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Abstract. This paper introduces non-parametric estimators for upper and lower tail

dependence whose confidence intervals are obtained with a bootstrap method. We call

these estimators ”Näıve estimators” as they represent a discretization of Joe’s formulae

(1997) linking copulas to tail dependence. We apply the methodology to an empirical

data set composed of three composite indexes for the three Tigers (Thailand, Malaysia

and Indonesia). The extremes show a dependence structure which is symmetric for

the Thai and Malaysian markets and asymmetric for the Thai and Indonesian markets

and for the Malaysian and the Indonesian markets. Using these results we estimate

the copula (which belongs to the Student or Archimedean copula families) for each

pair of markets by two methods. Finally, we provide risk measurements using the best

copula associated to each pair of markets.
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1. Introduction

The existence of co-movements and contagion in detrended macroeconomic series are

important issues that have been discussed in the literature. Mainly, it was shown that

the cross market correlation increases up to a significant degree during turmoil periods.

This means that if a shock affects one market (decreasing for instance), this has a domino

effect on the other one (which also decreases). In this article, we are interested in Asian

markets and particularly in the three Tigers. The period of study includes the crisis at

the end of the Nineties, which represented a period of great turbulence. Rather than

investigating this contagion’s phenomenon, we will focus on the existence of interaction

between these markets. First of all the knowledge of interaction between the markets

necessitates to measure their correlation. It is well known that the correlation is only

informative in a linear and a Gaussian context. Moreover it can change, see Boyer et

al. (1999), because the volatility evolves overtime. To circumvent this problem we will

use the tail correlation measure. This measure is very interesting because it provides a

global information and takes into account the existence of dependence inside extreme

values of data sets. It also permits risk management and proposes a measure of risk for

a portfolio.
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Figure 1. Daily closing level of Asian markets from 02/07/1987 to 17/12/2002. Data

were collected at Dexia Crédit Local via Bloomberg.

The understanding of the interaction between different markets requires knowledge of

the joint distribution function for two data sets. The latter is difficult to obtain when

we are not in an independent setting, but as soon as the variables are dependent we

can use the copulas to approach the joint distribution. Let (Z1, . . . , Zn) be n markets,

we are going to obtain the copulas which characterize them. This approach is not new

and a lot of researchers have already investigated this problem, see for instance Frees

and Valdez (1998) and Breymann et al. (2003). These articles show the opportunity
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to leave the Gaussian world, as is pointed out in Embrechts et al. (1999, 2002). Our

approach will be different: we will use the tail dependence behavior of the markets to

determine the best copula for each pair of markets.

We recall that a copula C links multivariate distribution function F to its unidimensional

marginal distribution functions (F1, . . . , Fn) thanks to the following relationship due to

Sklar’s theorem (1959):

∀ z1, . . . , zn ∈ R F (z1, . . . , zn) = C(F1(z1), . . . , Fn(zn)). (1.1)

Function C is unique if and only if F1, . . . , Fn are continuous.

In this paper, in order to find the best copula which characterizes the markets that we

investigate, we consider two approaches:

(i) We develop a method which uses the empirical copula of Deheuvels (1979), and the

notion of tail dependence. We introduce new estimators for the upper and the lower

tail dependence, respectively λ̂U and λ̂L. We use these estimates to determine the

copula which is best adapted to the data. These tail estimates are called ”Näıve”

estimators because they represent a discretization of Joe’s formula linking copulas

to tail dependence (see Joe (1997), page 33 for their precise definition). Other works

are related to the estimate of the tail dependence: Malevergne and Sornette (2001,

2002) investigated the null hypothesis that the dependence between financial assets

can be modeled by the Gaussian copula. Using the factor models’ framework, they

established a general expression of the coefficient for the tail dependence between

a market and a stock; Coles et al. (1999) proposed an estimation of the tail

dependence using a logarithm approximation. The difference with our approach

is that it is based on the definition that we use to derive an estimation of λU and

λL. We also propose some simulations to specify the properties of these estimates

and we investigate the influence of the sample size. This approach permits to

characterize the estimated copulas with respect to their tail dependence behavior.

(ii) For the different copulas chosen amongst Elliptical and Archimedean families, we

estimate their parameters using a maximum likelihood approach, see also Oakes

(1994) and Breymann et al. (2003). This approach is based on the Akaike criteria

(Akaike, (1974)), to discriminate between the different copulas. This last approach

permits us to derive estimates for tail dependence.

These two methods are complementary. The first one uses both tail dependence behav-

ior of the bivariate distribution and a D2 diagnostic to discriminate between a set of

copulas. The second one is based on the maximum likelihood estimate of the copula’s

parameter ψ. The first approach is based on the local properties of the bivariate distri-

bution and the second one on its global properties.

The remainder of the paper is organized as follows. In Section 2, we define the

concept of tail dependence and we introduce the Student and Archimedean copulas.
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Section 3 introduces the ”Näıve” estimators for the upper and lower tail dependence

parameters. We explain how these parameters work empirically and we derive their

values for Gumbel and Clayton copulas through simulations. We apply this method

to compute the tail dependence of Tiger markets pairs. In Section 4 we introduce two

different methodologies to find the ”best” copula which characterizes the market pairs.

We compare the methods. In Section 5, these results are used to define a measure of

risk for each markets pair. Finally, Section 6 concludes.

2. Tail Dependence and Copulas

In this Section we introduce the tail dependence concept. We define Student and

Archimedean copulas and provide relationships between Kendall’s tau, the correlation’s

coefficient and the tail dependence parameters for these copula families.

2.1. Tail dependence concept

In order to estimate the copula from a bivariate observational data sets, we use in Section

3 the tail dependence concept. It relates the amount of dependence in the upper-right-

quadrant tail or in the lower-left-quadrant tail of a bivariate distribution. The upper

and lower tail dependence parameters of the random vector (Z1, Z2) with copula C, can

be defined in the following way, see Joe (1997) for instance:

Definition 2.1 If a bivariate copula C is such that

lim
u↑1

C(u, u)/(1 − u) = λU

exists, with C(u, u) = 1− 2u+C(u, u), then the copula C has an upper tail dependence

if λU ∈ (0, 1] and no upper tail dependence if λU = 0. Moreover if a bivariate copula C

is such that

lim
u↓0

C(u, u)/u = λL

exists, we will say that the copula C has lower tail dependence if λL ∈ (0, 1] and no

lower tail dependence if λL = 0.

This Definition will be used in Section 3 to derive estimators for the tail dependence

parameters.

2.2. Student Copula

In this article, the data sets will led us to use the Student copula. This copula belongs

to the elliptical family and is completely described by: the linear correlation coefficient

ρ and the degrees of freedom ν. For this symmetrical copula we have a relationship

between ρ and Kendall’s tau, see Lindskog et al. (2001):

τ(Z1, Z2) =
2

π
arcsin(ρ(Z1, Z2)). (2.1)
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Then, the lower and upper tail dependence coefficients for the Student copula are given

by the following equation:

λL = λU = 2tν+1

(

√

(ν + 1)(1 − ρ)

1 + ρ

)

, (2.2)

where tν+1(x) = 1 − tν+1(x) and tν+1 is the Student distribution function with ν + 1

degrees of freedom. Thus, λU is an increasing function of ρ. We can also observe that

when ν tends to infinity, λU tends to 0. For more details on the elliptical copulas, we

refer to Cambanis et al. (1981) and Fang et al. (2002).

2.3. Archimedean Copulas

Archimedean copulas are defined through a generator function φθ such that:

Cφθ
(u, v) = φ−1

θ (φθ(u) + φθ(v)), (2.3)

where φθ : [0, 1] → [0, ∞[ is a decreasing convex function such that φθ(1) = 0, with

φθ(0) = limt↓0 φθ(t) and φ−1
θ (t) = 0 for s ≥ φθ(0), by convention. When limt↓0 φθ(t) = ∞

we say that φθ is a strict generator and that Cφθ
is a strict copula.

In Table 1 we specify the range of the parameter θ, the tail dependence parameters and

the Kendall’s tau of the following copulas: Clayton, Frank, Gumbel and Joe. These

results constitute a little part of those given by Genest and MacKay (1986a,b), Ledford

et al. (1996, 1998), Joe (1997), Heffernan (2000) and Caillault and Guégan (2003). Note

that τ , λU and λL are expressed in function of θ. We can also derive λU and λL of a

survival copula‡ from its associated copula using the Definition 2.1. Thus, λCS

U = λCL and

λCS

L = λCU . It means that if a copula has an upper tail dependence then the associated

survival copula has a lower tail dependence and conversely. Moreover, a survival copula

and its associated copula have the same Kendall’s tau, see Georges et al. (2001) for

details.

Table 1. Properties of Archimedean Copulas. (a) only true for θ > 0.

D1(θ) = 1

θ

∫ θ

0

t

et
−1

dt. The symbol X means that a numerical computation is required

to obtain τ .

Family Range of θ λU λL τ

Clayton [−1,+∞[\{0} 0 2−
1

θ (a)
θ

θ + 2
Frank ] −∞,+∞[\{0} 0 0 1 + 4(D1(θ) − 1)/θ

Gumbel [1,+∞[ 2 − 2
1

θ 0 1 −
1

θ
Joe [1,+∞[ 2 − 2

1

θ 0 X

‡ The survival copula of C is given by: CS(u, v) = u + v − 1 + C(1 − u, 1 − v).
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The Archimedean copulas introduce above cannot explain all the tail behavior observed

on financial markets. Indeed, looking at Table 1, we observe that if a copula has an

upper tail dependence then it does not have a lower tail dependence and conversely. In

order to obtain copulas which have an upper and a lower tail dependence without being

symmetrical, we construct new copulas as a convex linear combination of two copulas.

Hence, for ω ∈ [0, 1] and two Archimedean copulas Cθ1 and Cθ2 we obtain a copula C

defined as:

C(u, v) = ωCθ1(u, v) + (1 − ω)Cθ2(u, v). (2.4)

The properties of these copulas can be derived from those of Cθ1 and Cθ2 . Suppose that

Cθ1 and Cθ2 have respectively an upper and a lower tail dependence. Then,

λCU = ωλ
Cθ1

U , (2.5)

and

λCL = (1 − ω)λ
Cθ2

L . (2.6)

The Kendall’s tau of the copula C defined in (2.4) is equals to§:

τC = τC = ω2τCθ1
+(1−ω)2τCθ2

+2ω(1−ω)(4

∫

I2
Cθ1(u, v)dCθ2(u, v)−1).(2.7)

The relationship (2.7) can also be expressed in function of the parameters λCU , λCL and

ω. Assume that θ1 and θ2 are respectively the parameters of the Gumbel and Clayton

copulas, then if C represents their convex linear combination as in (2.4), we obtain for

ω 6= 0, 1 that:

τC = ω(1−1/θ1)+(1−ω)(θ2/(θ2+2))+2ω(1−ω)(4

∫

I2
Cθ1(u, v)dCθ2(u, v)−1),(2.8)

where

θ1 =
log 2

log (2 − λCU/ω)
, (2.9)

and

θ2 = −
log 2

log(λCL/(1 − ω))
. (2.10)

Then, for given τC , λCU and λCL , ω is deduced from (2.8), and θ1 and θ2 are obtained

from equations (2.9) and (2.10). We can derived similar formulae for the convex linear

combination of: Gumbel + Survival Gumbel, Survival Clayton + Survival Gumbel and

Survival Clayton + Clayton. By convention, the first copula for all the convex linear

combinations has an upper tail dependence and the second one has a lower tail depen-

dence.

§ We make a point of thanking Jean-David Fermanian whose remarks made it possible to obtain

this result.
∫

I2
Cθ1

(u, v)dCtheta2
(u, v) is obtained numerically by using the Fortran library ADAPT

developed by A. Genz (See Berntsen et al. (1991a,b)).
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3. Estimation of tail dependence: Application to Asian Markets

In this section, we introduce the ”Näıve” estimators for the upper and lower tail

dependence parameters derived from Definition 2.1 and based on the Deheuvels’ copula

(1979). We specify the properties of these estimators through simulations. In fine, we

apply our results to three Asian markets.

3.1. ”Näıve” Estimation for the tail dependence parameters

In order to adjust a copula from an observational data sets, we choose to model the

extremes of each markets pair, via the parameters λU and λL. In this way we propose

the following estimators for λU and λL called ”Näıve” estimators. Their representation

are:

λ̂U = lim
i→N

1 − 2i
N

+ Ĉ( i
N
, i
N

)

1 − i
N

, (3.1)

and

λ̂L = lim
i→0

Ĉ( i
N
, i
N

)
i
N

, (3.2)

where N is the length of the data sets. The empirical copula Ĉ introduced by Deheuvels

(1979) is defined as follows:

Definition 3.1 Let z = {(z1k
, z2k

)}Nk=1 denotes a sample of size N from a continuous

bivariate distribution. The empirical copula is the function Ĉ defined by:

Ĉ(
i

N
,
j

N
) =

#((z1, z2), z1 ≤ z
(i)
1 and z2 ≤ z

(j)
2 )

N
, (3.3)

where # is used for cardinal and z
(i)
1 , z

(j)
2 for 1 ≤ i, j ≤ N represent the order statistics

obtained from the sample.

This empirical distribution Ĉ is uniformly almost surely consistent, see Deheuvels

(1979). This property can be extended to λ̂U and λ̂L. Limits (3.1) and (3.2) can-

not be obtained in an empirical setting. Thus, we introduce the following procedure to

obtain estimates of λU and λL.

We define the two next statistics for i ∈ {1, . . . , N − 1}:

λ̂U(
i

N
) =

1 − 2i
N

+ Ĉ( i
N
, i
N

)

1 − i
N

, (3.4)

and

λ̂L(
i

N
) =

Ĉ( i
N
, i
N

)
i
N

, (3.5)

with Ĉ given in (3.3). These statistics represent the trajectory of λU and λL on [0, 1]

with respect to i/N . Now, to obtain the expected values of λ̂U and λ̂L defined in (3.1)
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and (3.2), we are going to choose the position i graphically. We propose to select i using

a specific property of λU and λL. We know that on [0, 1], λU and λL are a decreasing

and an increasing function of u, thus the last values of i = i0 for which these properties

are observed, will be chosen. Then, we define:

λ̂U = λ̂U(
i0
N

), (3.6)

and

λ̂L = λ̂L(
i0
N

). (3.7)

Now, if λ̂U(.) takes identical values for several consecutive values i, then we record these

k values which are include between N −p−k and N −p and we choose i0 as the median

of the interval (the same method is applied with λ̂L(.)). The principal difficulty of the

previous mechanical procedure lies in the interpretation of the variation’s change or the

stability of the curves λ̂U(.) and λ̂L(.). Suppose that we select i too large, then the λ̂U
confidence interval could explode. Now, if i is selected too small, then we introduce a

bias in the estimates. Only the practice and the following step permit to obtain a useful

approach to choice i0.

This step consists to obtain the average curves λ∗
U(.) and λ∗L(.) which are smoother than

λ̂U(.) and λ̂L(.). They are obtained by a bootstrap method. After s bootstrap resam-

pling z∗, we obtain s trajectories from which we derive the average curves. Then, we use

the method based on percentiles of the bootstrap distribution introduced in Efron and

Tibshirani (1993) to obtain confidence intervals of λ̂U( i
N

) and λ̂L( i
N

). The bounds of

these confidence intervals at level 1− 2α are the quantile of the bootstrap distributions.

We denote them by λ̂
(low)
U ( i

N
) = Qα and λ̂

(up)
U ( i

N
) = Q1−α. This step permits to choose

more precisely the value i0 for which we observe a behavior’s change.

Now, we provide simulations. We simulated N = 100, 5000 samples from the Gumbel

copula with standard Gaussian margins, for several values of the parameter λU and

s = 100. The values obtained for λU using the previous method, are given in Table 2.

This table provides the values of i0, and the column called ”Observed” corresponds to

the values of upper tail dependence estimate obtained without bootstrap. The other

columns correspond to the mean, the standard error (s.e), the bias and the quantiles

of the empirical bootstrap distribution function of λ̂U( i0
N

) with α = 5%. We observe

that the bigger N is, the more efficient is the estimate for the upper tail dependence

parameter. Indeed, we note that the standard error and the bias decrease with the

increase of the sample length. On the other hand, the convergence towards the true

value seems difficult to obtain when λU is lower than 0.2, whatever the sample size N .

This Table also gives the lower tail dependence parameter estimates for the Clayton

copula. The plan of simulations is the same as before. Again, we observe that the

estimates improve as soon as N is bigger.



Empirical estimation of tail dependence 9

Table 2. Empirical estimation of the upper tail dependence parameter of the Gumbel

copula and of the lower tail dependence parameter of the Clayton copula using the

”Näıve” estimators.
λU i0 Observed Mean s.e Bias Q5% Q95%

0.1 97 0.00 0.16 0.25 -0.16 0.00 0.67

0.2 94 0.17 0.23 0.19 -0.06 0.00 0.50

0.3 86 0.29 0.36 0.10 -0.07 0.21 0.57

0.4 90 0.42 0.44 0.13 -0.02 0.25 0.67

Gumbel Copula 0.5 80 0.48 0.54 0.09 -0.06 0.38 0.67

N = 100 s = 100 0.6 82 0.65 0.62 0.10 0.03 0.45 0.80

0.7 79 0.73 0.72 0.10 0.00 0.55 0.86

0.8 77 0.76 0.77 0.07 -0.01 0.68 0.88

0.9 89 0.85 0.87 0.08 -0.02 0.69 1.00

0.95 76 0.96 0.95 0.04 0.01 0.88 1.00

0.1 4955 0.07 0.10 0.05 -0.03 0.05 0.19

0.2 4925 0.19 0.20 0.05 -0.01 0.13 0.29

0.3 4808 0.29 0.28 0.03 0.01 0.23 0.33

0.4 4819 0.40 0.40 0.03 0.00 0.35 0.46

Gumbel Copula 0.5 4865 0.51 0.51 0.04 0.00 0.44 0.57

N = 5000 s = 100 0.6 4724 0.58 0.58 0.02 0.00 0.57 0.63

0.7 4638 0.71 0.72 0.02 -0.01 0.68 0.75

0.8 4678 0.81 0.80 0.02 0.00 0.77 0.84

0.9 4689 0.90 0.90 0.01 0.00 0.87 0.92

0.95 4756 0.95 0.95 0.01 0.00 0.93 0.97

λL i0 Observed Mean s.e Bias Q5% Q95%

0.1 7 0.14 0.18 0.17 -0.04 0.00 0.43

0.2 9 0.22 0.25 0.13 -0.03 0.11 0.44

0.3 17 0.18 0.24 0.09 -0.06 0.12 0.41

0.4 7 0.43 0.36 0.18 0.07 0.00 0.71

Clayton Copula 0.5 21 0.52 0.55 0.09 -0.02 0.38 0.71

N = 100 s = 100 0.6 16 0.56 0.57 0.11 -0.01 0.38 0.75

0.7 27 0.68 0.68 0.09 0.00 0.54 0.82

0.8 29 0.83 0.84 0.07 -0.01 0.72 0.93

0.9 20 0.85 0.87 0.06 -0.02 0.75 1.00

0.95 12 0.92 0.88 0.11 0.03 0.67 1.00

0.1 61 0.16 0.16 0.04 0.00 0.10 0.23

0.2 107 0.24 0.23 0.04 0.01 0.16 0.29

0.3 136 0.32 0.33 0.04 0.00 0.27 0.39

0.4 230 0.40 0.41 0.03 0.00 0.37 0.45

Clayton Copula 0.5 293 0.49 0.49 0.03 0.00 0.45 0.54

N = 5000 s = 100 0.6 182 0.61 0.60 0.03 0.00 0.56 0.66

0.7 162 0.70 0.69 0.03 0.01 0.64 0.74

0.8 181 0.80 0.80 0.02 -0.01 0.77 0.85

0.9 174 0.92 0.92 0.02 0.01 0.89 0.95

0.95 234 0.94 0.94 0.00 0.00 0.93 0.95

3.2. Empirical Study: Application to Asian Markets

We propose an empirical application which aims at modeling the joint distribution of

n = 2 Asian markets through Student and Archimedean copulas. Our approach consists
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to estimate directly the tail dependence parameters λU and λL for the markets pairs

using the ”Näıve” estimators introduced previously. The estimates obtained for λU and

λL will be used to obtain the parameters of a set of selected copulas.

We consider the three composite indexes of financial Asian places represented in the In-

troduction. They consist of the daily closing level of the Thai SET index, the Malaysian

KLCI index, and the Indonesian JCI index from the 2nd of July 1987 to the 17th of

December 2002 with a total of N = 4034 points. The data sets have been collected

from Bloomberg and was expressed in Japanese currency. Then, we considered the

log-returns to achieve stationarity. These three series are denoted (Z1)t for the Thai

SET log-returns, (Z2)t for the Malaysian KLCI log-returns and (Z3)t for the Indonesian

JCI log-returns. Figure 2 provides the trajectories and the histograms for the three

log-returns indexes on the full period from 1987 to 2002.

In Table 3, we summarize statistics from these three series. They have a distribution

law which is nearly symmetrical and all of them exhibit excess kurtosis relatively to the

Gaussian distribution law. Thus, the three series are not Gaussian and we choose to fit

them by Laplace distribution laws. It was the best ajustement we obtained compared

with other distributions such as a variance gamma or the normal inverse Gaussian

ones. These choices are confirmed using the Kolmogorov-Smirnov test with the 95%

level. The values of the parameters of the Laplace distributions for (Z1)t, (Z2)t and

(Z3)t are respectively: a = −1.34 × 10−4 and b = 1.47 × 10−2, a = −4.33 × 10−5 and

b = 1.40 × 10−2 and a = −1.00 × 10−4 and b = 1.18 × 10−2. In Figure 3, we give the

scatter plots corresponding to the three markets pairs on which we want to adjust a

copula.

Table 3. Descriptive statistics for (Z1)t, (Z2)t and (Z3)t.

(Z1)t (Z2)t (Z3)t

Mean -1.34×10−4 -4.33×10−5 -1.00×10−4

Standard deviation 0.020 0.019 0.026

Kurstosis 5.897 26.928 40.391

Skweness 0.014 0.023 0.838

Length of the sample 4033 4033 4033

From expressions (3.4) and (3.5) we obtained the estimates of the tail dependence

parameters λU and λL, for i = {1, · · · , N − 1} and we represent their trajectory in

Figure 4. The three pairs seem to have an upper and a lower tail dependence. In order

to find the stable value for λ̂U and λ̂L, we focus on the tail and we try to find a region

where these values λ̂U( i
N

) and λ̂L( i
N

) are stable. Then, we determine the values of the

parameter i0 following the method developed in 3.1. Formulae (3.6) and (3.7) permit

to obtain an estimate for λU and λL for each pair of markets. These values are given in

Table 4. The confidence intervals are computed at the 90% level.

The results in Table 4, suggest that:
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Figure 2. Trajectories and histograms of (Z1)t, (Z2)t and (Z3)t. The three series are

expressed in Japanese currency.
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Figure 3. Scatter plot for the pairs ((Z1)t, (Z2)t), ((Z1)t, (Z3)t) and ((Z2)t, (Z3)t).

(i) The pair ((Z1)t, (Z2)t) has both an upper and a lower tail dependence. We observe

also a symmetrical behavior in the tails. This means that we can adjust a Student

copula on this pair of markets .

(ii) The pairs ((Z1)t, (Z3)t) and ((Z2)t, (Z3)t) seem to be asymmetric in the tails.

Thus, in that case, the convex linear combinations of Archimedean copulas are

appropriate.
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Figure 4. Tail dependence plot. Figures (1a), (2a) and (3a) represent the upper tail

dependence of the pairs ((Z1)t, (Z2)t), ((Z1)t, (Z3)t) and ((Z2)t, (Z3)t). Figures (1b),

(2b) and (3b) provide the lower tail dependence of each bivariate series.

Table 4. λ̂L and λ̂U with confidence intervals at the 90% level for the pairs

((Z1)t, (Z2)t), ((Z1)t, (Z3)t) and ((Z2)t, (Z3)t).

i0 i0/N λ̂L Confidence Interval

((Z1)t, (Z2)t) 53 0.013 0.305 [0.227 0.385]

((Z1)t, (Z3)t) 157 0.039 0.231 [0.179 0.290]

((Z2)t, (Z3)t) 89 0.022 0.284 [0.213 0.370]

i0 i0/N λ̂U Confidence Interval

((Z1)t, (Z2)t) 3835 0.951 0.302 [0.263 0.342]

((Z1)t, (Z3)t) 3954 0.980 0.187 [0.119 0.273]

((Z2)t, (Z3)t) 3939 0.977 0.167 [0.105 0.244]

4. How to discriminate between selected copulas?

The question now is, how to choose the best copula? We consider two different

approaches. One is based on the knowledge of the tail behavior of each pair of markets.

In that case, we use the results of Section 3.2. The second one considers a panel of

copulas (without any a priori) and we select the best one using the AIC criteria (Akaike

(1974)).

4.1. The D2 diagnostic

To discriminate among the different copulas in according to their tail behavior, we are

going to use a L2 distance. This one allows us, to measure how far the empirical copula

of Deheuvels Ĉ, introduced in (3.3), and the copula Cψ̂ estimated from λ̂U and λ̂L are. ψ

is a vector of parameters such as: ψ = θ for the Archimedean copulas, ψ = (θ1, θ2, ω) for
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the convex linear combinations of Archimedean copulas and ψ = (ρ, ν) for the Student

copula. Now, we define the L2 distance as follows:

D2 =
N
∑

m=0

N
∑

n=0

∣

∣

∣
Cψ̂(F̂iN(zim), F̂jN(zjn)) − Ĉ(m/N, n/N)

∣

∣

∣

2

, (4.1)

where F̂iN (i = 1, 2, 3) is the empirical distribution function:

F̂iN(zip) =
1

N + 1

N
∑

k=1

1{zik<zip}, (4.2)

The copula Cψ̂, for which we obtain the minimum distance D2, will be chosen as the

best approximation, in that sense. This distance is computed using the entire infor-

mation set with the same weight on each observation: this derived from the use of the

Deheuvels copula. It would be interesting to consider other distances which privilege the

influence of the points in the tail as an offset to the weight of the center observations of

the distribution. But, in that latter case, other estimates for the different distributions

which appear in (4.1), are necessary. As a referee points out, we think that it could be

interesting to look at this approach with the expectation of making the results proposed

here more relevant. Nevertheless, we do not explore this problem here because new

estimators for the copulas need to be introduced.

The copulas we considered depend on the tail behavior of the markets pairs. Thus, in

according with the results in Section 3.2, we use the Student and also the four convex

linear combinations of Archimedean Copulas introduced in Section 2.

To estimate the parameters ρ and ν of the Student’s copula we invert the expression

(2.1), ρ̂(Zit , Zjt) = sin(π
2
τ̂(Zit , Zjt)) and we obtain ν̂ by solving (2.2) for ν. The empirical

estimate τ̂ of τ is computed with τ̂ = 2 c−d
N(N−1)

, where c is the number of concordant

points and d the number of discordant points. The estimate of θ1, θ2 and ω are derived

from τ̂ , λ̂L and λ̂U , see Section 2.3. Table 5 gives Kendall’s tau for each pair of markets,

with a confidence interval at a 90% level. These confidence intervals are based on

bootstrap percentiles (see the previous section for details). Table 6 gives the parameters

estimates and the D2 criteria. For the pair ((Z1)t, (Z2)t), we retain the Student copula

and for the pairs ((Z1)t, (Z3)t) and ((Z2)t, (Z3)t) the convex linear combination of a

survival Clayton with a Clayton copula.

Table 5. Kendall’s tau between Asian markets and the associated confidence intervals

at the 90% level.
τ̂ Confidence Interval

((Z1)t, (Z2)t) 0.292 [0.268 0.309]

((Z1)t, (Z3)t) 0.245 [0.225 0.262]

((Z2)t, (Z3)t) 0.251 [0.229 0.266]
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Table 6. Copulas’ parameters estimates and D2 criteria for each markets pair. For

the convex linear combinations of Archimedean copulas the three parameters are θ1,

θ2, ω. For the Student copula the first parameter is the Pearson’s correlation ρ and

the second one corresponds to the degrees of freedom ν. Student-U and Student-L

parameters estimates use respectively λ̂U and λ̂L.

Copula Parameters D2

Gum + Surv Gum 2.669 1.813 0.429 55.82

Gum + Clay 5.506 0.913 0.348 32.81

((Z1)t, (Z2)t) Surv Clay + Surv Gum 0.901 5.919 0.651 36.55

Surv Clay + Clay 0.961 3.182 0.620 23.45

Student 0.442 2.665 - 9.58

Gum + Surv Gum 2.202 1.349 0.296 9.68

Gum + Clay 1.361 1.067 0.556 4.09

((Z1)t, (Z3)t) Surv Clay + Surv Gum 0.921 1.442 0.396 5.74

Surv Clay + Clay 0.748 0.839 0.472 2.73

Student-U 0.374 4.104 - 16.14

Student-L 0.374 3.018 - 16.06

Gum + Surv Gum 1.800 1.713 0.443 34.98

Gum + Clay 1.391 1.115 0.471 6.57

((Z2)t, (Z3)t) Surv Clay + Surv Gum 0.786 1.644 0.402 11.72

Surv Clay + Clay 0.734 0.992 0.428 4.38

Student-U 0.384 4.648 - 15.91

Student-L 0.384 2.564 - 19.50

4.2. The AIC diagnostic

In this part we estimate the copulas’ parameters maximizing the pseudo log-likelihood

function. It is given for the generic parameter ψ introduce in Section 4.1, by:

ψ̃ = arg max
ψ

N
∑

k=1

logL(ψ; F̂iN(zik), F̂jN(zjk)), (4.3)

with L(ψ;u, v) = ∂2

∂u∂v
C(u, v). This estimator ψ̃ is consistent and asymptotically

Gaussian, see Genest et al. (1995) and Shih and Louis (1995) for details. This maximi-

sation provides the Akaike Information Criteria (AIC), see Akaike (1974). We use it to

discriminate between the different copulas: the adjustment obtained with the mimimum

value of the AIC yields the best copula. This approach is not new and was already used

by Breymann et al. (2003) on intraday FX rate data. It provides consistent estimators

in an independent setting. We know that we are not in this context. Nevertheless, if we

employ any filter on the data sets, it is very difficult to obtain a sequence of independent

residual on which we can seriously work (details are available in Caillault and Guégan

(2004)). Thus we decided to work directly on the log-returns and we used the results in

a comparative way with the D2 diagnostic.

Table 7 gives the maximum likelihood estimates obtained for the copulas’ parameters

and their standard errors computed with the Jackknife methodology. It also provide the

AIC criterion calculated for the different copulas adjusted on the markets pairs. With
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this method, we retain, as the best copula, a Student copula for the pairs ((Z1)t, (Z2)t)

and ((Z2)t, (Z3)t) and a convex linear combination of Gumbel with a survival Gum-

bel copula for the pair ((Z1)t, (Z3)t). We observe that for the pair ((Z1)t, (Z2)t) we

obtain the same class of copulas as with D2 distances, but for the pairs ((Z1)t, (Z3)t)

and ((Z2)t, (Z3)t) the adjustment is not the same. We report in Table 8 the estimates

of the upper and lower tail dependence parameters for these copulas, computed with

expressions (2.2), (2.5) and (2.6).

Table 7. Parameter estimates, standard errors between brackets and Akaike’s criterion

values for each copula and each pair of markets. Standard errors are computed using

the Jackknife methodology (100 observations of 4033 are omitted at each computation).

For the convex linear combinations of Archimedean copulas the three parameters are

θ1, θ2, ω. For the Student copula the first parameter is the Pearson’s correlation and

the second one corresponds to the degrees of freedom.

Copula Parameters AIC

Student 0.444 (0.014) : 3.966 (0.277) -1079.68

Frank 2.926 (0.124) -804.72

Gum + Surv Gum 1.132 (0.043) : 1.873 (0.084) : 0.464 (0.052) -1056.97

Gum + Clay 1.284 (0.131) : 1.408 (0.075) : 0.600 (0.029) -1030.15

((Z1)t, (Z2)t) Gum + Surv Joe 1.917 (0.809) : 1.392 (0.860) : 0.383 (0.269) -1045.65

Joe + Clay 1.409 (0.072) : 1.203 (0.163) : 0.469 (0.043) -1025.10

Joe + Surv Joe 1.573 (0.193) : 1.831 (0.189) : 0.428 (0.075) -1027.40

Surv Clay + Clay 0.562 (0.159) : 1.104 (0.265) : 0.464 (0.071) -1004.97

Surv Clay + Surv Gum 2.058 (0.703) : 1.361 (0.022) : 0.148 (0.039) -1030.76

Student 0.373 (0.014) : 4.381 (0.317) -708.62

Frank 2.406 (0.107) -557.99

Gum + Surv Gum 2.472 (0.205) : 1.143 (0.026) : 0.274 (0.041) -715.21

Gum + Clay 1.189 (0.163) : 1.662 (0.100) : 0.704 (0.014) -659.57

((Z1)t, (Z3)t) Gum + Surv Joe 2.223 (0.107) : 1.187 (0.031) : 0.338 (0.027) -714.39

Joe + Clay 1.256 (0.060) : 1.178 (0.293) : 0.555 (0.621) -647.75

Joe + Surv Joe 2.811 (0.387) : 1.313 (0.032) : 0.259 (0.029) -676.29

Surv Clay + Clay 2.181 (0.437) : 0.367 (0.036) : 0.242 (0.034) -663.79

Surv Clay + Surv Gum 2.770 (0.666) : 1.217 (0.022) : 0.180 (0.033) -684.07

Student 0.387 (0.015) : 3.482 (0.280) -836.68

Frank 2.488 (0.134) -586.06

Gum + Surv Gum 1.019 (0.036) : 2.105 (0.150) : 0.522 (0.058) -820.59

Gum + Clay 1.152 (0.081) : 1.972 (0.035) : 0.652 (0.017) -768.75

((Z2)t, (Z3)t) Gum + Surv Joe 2.449 (0.174) : 1.233 (0.194) : 0.309 (0.046) -821.94

Joe + Clay 1.183 (0.031) : 1.633 (0.243) : 0.563 (0.041) -760.54

Joe + Surv Joe 2.843 (0.340) : 1.372 (0.200) : 0.237 (0.065) -769.94

Surv Clay + Clay 2.275 (0.371) : 0.432 (0.034) : 0.221 (0.025) -737.45

Surv Clay + Surv Gum 3.005 (0.299) : 1.256 (0.078) : 0.151 (0.032) -771.35

4.3. Comparison of the two methods

In this subsection we compare the results obtained using the two different approaches

to find the bivariate distribution which characterizes each markets pair.
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Table 8. Tail dependent parameters for each pair of markets adjusted using the AIC

criteria.
Model λ̃U λ̃L

((Z1)t, (Z2)t) Student 0.225 0.225

((Z1)t, (Z3)t) Gum + Surv Gum 0.182 0.119

((Z2)t, (Z3)t) Student 0.224 0.224

(i) For the pair ((Z1)t, (Z2)t), using the two approaches, a Student copula can be

retained as the joint distribution. Nevertheless the estimates obtained for the

parameter ν are not the same. Using the empirical approach, we obtained ν̂ = 2.665

and with the maximum likelihood approach ν̃ = 3.966. We observe also that

λ̂U = 0.302 and λ̂L = 0.305 using the ”Näıve” estimator and λ̃U = λ̃L = 0.225 when

we derived these values from the maximum likelihood estimator. Thus, the first

approach provides higher values for the tail dependent parameters. This difference

can be important if we want to use these adjustments in order to propose a risk’s

measure.

(ii) For the pair ((Z1)t, (Z3)t) the analysis is more complicated because the two

approaches suggest two different copulas. With the first approach we retain a

convex linear combination of survival Clayton + Clayton copulas whereas with the

second one we select a convex linear combination of survival Gumbel + Gumbel

copulas. Tail dependence parameter’s estimate using the ”Näıve” approach provide

the value λ̂U = 0.187 and λ̂L = 0.231 whereas the maximum likelihood provides

λ̃U = 0.182 and λ̃L = 0.119. Contrary to the second approach the first method

gives more weight on the lower tail.

(iii) For the pair ((Z2)t, (Z3)t) we conclude again to different copulas with the two

approaches. With the ”Näıve” method we retain the convex linear combination

of survival Clayton with a Clayton copula whereas we conclude to Student copula

with the maximum likelihood estimator. The ”Näıve” approach gives higher value

for the lower tail dependence than for the upper tail dependence: λ̂U = 0.167 and

λ̂L = 0.231. With the maximum likelihood estimator we obtain λ̃U = λ̃L = 0.224.

It is important to note that the two approaches contain is their formulations limitations

that we discuss now:

• The First Approach. The estimates of λ̂U and λ̂L are based on the choice of the

parameter i0. This approximation is also used to estimate ψ and in fine to choose

the copula. This is the main limitation of this approach. On the other hand, this

approach is really interesting because we do not choose a copula a priori and we do

not make any independent assumption on the data. Indeed we derive the copula,

in fine, using the tail behavior of the data that we want to investigate.

• The Second Approach. After an a priori choice of copulas, we estimate the

parameters ψ maximizing the pseudo log-likelihood function defined by (4.3).

Maximum of this function is not always easy to obtain. In order to obtain the
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convergence of the algorithms we need to initialize it graphically. Thus, here we

find the classical problem with the maximisation of the likelihood function knowing

that we need to choose a copula a priori. Moreover, we also assume that the

observations are independent which is a strong assumption.

Thus, the debate concerning the choice of the method to estimate a copula characteriz-

ing pairs of data is opened.

In a first analysis, we can nevertheless use these approaches to understand co-movements

between Asian markets. If we keep in mind the results obtained using the first approach,

we observe that the bivariate distribution which characterizes the Thai and Malaysian

markets can be explained with a Student copula. This means that the behavior of

these two markets is the same and they probably move in the same direction with

respect to extreme shocks (positive and negative shocks). The markets pairs, Thai

and Indonesian, and, Malaysian and Indonesian are explained with a convex linear

combination of survival Clayton with a Clayton copula. For these two markets pairs the

lower tail dependence parameter is bigger than the upper tail dependence one. It means

that we have co-movement for these two markets pairs when occur very high negative

shocks.

5. Measure of risk for an Asian portfolio

In this section we compute the Value at Risk (VaR) for a portfolio composed by two

Asian indexes. We take into consideration the notion of copulas and the two empirical

approaches of the previous section.

We define the value of the portfolio P at time t+ 1 as:

P (t+ 1) = P (t) exp (aiRi(t+ 1) + ajRj(t+ 1)) ,

where Ri and Rj are the log-returns of the assets i and j with i, j = 1, 2, 3 and j > i.

ai and aj are respectively the weight associated to Ri and Rj. We recall that these log-

returns correspond to the Asian indexes whose marginals are denoted Fi(.;αi), i = 1, 2, 3

(αi are the parameters of the probability distribution function Fi). Thus, the portfolio’s

log-returns at time t+ 1 is given by:

Rp(t+ 1) = a1R1(t+ 1) + a2R2(t+ 1). (5.1)

To build a risk measure for the portfolio P , we need to compute Rp. Thus we are going to

construct its associated hyperplane H in [0, 1]2. Let {(u, v(α,Rp, u))|u ∈ [0, 1]} a point

in H with α the set of the marginal’s parameters (for instance α = (α1, α2)). In our

case, the marginals are Laplace distribution functions whose parameters are estimated

in Section 4. Thus, this hyperplane depends on variables (u, v). If we fix u ∈ [0, 1], then

v is analytically computed by the following relationship:

v = F2

(

α2;
Rp

a2

−
a1

a2

F−1
1 (α1;u)

)

. (5.2)
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The associated VaR of Rp corresponds to the percentile of the Rp’s distribution function.

This percentile is measured by the copula’s volume on plane:

H2(α,Rp) := {(u, v) ∈ [0, 1] × [0, v∗(α,Rp, u)]}.

This VaR is computed numerically by solving the following integral which is the profit

and lost GP&L distribution function:

GP&L(Rp) =

∫

H2(α,Rp)

c(u, v)dudv, (5.3)

where c is the probability density function of a copula C. For a given level β = GP&L(Rp)

we must solve equation (5.3). But this latter expression is not always easy to compute.

So, we are going to use a Monte Carlo method to obtain this VaR. Usually in Finance,

market actors are interested in computing this risk’s measure for β = 1%, 5%, 10% and

β = 90%, 95%, 99%. We propose three methods to compute the VaR for a portfolio

composed by two Asian indexes with a1 = a2 = 1/2. The methods we considered are

the historical simulation and the Monte Carlo VaR using the copulas adjusted with

the two approaches developed in Section 4. We denote MC VaR 1, the VaR computed

using the copulas of the ”Näıve” approach and MC VaR 2 the VaR computed using the

copulas selected with the AIC criteria (see Caillault and Guégan (2004) for more details).

The results for the VaR in Table 9 are provided with their standard error in brackets. To

obtain the latter we used a bootstrap method with the historical VaR. Standard error

of MC VaR are computed with 1000 VaR calculated from simulated sample of length

2000. The obtained results are close whatever method used and some of them are not

statistically different. Nevertheless, when we consider the results more precisely, we ob-

serve that the portfolio’s losses and profits can be more significant in certain cases. For

instance, the values obtained using the Historical method for the portfolio ((Z1)t, (Z2)t)

are larger (for β = 99%) and lower (for β = 1%) than with the MC VaR methods.

We note also that the VaR obtained with MC-VaR1 for portfolios ((Z1)t, (Z3)t) and

((Z2)t, (Z3)t) are respectively lower and upper than those computed with the EH and

MC-VaR2 approaches.

6. Conclusion

In this paper we propose two methods which allow us to estimate the copula charac-

terizing the bivariate distribution function of a pair of markets. One method privileges

the extreme behavior of the bivariate distribution function of the pair of markets. The

second one is more classic and is based on the estimates of the copulas’ parameter using

a pseudo log-likelihood method. Then, we used the two different approaches to propose

risk’s measures for a portfolio composed with the different pair of markets. To give

specific value for the Value at Risk necessitates a degree of certainty looking at the
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Table 9. VaR computations using historical data and Monte Carlo simulations with

copulas estimated with the two approaches introduced in Section 4.
Risk’s level Historical VaR MC VaR 1 MC VaR 2

1% -5.03% (0.26%) -4.78% (0.29%) -4.70% (0.27%)

5% -2.55% (0.09%) -2.74% (0.11%) -2.76% (0.11%)

((Z1)t, (Z2)t) 10% -1.74% (0.06%) -1.91% (0.07%) -1.95% (0.07%)

90% 1.62% (0.03%) 1.89% (0.07%) 1.93% (0.07%)

95% 2.23% (0.07%) 2.71% (0.11%) 2.74% (0.11%)

99% 4.90% (0.24%) 4.77% (0.29%) 4.71% (0.28%)

1% -5.30% (0.24%) -5.43% (0.16%) -5.18% (0.24%)

5% -2.76% (0.09%) -3.26% (0.08%) -3.12% (0.10%)

((Z1)t, (Z3)t) 10% -2.84% (0.05%) -2.34% (0.06%) -2.31% (0.07%)

90% 1.70% (0.05%) 2.31% (0.06%) 2.24% (0.07%)

95% 2.39% (0.08%) 3.20% (0.09%) 3.20% (0.06%)

99% 5.43% (0.26%) 5.30% (0.25%) 5.38% (0.23%)

1% -5.45% (0.34%) -5.48% (0.21%) -5.32% (0.25%)

5% -2.24% (0.10%) -3.24% (0.08%) -3.09% (0.09%)

((Z2)t, (Z3)t) 10% -1.63% (0.05%) -2.31% (0.06%) -2.18% (0.06%)

90% 1.52% (0.04%) 2.28% (0.05%) 2.16% (0.06%)

95% 2.23% (0.08%) 3.15% (0.07%) 3.07% (0.09%)

99% 5.19% (0.36%) 5.18% (0.16%) 5.29% (0.25%)

distribution of the portfolio. But the comparison between the two approaches consid-

ered here do not provide a conclusion. For us, the choice of the best method to find

a copula characterizing a vector is always an open-ended problem. We also propose

new estimators for the tail behavior of a tail of markets and we provide in Table 1,

informative results on the properties of the copulas with respect to their tail behavior.

The knowledge of these properties is fondamental from an empirical point of view. The

theoretical properties of the ”Näıve” estimators that we introduce in Section 3 need to

be developed and will be the subject of another paper. The ideas developed in this paper

have to be extended in a higher setting. Finally, questions regarding copula parameters

dynamic need to be asked. This issue has been already developed by Patton (2001)

in the Gaussian and Joe-Clayton case. These topics must be explored and will be the

purpose of future research.

[1] H. Akaike. A new look to the statistical model identification. IEEE Transactions on Automatic

Control, AC-19:716–723, (1974).

[2] Berntsen, J., T. O. Espelid, and A. Genz. An adaptive algorithm for the approximate calculation

of multiple integrals. ACM Transactions on Mathematical Software, 17:437–451, (1991a).

[3] Berntsen, J., T. O. Espelid, and A. Genz. An adaptive multidimensional integration routine for a

vector of integrals. ACM Transactions on Mathematical Software, 17:452–456, (1991b).

[4] Boyer, B.H., M.S. Gibson, and M. Loretan. Pitfalls in tests for changes in correlations. Federal

Reserve Board, IFS Discussion Paper No597R, (1999).

[5] Breymann, W., A. Dias, and P. Embrechts. Dependence structures for multivariate high-frequency

data in finance. Quantitative Finance, 3(1):1–14, (2003).
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