O. D. Anderson, The autocovariance structures associated with general unit circle non-stationary factors in the autocovariance operators of otherwise stationary ARMA time series models, Cahiers du CERO, vol.21, pp.221-237, 1979.

J. Arteche, Semiparametric robust tests on seasonal or cyclical long memory time series, Journal of Time Series Analysis, vol.23, issue.3, pp.251-285, 2003.
DOI : 10.1017/S0266466699153027

J. Arteche and P. M. Robinson, Semiparametric Inference in Seasonal and Cyclical Long Memory Processes, Journal of Time Series Analysis, vol.21, issue.1, pp.1-25, 2000.
DOI : 10.1111/1467-9892.00170

J. B. Carlin and A. P. Dempster, Sensitivity Analysis of Seasonal Adjustments: Empirical Case Studies, Journal of the American Statistical Association, vol.82, issue.405, pp.6-20, 1989.
DOI : 10.1137/1010093

N. H. Chan and W. Palma, Efficient estimation of seasonal long range dependent processes, Journal of Time Series Analysis, vol.26, pp.863-892, 2005.

C. Chung, A GENERALIZED FRACTIONALLY INTEGRATED AUTOREGRESSIVE MOVING-AVERAGE PROCESS, Journal of Time Series Analysis, vol.20, issue.2, pp.111-140, 1996.
DOI : 10.1214/aos/1176347975

O. Darné, V. Guiraud, and M. Terraza, Forecasts of the seasonal fractional integrated series, Journal of Forecasting, vol.23, issue.1, pp.1-17, 2004.
DOI : 10.1002/for.907

A. K. Diongue and D. Guégan, Forecasting electricity spot market prices with a k-factor GIGARCH process, Note de recherché MORA -IDHE -n? 9, 2004.

P. H. Franses and M. Ooms, A periodic long-memory model for quarterly UK inflation, International Journal of Forecasting, vol.13, issue.1, pp.117-126, 1997.
DOI : 10.1016/S0169-2070(96)00715-7

L. Ferrara and D. Guégan, Forecasting Financial Times Series with Generalized Long Memory Processes, Advances in Quantitative Asset Management, pp.319-342, 2000.
DOI : 10.1007/978-1-4615-4389-3_14

L. Ferrara and D. Guégan, -factor Gegenbauer Processes: Theory and Applications, Journal of Forecasting, vol.27, issue.3, pp.581-601, 2001.
DOI : 10.1002/for.815

URL : https://hal.archives-ouvertes.fr/halshs-00259193

L. Ferrara and D. Guégan, Comparison of parameter estimation methods in cyclical long memory time series, Developments in Forecast Combination and Portfolio Choice, 2001.
URL : https://hal.archives-ouvertes.fr/halshs-00196426

L. Giraitis and R. Leipus, A generalized Fractionally Differencing Approacg in Long Memory Modelling, Lithuanian Mathematical Journal, vol.35, pp.65-81, 1995.

J. Geweke, P. Hudak, and S. , THE ESTIMATION AND APPLICATION OF LONG MEMORY TIME SERIES MODELS, Journal of Time Series Analysis, vol.50, issue.3, pp.67-90, 1983.
DOI : 10.1137/1010093

L. A. Gil-alana, Testing Stochastic Cycles in Macroeconomic Time Series, Journal of Time Series Analysis, vol.22, issue.4, pp.411-430, 2001.
DOI : 10.1111/1467-9892.00233

L. Giraitis and R. Leipus, A generalized fractionally differencing approach in long-memory modeling, Lithuanian Mathematical Journal, vol.27, issue.1, pp.65-81, 1995.
DOI : 10.1007/BF02337048

C. W. Granger and R. Joyeux, AN INTRODUCTION TO LONG-MEMORY TIME SERIES MODELS AND FRACTIONAL DIFFERENCING, Journal of Time Series Analysis, vol.7, issue.1, pp.15-29, 1980.
DOI : 10.2307/3212527

P. Grassman and F. Keereman, An indicator-based short-term forecast for quarterly GDP in the euro area, Economic Paper 154, 2001.

H. L. Gray, N. Zhang, and W. A. Woodward, ON GENERALIZED FRACTIONAL PROCESSES, Journal of Time Series Analysis, vol.7, issue.12, pp.233-257, 1989.
DOI : 10.2307/2287515

D. Guégan, A new model : the k-factor GIGARCH process, Journal of Signal Processing, vol.4, pp.265-271, 2000.

D. Guégan, A prospective study of the k-factor Gegenbauer process with heteroscedastic errors and an application to inflation rates, Finance India, vol.17, pp.1-21, 2003.

D. Guégan and S. Ladoucette, Non mixing properties of long memory processes, CRAS Paris, t. 332, Série I, pp.1-4, 2001.

U. Hassler, (MIS)SPECIFICATION OF LONG MEMORY IN SEASONAL TIME SERIES, Journal of Time Series Analysis, vol.10, issue.1, pp.19-30, 1994.
DOI : 10.2307/2289769

J. R. Hosking, Fractional differencing, Fractional differencing, pp.165-176, 1981.
DOI : 10.1093/biomet/68.1.165

D. Huang and V. V. Anh, ESTIMATION OF THE NON-STATIONARY FACTOR IN ARUMA MODELS, Journal of Time Series Analysis, vol.11, issue.1, pp.27-46, 1993.
DOI : 10.1214/aos/1176346252

S. C. Olhede, E. J. Mccoy, and D. A. Stephens, Large-sample properties of the periodogram estimator of seasonally persistent processes, Biometrika, vol.91, issue.3, pp.613-628, 2004.
DOI : 10.1093/biomet/91.3.613

S. Porter-hudak, An Application of the Seasonal Fractionally Differenced Model to the Monetary Aggregates, Journal of the American Statistical Association, vol.14, issue.410, pp.338-344, 1990.
DOI : 10.1111/j.1467-842X.1985.tb00576.x

B. K. Ray, Long-range forecasting of IBM product revenues using a seasonal fractionally differenced ARMA model, International Journal of Forecasting, vol.9, issue.2, pp.255-269, 1993.
DOI : 10.1016/0169-2070(93)90009-C

V. A. Reisen, A. L. Rodrigues, and W. Palma, Estimation of seasonal fractionally integrated processes, Computational Statistics & Data Analysis, vol.50, issue.2, 2004.
DOI : 10.1016/j.csda.2004.08.004

P. M. Robinson, Efficient Tests of Nonstationary Hypotheses, Journal of the American Statistical Association, vol.89, issue.428, pp.1420-1457, 1994.
DOI : 10.1080/01621459.1984.10477111

W. A. Woodward, Q. C. Cheng, and H. L. Gray, A k-Factor GARMA Long-memory Model, Journal of Time Series Analysis, vol.19, issue.4, pp.485-504, 1998.
DOI : 10.1111/j.1467-9892.1998.00105.x