBC) and (SPLBC™) for all u € C*(N). m

(PWBC) is a generalization of (PWC) to ternary acts. The justification
of (PWBC) follows that of (PWC). The weight p(A, B) corresponds to the
overall evaluation of the ternary act that is satisfactory on A, unsatisfactory

on B and neutral on the other criteria. Moreover, (SPLBC™) is similar to
(SPLC™).

Bipolar aggregation quantifies a possible switch of behavior between at-
tractive and repulsive values. The information related to these sign-dependent
decision strategies is described by the bi-capacity p. F,(w) is thus some kind
of interpolation of the weight p at point w and it holds in itself nothing spe-
cial on the positive part compared to the negative one. F' just reproduces
what p tells. This implies that if we apply some symmetry through ® (see
equation (5)), it is similar to an exchange of the + and the — parts on the
bipolar axis. For instance, if we switch the + and the — parts on all criteria,
an act w is transformed into —w whereas a bi-game p is transformed into
1'(A,B) = u(B, A). The evaluation F,(w) of w from p shall be the same as
the evaluation F,(—w) of —w from y' if the scales are inverted. More gen-
erally, one can apply a symmetry only on a subset A of criteria. For A C N,
consider the following mapping II4 : IR" — IR" defined by

(s (w)); = { w; ifi€A

—w; otherwise

By (PWBC), u(B, B') corresponds to the point (1, —1p,0_pgug). Define
Myopby Myou(B,B") :=pu(® tollyod(B,B')). We have

140 ®(B, B') = (1(snayusna), —Lm ayusna, 0-pus) -
Hence
yop(B,B)=p((BNA)U(B'\ 4),(B\A)U(B'NA).

By symmetry arguments, it is reasonable to have Fi1,., (I14(w)) being equal
to Fj,(w).

Symmetry (Sym): For any p € G2(N), we have for all A C N

Fu(w) = Fyop (ILa(w)) .
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Equation (15) yields linearity of the mapping p +— F,(w) for the acts of
the form w = ((a + ) a, 5_4). More generally, the argument that motivates
(LC) can be reproduced here, leading to the linearity of F,, w.r.t. pu. Bi-
capacities can be indeed decomposed as linear combinations of elementary
bi-capacities. One can mention for instance the decomposition in terms of
bi-unanimity games and the M&bius transform [17].

F,(w) is some kind of interpolation of ;z at point w. Yet, y contains infor-
mation regarding decision strategies in all domains X4 for A C N. Therefore,
if w; > 0, one should consider only the decision strategies related to non-
negative values on criterion i, hence for terms u(B, B') of the bi-capacity for
which 7 does not belong to the negative part (i.e. ¢ ¢ B'). Similarly, the only
decision strategies that should be used for an act which score w.r.t. crite-
rion 7 is non-positive are the ones in the negative part of criterion ¢, that is
depicted by p(B, B') with i ¢ B. The decision strategies used to determine
the overall assessment of an element w € ¥4, A C N, are encoded by the

A
terms of u restricted to 1 <2A>, with
A
ot (2,4) ={(B,B)e Q(N), BC A, BnA=10}.

A
Hence, linearity of F,(w) w.r.t. x should hold in ®~* (2A> for w € ¥ 4.

Linearity w.r.t. Bi-Capacities (LBC): Let A ¢ N. If
[y 11, -+ 5 Hp € G2(N) satisfy u(B,B') = Y " o; p;(B, B') with

A
ag,...,a, €R, forall (B,B') e ®! <2A), then for all w € ¥4

Fu(w) = Y i B ()

4.5 Expression of the aggregation function

Theorem 3 {F,}, satisfies (LBC), (MBC), (PWBC), (SPLBC") and
(Sym) if and only if for any u € C*(N), and for any w € R",

Fu(w) = BC,(w).

Proof :
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o &: Let AC N, and w € EA. We have II4(w) € RY}. Let 7 be an
ordering of |w| : |w,q)| < -+ < |wr(y|. We write for v € C*(N)

Cu,a (Ma(w)) = Gy, , (Jw)

= Z e | [Vna ({7, 7(0)}) = va {7+ 1), 7(m) )]

For i € N, we have the following alternative. If 7(i) € A, then w. > 0
and thus, by monotonicity of p (condition (i)), v, 4 (T (z), oo, 7(n)) >

Vpa (T(t4+1),...,7(n)). Hence w,;) — F,(w) is increasing. Now, if
7(7) ¢ A, then wT( ) < 0 and thus, by monotonicity of 41 (condition (ii)),
Yy, (7( ) ,7(n)) <wvya(r(i+1),...,7(n)). We deduce once more

that w, () — F u(w) is increasing. Hence axiom (MBC) is fulfilled.

For v € C*(N), We have for « > 0 and 3 > 0

(N
F,((a+B)a,B-4) =Cy, , ((a+ B)a, B-4)
= OlC,,”,A (1A,O—A) 5Vu,A(N):aFu (1A,O,A)+ﬂ

so that (SPLBC™) is satisfied.

Let A, B C N, p € G*(N) and w € ¥p. Let us check that F,(w) =
Friyop (I (w)). On one hand,

Fu(w) = CV#,B (HB(w)) ’

where v, g(C) = p(CN B,C\ B). On the other hand, IT4(w) € Xp
with D = (BN A) U (B°N A°). Hence IIp(Il4(w)) € ¥y and

Fiigon (a(w)) = Cu (p(IL4(w)))
where v' = 11,0, p is given by

V(C) = Maopu(CnNnD,C\D)
plCnDNAUC\D)\A),(CND)\NAU(C\D)nA).

We have

CNDNA = CNAN[(BNA)U(B°N A%)]
= [CNAN(BNA)JU[CNANB*N A9
=0

= CNBNA
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and

(CND)\A = [(CNBNA)\AU[(CNBNAY\ Al

-0
CnNB‘nN A°.

From the relation

C\D C\ ((BNA)U (BN A9))
(C\N(BNA)N(C\ (BN A%))

(CN(A\B))u(CN(B\A))

one can deduce that

(CADINA = [([€n(4\B)\AJUl(CN(BA\A)\A]

-

=0

= CN(B\A4)
and
(C\D)NA = (CN(A\B)NA)U(CN(B\A)NA)
= CN(A\B) B
Consequently
V(C) = pu[(CNBNAUCN(B\A),(CNB°NA°)U(CN(A\B))
= u(CNB,C\B)=1,s(C). (16)
Moreover,

T4 (w)), ifie D
Mp(Ma(w)) = { — (I4(w)), otherwise

_ w; ifie(DNA)U (DN A°)
- —w; otherwise

We have DN A = BN A. Furthermore, since D= (B\ A)U (A \ B),
it holds that D°N A° = B\ A. Consequently (DN A)U (DN A°) = B,
and

p(Ia(w)) = p(w)
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Previous relation combined with (16) gives
Fiiiou (Ma(w)) = Cpr (TIp(Ia(w))) = Cy, 5 (Mp(w)) = Fy(w).

As a consequence, axiom (Sym) holds. It is easy to show that F),
satisfies the other axioms and in particular (LBC).

= : Consider now F), satisfying (LBC), (MBC), (PWBC), (SPLBC™)
and (Sym). Let u € C%(N) be fixed. For v € G!(N) define p, € G%(N)
by

, v(B) if B'=10
py (B, B') = { min (u(B, B'),v(B)) if B'#0 .

Let G, defined in IR"} such that

Let v,v1,...,u, € GH(N) such that v = Y P | o vy, with ay,... ,q, €
IR. One has p,(B,0) = Y7 a; u,(B,0) for all B C N, where
s s - - - B, € G2(N). Then by (LBC), for all w € R"

Golw) = Fyu(w) = 3 0 Fl, (w) = Y- 0 Gy (w).

Hence G, satisfies (LG™).

Consider v € C*(N). By construction, y, is monotone and normalized
so that y, € C2(N). Therefore, we have by (PWBC) for all C C N

G, (1¢,0-¢) = F,, (1¢,0-¢) = 1, (C,0) = v(O).
Hence G, satisfies (PWC).

Since p, € C*(N), the mapping w — Fy o (w) is increasing by
(MBC). This shows that (MC™) is fulfilled.

By (SPLBC™), and since y, € C*(N), we have for any C C N, a > 0
and 3 > 0,

G, ((a+B)c,B-c) = Fu, (a+B)c,B-c)=aF, (1¢,0_¢) + 8
aG, (1¢,0_¢) + 8
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Hence G, satisfies (SPLC™).

We conclude by Theorem 2 that (G, is the Choquet integral w.r.t. v. We
apply this to v, ¢ given by v,¢(B) := u(B,0). One has p, ,(B,B') =
w(B, B') for all (B, B') € Q(N). We conclude that for all w € IR"},

Fy(w)=F,, (w)=G, ,(w)=C0C, ,(w). (17)

Hry o

Consider now p € G*(N). Let v € GY(N) such that v(B) = (B, 0).
Using the M&bius decomposition, we write v = ),y ac Vo, where
ac are the Mobius coefficients, and vo € C*(N) is the unanimity game
w.r.t. C. Define p¢ by

/,I,C'(B,BI) = ch(B) — Vc(BI) .

Clearly, uc € C*(N). Moreover, u(B,0) = Y-y ¢ pe(B,0) for all
B C N. By (LBC), for all w € R,

Fu(w) = Z ag Fyg(w) -

CCN

Since pc € C*(N), one has F, (w) = C,,(w) by (17). Hence

Fy(w) = Z ac Cye(w) = CZCCN ac vo (W) = Cy(w) .

This proves that (17) holds also for u € G*(N).

Consider finally 4 € C?(N) and A C N. By (Sym), we have for
w € Yy, Fy(w) = Fuou (ITa(w)). Applying (17) to II4 o u € G*(N),
and Il4(w) € RY, we get Fii,op (Ha(z)) = Cyy ., (ITa(w)), where
Vigoud(B) = Haop(B,0) = (BN A,B\ A) = v, 4(B). Therefore
Fu(w)=C,, , (Il4(w)), so that F, = BC,. m

By (8) and (PWBC), the condition under which the utility functions

can be constructed from X | and X |; is:

Vie N, u({i},0) >0 and pu(0,{i}) <0.

Combining Lemma 5 and Theorem 3, we get

Corollary 1 If u satisfies (9), and if conditions (14), (LBC), (MBC),
(Sym) (Intra,), (Intra,), (Intra,.), (Intra,), (Intra.), (Inter,), (Inter;),
(Inter.), (Intery) and (Inter.) are fulfilled, then p € C*(N), and F, =
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4.6 Properties of bi-capacities

In this section, we show that the aggregation operator F) defined on bi-
capacities (see Theorem 3) generalizes the Choquet integral, the Sipos inte-
gral and the Cumulative Prospect Theory model.

Theorem 4 If u satisfies p(A,B) — u(A,B') = p(A',B) — u(A', B') for
any A, A", B, B' C N with (A, B), (A, B"),(4',B),(A",B') € Q(N), then F,
becomes the model of CPT.

Proof : It is easy to check that if u satisfies u(A, B) —u(A, B") = u(A’, B) —
pu(A’, B'), then there exist two capacities v; and vy such that p(A,B) =
v1(A) — 1y(B). Moreover, w — C,, (w") — C,,(w™) satisfies the axioms
(LBC), (MBC), (PWBC), (SPLBC") and (Sym). Hence, by uniqueness
implied by Theorem 3, one obtains F,(w) = C,, (w") — Cy,(w™). m

Consider now the symmetric case.

Theorem 5 If u satisfies p(A, B) = —p(B, A) for all (A, B) € Q(N), then
F,, is the Sipos integral of the fuzzy measure v given by v(C) = u(C, ).

Proof : It is easy to check that if p satisfies u(A, B) = —u(B, A) then
the Sipos integral with respect to the capacity v defined by v(C) = u(C,0)
satisfies the axioms (LBC), (MBC), (PWBC), (SPLBC") and (Sym).
Hence, by Theorem 3, F,,(w) = S, (w). m

Consider now the asymmetric case.

Theorem 6 If u satisfies u(A, B) = u(N\ B, N\ A) for all (A, B) € Q(N),
then F, is the Choquet integral of the fuzzy measure v given by v(C) =
u(C,0).

Proof : It is easy to check that if u satisfies u(A, B) = u(N\ B, N\ A), then
the Choquet integral with respect to the capacity v defined by v(C) = u(C,0)
satisfies the axioms (LBC), (MBC), (PWBC), (SPLBC™) and (Sym).
Hence, by Theorem 3, F,(w) = C,(w). m

5 Discussion on the practicality of the method

We have seen that the use of a bi-capacity enables to model more complex
interaction behaviors between attractive and repulsive values than usual ca-
pacities. Some practical issues concerning the construction of u; and p are
considered in this section.
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5.1 Construction of the reference levels

We have assumed so far the existence of three reference levels —1;, 0; and 1;
on each attribute X;. Since their role is essential in the proposed method, it
is useful to indicate how they can be determined.

The motivation of this paper which follows the one described in [14, 23] is
to ask to the DM the least possible information to construct the full model.
Starting right away with the most complicated model, namely a bi-capacity,
without any knowledge regarding a non-symmetric behavior and thus that
the usual Choquet model is not sufficient may not be the best strategy. We
advise to begin with the unipolar assumption [23] (see Section 2.3). Two sat-
uration levels are constructed on a unipolar scale. The 0 level corresponds to
the total absence of some property, as the 0 level in fuzzy sets. Its determina-
tion can be derived as for fuzzy sets. The 1 reference level has the meaning of
a satisfactory level. The existence of such a level has been the main argument
of H. Simon in his theory of satisficing bounded rationality [34], and a fun-
damental assumption in the Macbeth methodology. These levels have been
determined in a number of applications [2, 3, 4]. A methodology for their
determination is proposed in [4]. Once the 0; and 1; levels are determined on
the unipolar scales, one then gives some examples of comparisons between
alternatives, exactly as in Section 3. If the Choquet integral fails to model
those examples, one can think of more versatile aggregation functions. There
may be really a lot of reasons for which a Choquet integral cannot represent a
set of comparisons between acts. We are interested in this paper in the cases
in which the underlying reason is non-symmetric attitude of the DM toward
attractive and repulsive values. The example given in Section 3 is typical.
The non-symmetric behavior is due to the presence of the neutral level. It
has some consequences on the preference relation. The neutral elements 0;
bear the very meaning of ratio scales. Hence, if non-symmetric phenomena
occur in the expertise given by the DM, the neutral level does exist for the
DM. So, he shall be able to provide this level.

Level —1; is symmetric to level 1; and can be obtained in the same way.
It may happen that there is no repulsive element on some attributes. In this
case, it may be more complex to define the negative reference levels —1 on
these attributes. They can, however, be defined through the introduction of
artificial elements added to the attributes, as done in the Macbeth approach
[2]. This may be impossible for a DM, for instance if he cannot imagine
an ill-satisfied value on a criterion. Let us denote by I the set of criteria for
which the —1; elements cannot be defined. Let us investigate the practicality
of our approach when I # (). Since —1; is not defined for 7 € I, bi-capacities
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are not defined on couples (4, B) with BN I # (). Setting
Qr(N)={(4,B) € Q(N), BNnI=10}

we define C?(N) as the restriction of bi-capacities to Qr(IV). Since attributes
of I have only attractive elements, the profile of acts of X belong to

Rr=Aw=(wy,...,w,) € R", Viel, w;>0}.

It is easy to see that for w € Ry and p € C*(N), BC,(w) uses only terms
of u in Qr(N). Hence, the Choquet integral can be defined in R; from a
“measure” in CZ(N). Our approach can be thoroughly extended to this case.

5.2 Determination of the utility functions

Let us investigate here how to construct in practice the utility function u;.
We follow the Macbeth methodology [1]. The goal of this section is not
to give very precise details concerning the Macbeth approach. We refer to
references [1] for a more detailed explanation of the Macbeth approach.

For the sake of simplicity, assume that attribute X; has a finite set of
values : X; = {a;%,... a0}, X;" ={al,... "} with ¢ = 0;. We aim at

determining u; (af) for all j € {—g;,...,0} and u; (a!) forall j € {0,... ,p;}.

From a theoretical standpoint, the construction of u; (respectively u; )
from (Intra,), (Intray) and (Intra.) is straightforward if the data is con-
sistent. Indeed, applying (Intray) with z; = a!, y; = z; = 0; and w; = 1;
(resp. w; = —1;), together with (Intra.) yields
uf(dl) = k+(a§-, 0;,1;,0;)(resp. u; (a!) = k_(aj-,OZ-, -1;,0;))

where kt (resp. k) is given by (Intra;). Proceeding in this way ensures
uniqueness of u; and u; .

Of course, it is not reasonable to ask a DM to give directly the value
of k¢ as a real number. The idea of the Macbeth methodology is to ask an
information of an ordinal nature to the DM, namely on the following ordinal
scale {very small, small, mean, large, very large, extreme}=: £. In order to
construct interval scales, the DM is asked to assess (giving a value in the scale
&) the difference of attractiveness u; (a]) — u; (af) (resp. u; (a!) — uy (af))
between two values a and af in X;" (resp. X, ), for any j # k such that
(O_z-, al ) > (O_i, af). The information asked in practice is thus quite similar
to (Intra,). The advantage of asking u; (o) — u (a¥) or uy (a?) — u; (a}) is

that it is easier for a human being to give some relative information regarding
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a difference (for instance u;f (al) — u; (a¥) or u; (a!) — u; (a¥)) than to give
some absolute information (for instance u; (a!) or u; (al)).

There is no unique utility functions u; (resp. u;) corresponding to the

data composed of the values u; (a!) — u; (a¥) (resp. u; (a!) — u; (a¥)), for
j # k, given on the scale £. All possible solutions have to be consistent with
the given information. In practice, one utility function is chosen among all
possible ones [1].

The drawback of asking redundant information is that some inconsisten-
cies may be introduced by the DM. For instance, for a}', /> and a® such
that (0_;,al') > (0_;,a?®) > (0_;, al®), here is an example of inconsistency :
the difference of satisfaction degree between agl and a{? is judged wvery small
by the DM, the one between af and afe’ is also judged wvery small, and the
one between afl and aga is judged eztreme. C.A. Bana e Costa, and J.C.
Vansnick showed that inconsistencies are related to cyclones in the prefer-
ence relation structure [1]. This property enables to detect and explain all

possible inconsistencies [1].

5.3 Determination of the bi-capacity

We could imagine proceeding as for u; to obtain . The DM would be asked
about the difference of satisfaction between the alternatives (14, —15,0_auB)
and (1¢,—1p,0_cup) (for (A, B) # (C,D)). Actually, even if this way is
possible, it is not generally used because of the following two reasons. The
first one is that it may not be natural for a DM to give his preferences on
the prototypical acts (14, —15,0_4up). The second one is that it enforces

the DM to construct a ratio scale over 3" alternatives. This requires roughly
(3")? _ om
2 T2

questions to asked to the DM. This is far too much in practice.

Conditions (Inter,), (Inter,) and (Inter.) were introduced to show the
practicality of the use of the bi-capacities to model the preference relation >
on the Cartesian product of the attributes.

In practice, (Inter,), (Inter,) and (Inter.) shall be replaced by any
classical method designed to deduce the bi-capacities from information on
acts given in IR". One could think of natural extensions of methods deter-
mining capacities by optimization methods (linear programming [26, 27, 13],
quadratic programming [12], and heuristic-based methods [11]).

However, we are faced here with another difficulty. As mentioned pre-
viously, a bi-capacity contains 3" unknowns which makes its determination
quite delicate. As an example, with 5 criteria, a capacity has 2° = 32 co-
efficients whereas a bi-capacity holds 3% = 243 coefficients. Ten well-chosen
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learning examples are generally enough to determine a capacity with 5 cri-
teria. It is not possible to say in advance the precise number of learning
examples necessary to determine a bi-capacity. However, one can estimate
that at least 80 learning examples are necessary for a bi-capacity related to
5 criteria. This is obviously beyond what a human being could stand.

The way out to this problem is to reduce the complexity of the model. The
first idea is to restrict to sub-classes of bi-capacities, such as the k—additive
bi-capacities [17]. For instance, there are 2n? = 50 unknowns for a 2—additive
bi-capacity with 5 criteria. Other approaches are also possible. One can for
instance add new coefficients to a usual bi-capacities only when necessary
and only in a limited context so that we do not go directly from 2" to 3"
when usual capacities are not sufficient [24].
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