Evaluation subjective
Michel Grabisch

To cite this version:

HAL Id: halshs-00179068
https://halshs.archives-ouvertes.fr/halshs-00179068
Submitted on 12 Oct 2007

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Évaluation subjective

Michel GRABISCH
Université Paris I - Panthéon-Sorbonne
email Michel.Grabisch@lip6.fr

1 Introduction

Dans le domaine de la décision, une part importante concerne l’évaluation. Quand un directeur des ressources humaines examine les profils des candidats pour un poste, quand un responsable de la Commission Européenne doit choisir des projets à financer dans le cadre d’un appel d’offre, quand un directeur de marketing juge les différents modèles conçus pour un nouveau véhicule à lancer sur le marché, il effectue un processus d’évaluation. Plus proche de notre vie quotidienne, nous-mêmes inconsciemment nous évaluons sans cesse les produits que nous consommons, en déclarant par exemple que le chocolat XXX est meilleur que le chocolat YYY, que le siège de cette voiture est vraiment très confortable, ou que le clavier de cet ordinateur est décidément trop mou.

Dans les exemples cités ci-dessus, le caractère subjectif de l’évaluation n’aura pas échappé au lecteur : on ne saurait donner de mesure objective des capacités intellectuelles, managériales ou commerciales d’un candidat, des retombées socio-économiques pour les cinq ans à venir d’un projet, de l’esthétique d’un véhicule, du confort d’un siège, ou du degré d’amertume, de salé, de sucré d’un produit comestible. De nombreuses tentatives ont cependant été faites pour arriver à des mesures les plus objectives possible d’un certain nombre des grandeurs citées ci-dessus. Ainsi en est-il des différents tests destinés à mesurer les capacités d’une personne dans un domaine bien précis, et les industries alimentaires utilisent des experts entrainés et calibrés régulièrement (ce qu’on peut appeler des capteurs humains) pour mesurer les composantes fondamentales des goûts, telles que le sucré, le salé, etc.

À la réflexion, même si l’on arrivait à une mesure précise de ces grandeurs, les exemples d’évaluation donnés ci-dessus n’en resteraient pas moins subjectifs pour autant : un même dossier de candidature pourra être jugé très différemment suivant deux directeurs différents, et ainsi qu’on aime à le dire, des goûts et des couleurs, on ne saurait discuter. Le caractère subjectif n’est donc pas tant dans la difficulté de mesurer les grandeurs qui décrivent un objet, mais il réside plutôt dans la perception globale que l’on a de celui-ci. Celle-ci est propre à l’individu et reflète sa subjectivité, alors que la perception sensorielle reste grosso modo identique, aux fluctuations physiologiques près. Ainsi, parmi les descripteurs ou attributs — appelons ainsi les différentes grandeurs ou dimensions qui permettent de décrire l’objet de l’évaluation — évoqués ci-dessus, on peut distinguer deux catégories. Il y a ceux qui sont en fait apparentés tout-à-fait à des descripteurs objectifs, car mesurables par des capteurs (physiques ou humains) ou des procédures bien définies et répétibles ; ce sont par exemple les
capacités (intellectuelles, managériales, etc.) d’un certain type, les performances du moteur d’un véhicule, le volume de son coffre, le degré de sucré, d’acidité, etc. La deuxième catégorie comprend des descriptor pour lesquels il semble quasiment impossible de concevoir une procédure de mesure, ne serait-ce que parce qu’il est très malaisé de les définir : ce sont par exemple l’esthétique, la ligne d’un véhicule, le confort d’un siège. Si ces descriptor sont si difficiles à saisir, bien que tout un chacun en ait une perception intuitive claire, c’est parce qu’ils sont multidimensionnels par essence, chaque dimension étant un nouveau descriptor, qui peut être multidimensionnel à son tour, et ainsi de suite. En supposant une capacité d’analyse infinie qui nous permette de mettre à jour l’ensemble des descriptor objectifs composant un tel descriptor, il n’en resterait pas moins que deux personnes différentes soumises au même stimulus (la photographie d’un véhicule dans un magazine par exemple) auraient sans doute une perception globale différente : il s’agit bien là de descriptor subjectifs.

Le but de l’évaluation est de tenter de donner une modélisation mathématique de cette perception globale, propre à un individu donné, ou à une population donnée, en fonction de descriptor objectifs, mesurables par des capteurs humains ou physiques, ou par des procédures clairement définies.

Cette introduction informelle aura sans doute fait comprendre que le problème dans son ensemble est complexe, et qu’il touche à plusieurs disciplines. Nous détaillerons ceci plus avant dans la section suivante, et nous signalons au lecteur l’existence d’un ouvrage collectif rédigé sous la direction de l’auteur, qui a tenté de faire un tour d’horizon de la question et des approches possibles [24]. Signalons également l’engouement que suscite ce sujet au Japon, où le terme de kansai (sentiment) est utilisé, parfois tel quel dans des publications en anglais. Il existe des workshops annuels autour de ce sujet (intitulés “Heart and Mind”), et un ouvrage entier consacré à l’analyse de données kansai [74].

Le but de ce chapitre est à la fois plus modeste et plus focalisé. Dans la section 2, nous délimiterons le problème que nous traitons, et citons les domaines connexes. Après une section qui explique les fondements de notre approche, basée sur la décision multicritère et la théorie du mesurage, nous construisons méthodiquement notre approche dans les sections 4 à 8. La section 9 est dévolue aux applications. Après une présentation générale des applications potentielles, nous présentons les principales applications utilisant la méthodologie décrite dans ce chapitre.

2 Qu’est-ce que l’évaluation subjective ?

Cette section va tenter de formaliser le problème de l’évaluation subjective, et nous permettre d’introduire quelques notations générales.

2.1 Généralités, domaines connexes

Nous désignons simplement par objet l’objet de l’évaluation. L’objet peut être un objet concret au sens courant (une plaque de chocolat, un véhicule), ou abstrait (une œuvre de musique), ou un être animé (candidat, chat, etc.). L’évaluation d’un objet ou d’une collection d’objets de même type se fait par rapport à une qualité qu’est censée posséder l’objet (le bon goût d’une plaque
de chocolat, le confort d'une voiture, la beauté d'une œuvre de musique, l'intelligence d'un candidat, etc.). Cette évaluation est faite par un évaluateur ou sujet.

L'évaluation subjective se restreint au cas où la qualité à évaluer ne peut se faire directement au travers d'un capteur de mesure, qu'il soit physique ou humain, ou d'une procédure de mesure clairement définie et répétable. Par capteur humain on entend un expert entraîné et calibré pour la mesure d'une grandeur bien définie, dont on connaît les caractéristiques de mesure, tout comme pour un capteur physique. On fait alors l'hypothèse que cette qualité a un caractère multidimensionnel, chaque dimension étant appelée descriptor ou attribut. Un descriptor est aussi une qualité de l'objet, qui idéalement est mesurable, mais il se peut que certains descripteurs soient eux aussi des qualités subjectives (non mesurables directement), et donc multidimensionnelles également. En poursuivant le processus jusqu'au bout, on obtient un arbre de descripteurs, dont les feuilles sont tous des descripteurs directement mesurables (descripteurs objectifs).

Une telle construction n'est possible que dans l'absolu, et dans la réalité, seulement une approximation de celle-ci peut être atteinte, avec un nombre restreint de descripteurs. Étant donné le caractère récursif de cette représentation, il nous suffit de considérer ici une qualité se déclinant sur un ensemble de descripteurs tous objectifs. Notons X la qualité qui nous intéresse, et X_1, \ldots, X_n les n descripteurs objectifs la décrivant. X_i représente l'ensemble des valeurs (numériques, qualitatives, etc.) que peut prendre le descriptor correspondant.

Le processus de l'évaluation subjective repose sur ou est en étroite relation avec un certain nombre de disciplines, que nous énumérons rapidement ci-dessous.

1. La décision multicritère, qui est l'étude des procédures de choix en fonction de plusieurs critères ou points de vue, est un outil central dans l'évaluation subjective, offrant un corpus théorique solide pour l'aspect multidimensionnel du choix, sous-jacent à tout problème d'évaluation subjective. L'approche que nous présentons est dans cette perspective.

2. L'analyse des données est sans nul doute un autre outil fondamental indispensable dans ce domaine, d'essence statistique, qui permet de mettre à jour des corrélations entre les dimensions, d'exhiber les facteurs principaux, en un mot de trouver une représentation la plus synthétique possible de la qualité de l'objet en question. Cette approche nécessite un nombre important de données (mesures des descripteurs, évaluation de la qualité pour plusieurs objets et plusieurs sujets). Si les données sont quantitatives, l'Analyse en Composantes Principales (ACP) est utilisée, par contre si elles sont qualitatives, on utilise l'Analyse des Correspondances Multiples (ACM) [85]. Enfin, on peut traiter des données de type fréquence par l'Analyse Factorielle des Correspondances (AFC). Il existe une méthode, l'Analyse Factorielle Multiple (AFM), qui permet de traiter simultanément ces différents cas [17].

3. La théorie du mesurage se penche sur les fondements mathématiques de l'acte de mesurer les grandeurs. Elle permet aussi de donner une représentation numérique des relations entre objets, comme la relation de préférence. Dans la section 3.2, nous reviendrons plus en détail sur cette théorie.
4. L’analyse sensorielle permet une approche quantitative des descripteurs basés sur les cinq sens de la perception humaine (goût, odorat, toucher, vue, ouïe), et conduit au concept de «capteur humain». La mesure se fait par un panel de juges calibrés, c’est-à-dire capables de mesurer un descripteur de manière reproductible, avec un écart-type acceptable.

5. La physiologie sensorielle se penche sur l’étude du fonctionnement des sens. Elle nous enseigne tous les facteurs qui peuvent modifier notre perception. Enfin, des recherches en psychologie ont montré des phénomènes généraux qui influencent, parfois fortement, notre perception.

La liste ci-dessus est intentionnellement ordonnée. La décision multicritère et l’analyse des données travaillent sur les valeurs des descripteurs, les différentes possibilités de travailler sur ces valeurs étant régies par la théorie du mesurage, qui tient compte de la façon dont ces valeurs ont été obtenues. L’obtention de ces valeurs tient de l’analyse sensorielle, qui elle-même est basée sur la physiologie sensorielle et la psychologie.

2.2 Définition de notre périmètre

Le paragraphe ci-dessus aura montré l’étendue du sujet, qui nécessiterait un livre entier. Dans ce chapitre, nous allons nous restreindre à une approche multicritère du problème de l’évaluation subjective, en faisant néanmoins une place à la théorie du mesurage, pour les raisons suivantes. Tout d’abord, il convient d’élimer l’analyse sensorielle, la physiologie sensorielle et la psychologie, qui sont des sujets à part entière ne pouvant trouver place dans cet ouvrage consacré à la théorie de la décision. Nous consacrerons cependant un paragraphe à la psychologie, car elle n’est pas sans lien avec des notions d’échelle et de mesure que nous introduirons. D’autre part, l’analyse des données est un discipline bien connue pour laquelle il existe de nombreux ouvrages de référence. Par contre, la décision multicritère, qui a clairement sa place dans cet ouvrage, offre une approche du problème de l’évaluation subjective originale et sans doute peu connue, et par ailleurs opérationnelle. Cette approche n’est cependant pas applicable dans toute situation, ce que nous allons préciser ci-dessous.

Considérons l’exemple de l’évaluation du confort des sièges automobile, qui sera décrit plus en détail dans la section 9. Le but est d’analyser les sensations d’inconfort ressenties par le passager au bout d’un temps de conduite assez long. Grosso modo, il y a deux façons de procéder. Une première méthode consiste à soumettre le sujet à un questionnaire, l’interrogeant sur les sensations locales (dos, jambes, avant-bras, etc.) d’inconfort et la sensation globale d’inconfort. Une deuxième façon consiste à effectuer des mesures électromyographiques (activité musculaire) sur le sujet, pour tenter de les relier ou d’expliquer la sensation globale d’inconfort.

Dans le premier cas, les descripteurs X_1, \ldots, X_n vont être exprimés par exemple sur une échelle de 0 à 10, comprenant tous les degrés entre «aucun inconfort» et «inconfort intolérable». Ainsi, ces descripteurs sont homogènes et représentent un degré d’inconfort, tout comme la qualité X représentant l’inconfort global. On comprend alors qu’une augmentation de l’une quelqueque des sensations locales X_i ne peut entraîner une diminution de l’inconfort global X.
Dans le second cas, les mesures peuvent être de natures très diverses, et il n'est a priori pas possible de savoir si l'augmentation de la valeur de X_i pour un i donné va provoquer une augmentation ou une diminution de la sensation globale d'inconfort.

Notre approche se limite au premier cas, où il est toujours possible de rame-
er les descripteurs à des grandeurs (numériques ou non) homogènes (ou plutôt *commensurables*), assimilables à des degrés de satisfaction ou en l'occurrence de non-satisfaction. Cela revient à définir des fonctions $u_i : X_i \rightarrow \mathbb{R}$, qui trans-
forment les valeurs des descripteurs en degrés de satisfaction ou attirance. Le degré de satisfaction global est alors une fonction $u : X = X_1 \times \cdots \times X_n \rightarrow \mathbb{R}$ qui a la forme suivante :

$$u(x) = F(u_1(x_1), \ldots, u_n(x_n)) \quad (1)$$

où $F : \mathbb{R}^n \rightarrow \mathbb{R}$ est une fonction croissante de chaque argument. Dans l'exemple de l'inconfort ci-dessus, les fonctions u_i sont égales à l'identité.

Le second cas n'est pas traitable par cette méthode, car on est sans moyen de construire les fonctions u_i ; il relève plutôt de l'analyse de données.

La section 3 détaille cette approche multicritère.

3 Une approche multicritère de l'évaluation subjective

Nous considérons des descripteurs X_1, \ldots, X_n, supposés tous mesurables, décrivant une qualité X d'un objet. Pour chaque $i = 1, \ldots, n$, X_i désigne le descripteur lui-même, ainsi que l'ensemble des valeurs (notées x_i) qu'il peut prendre. Insistons sur le fait que ces valeurs ne sont pas forcément des nombres. Nous faisons l'hypothèse que l'ensemble des descripteurs est exhaustif, donc un n-uplet (x_1, \ldots, x_n) définit sans ambiguïté une instance de la qualité X, qui peut être vue comme la qualité d'un objet, éventuellement fictif. Ainsi nous pouvons assimiler X au produit cartésien $X_1 \times \cdots \times X_n$, et en considérant que dans un problème donné on ne s'intéresse qu'à une qualité, on peut assimiler $x \in X$ à l'objet de qualité x s'il est unique, ou sinon à l'un des représentants de sa classe d'équivalence.

On se place dans le cas où l'on est capable d'associer à chaque $x_j \in X_i$ un degré de satisfaction ou d'attirance $u_i(x_j)$, c'est-à-dire de définir une fonction $u_i : X_i \rightarrow \mathbb{R}$, dite parfois *fonction d'utilité*. L'existence de cette fonction d'utilité, traduisant les valeurs du descripteur en satisfaction nous autorise à parler de *critère* : strictement parlant, le critère i est le couple (X_i, u_i), et par abus de langage, on appellera parfois X_i lui-même le critère i. On cherche ensuite une fonction $F : \mathbb{R}^n \rightarrow \mathbb{R}$ (dite *fonction d'agrégation*) qui permette de modéliser numériquement l'évaluation subjective (de la qualité) d'un objet x par l'équation (1).

Il y a deux problèmes inhérents à cette représentation.

1. Sous quelles conditions un tel modèle existe-t-il ? Plus précisément, quand peut-on supposer l'existence des fonctions d'utilité u_i de la fonction d'agrégation F ?
2. En supposant que les fonctions u_i existent, elles ne sont en général pas uniques, mais définies à une transformation près. Parmi toutes les fonctions u_i possibles pour $i = 1, \ldots, n$, lesquelles faut-il choisir ?

La réponse à ces questions est basée sur la théorie du mesure. La méthodologie MACBETH nous offre une réponse moins générale mais plus opérationnelle à ces deux questions. Les paragraphes suivants en donnent les éléments essentiels à notre chapitre. Auparavant, nous croyons utile de rappeler quelques résultats obtenus en psychologie, qui vont appuyer notre construction.

3.1 L’importance de l’affect dans l’évaluation

Des recherches en psychologie, menées en grande partie par et autour de Paul Slovic [91] ont montré que notre façon de juger, évaluer et prendre des décisions est guidée par ce qu’on appelle l’affect. Ce mot désigne la qualité spécifique de «bon» ou «mauvais», telle qu’elle est ressentie consciemment ou non, et délimitant des zones de stimuli de qualités positive et négative. Nous nous limitons ci-dessous aux points principaux qui nous intéressent.

- **Évaluabilité** : dans une évaluation multi-attributs, les attributs dont la perception est peu précise ou sans point de repère ont peu d’importance dans la décision finale. Hsee [48] a réalisé l’expérience suivante : on demande à une population combien on accepte de payer pour des dictionnaires de musique d’occasion, l’un (A) comportant 10 000 mots et étant d’aspect quasi neuf, l’autre (B) comportant 20 000 mots et ayant la couverture déchirée. La somme pour B est déclarée bien supérieure à celle donnée pour A, à cause du nombre de mots. Cependant, si l’on refait l’expérience avec deux populations, à qui l’on demande d’évaluer seulement A ou B, le prix pour A est cette fois supérieur à celui donné pour B. La raison est que la plupart des gens sont incapables de dire si un contenu de 10 000 ou 20 000 mots peut être considéré comme suffisant pour un dictionnaire de musique (absence de point de repère), et donc le jugement ne s’effectue que sur le deuxième attribut, l’état de conservation, qui lui est directement appréciable.

- **Dominance de la proportion** : exprimer un attribut sous forme de proportion ou de pourcentage a plus d’impact que si on l’exprime de manière absolue. La raison est encore une fois l’absence de repère dans le cas de l’expression sous forme absolue. Ainsi que l’a constaté Slovic, les gens sont plus endoûs à soutenir des mesures prises dans les aéroports pour sauver 95% parmi 150 vies humaines, que sauver 150 vies humaines, ce dernier chiffre n’offrant pas de repère précis. De même, les gens préfèrent une petite coupe débordante de glace, plutôt qu’une grande coupe à moitié remplie, même si dans l’absolu il y a plus de glace dans cette dernière.

- **Bipolarité** : le caractère bipolaire de l’affect, c’est-à-dire construit sur deux pôles opposés (bon/mauvais, positif/négatif), est central dans l’évaluation, et il importe de pouvoir le représenter correctement. La représentation utilisant une échelle bipolaire, c’est-à-dire un seul axe pour coder l’affect allant du négatif au positif, a été le courant dominant en recherche (voir les travaux d’Osgood et col. en 1957 [76]). Récemment, Cacioppo et col. ont proposé l’usage de deux échelles unipolaires séparées, l’une pour la partie positive de l’affect, l’autre pour la partie négative [5]. La motivation pour une telle approche est que l’on peut très bien ressentir pour le même
objet à la fois un sentiment positif et un sentiment négatif, sans qu'il soit possible de les fondre en un seul sentiment résultant (par exemple, manger du chocolat procure un plaisir gustatif, mais on peut se sentir en même temps coupable de gourmandise). Une étude récente de Peters et Slovic [77] ayant pour but de comparer les deux paradigmes, n'a cependant pas permis de trancher de façon claire.

Dans notre construction, nous adopterons la version bipolaire, mais nous indiquerons des courants de recherche du côté du « double unipolaire ».

- théorie du signe : récemment proposée par Lin et Slovic [56], elle fait l’hypothèse que l’évaluation d’un objet selon un attribut se fait sur trois valeurs codées par −1 (néga
tif), 0 (neutre) et 1 (positif). Les valeurs « positifs » et « négatifs » font bien sûr référence aux affectes positif et négatif, la valeur « neutre » étant utilisée quand le stimulus ne porte pas de valeur affective claire (ce qui peut se produire en absence de point de référence, cf. ci-dessus). Pour le jugement global d’un objet, on fait ensuite un décompte des signes positifs et négatifs.

3.2 La théorie du mesurage, notion d’échelle

Nous renvoyons le lecteur à [51, 82] pour de plus amples détails. Notre présentation se borne à l’essentiel.

Considérons un ensemble d’objets A, sur lequel on définit une relation (le plus souvent binaire) \succeq, telle que « plus grand que », « plus chaud que », « préféré à », etc., et une opération binaire \ast. Le prototype de l’opération binaire est la concaténation, qui revient par exemple à mettre deux objets bout-à-bout lorsque la relation d’intérêt \succeq est « plus grand que ». On appelle le triplet $A := (A, \succeq, \ast)$ un système relationnel. Dans la suite, nous considérons essentiellement des systèmes relationnels (A, \succeq) sans loi de concaténation.

Il est commode d’introduire les parties symétriques \sim et asymétriques \succ de la relation \succeq, définies par $a \sim b$ si et seulement si $a \succeq b$ et $b \succeq a$, et $a \succ b$ si et seulement si $a \succeq b$ et $(b \succ a)$. Nous utiliserons souvent l’ensemble quotient A/\sim (ensemble des classes d’équivalence de \sim).

Le problème fondamental du mesurage est de trouver des homomorphismes entre des systèmes relationnels A et $B := (B, \succ', \ast')$, le cas le plus courant étant celui où $B = (\mathbb{R}, \geq, +)$. Cela revient à chercher une fonction $f : A \rightarrow B$ telle que :

$$ a \succeq b \iff f(a) \succ' f(b) $$

$$ f(a \ast b) = f(a) \ast' f(b). $$

On appelle échelle un triplet (A, B, f), où f est un homomorphisme de A vers B. Par abus de langage nous dirons quelquefois que f est l’échelle. L’échelle est dite numérique si $B = \mathbb{R}$. Enfin, on dit que f apporte (ou est) une représentation de A, numérique si $B = \mathbb{R}$.

En général f n’est pas unique. Toutes les fonctions $\phi : B \rightarrow B$ telles que $\phi \circ f$ est encore un homomorphisme sont des transformations admissibles. Si l’on prend l’exemple de la mesure de température ($\succeq = \text{« plus chaud que »}$), l’échelle des degrés Celsius, des degrés Kelvin sont des exemples d’échelle.

On distingue différents types d’échelle, selon la classe des transformations admissibles. Les principaux exemples d’échelle sont :

7
- les échelles absolues. La seule transformation admissible est l’identité.
 Exemple : compter.
- Les échelles de ratio. Les transformations admissibles sont $\phi(x) = \alpha x$, $\alpha > 0$. Exemples : masse, température en Kelvin.
- Les échelles d’intervalle. Les transformations admissibles sont $\phi(x) = \alpha x + \beta$, $\alpha > 0$. Exemples : température en Celsius, années du calendrier.
- Les échelles ordinales. Toute fonction ϕ strictement croissante est admissible. Exemples : échelle de dureté, échelle de Richter.
 Une proposition sur A/\sim (exemple : a est 2 fois plus long, ou plus chaud, ou plus lourd que b) est significative si sa vérité reste inchangée pour toute transformation admissible. Ainsi, dans l’échelle des degrés Kelvin, cela a un sens de dire que a est deux fois plus chaud que b, par contre cela n’en a pas dans l’échelle des degrés Celsius.

Intéressons-nous au cas le plus simple de système relationnel, du type $A = (A, \succeq)$, où \succeq est une relation binaire. Nous voulons trouver un homomorphisme f de A dans $B = (\mathbb{R}, \succeq)$ (problème dit du mesurage ordinal). Dans le cas d’un ensemble A fini, il est facile de montrer qu’un tel homomorphisme existe si et seulement si \succeq est un préordre large total, et on peut prendre comme solution $f(x) := \{y \mid x \succeq y\}$. Le résultat s’étend au cas où A est dénombrable (en fait, il suffit que l’ensemble quotient A/\sim soit dénombrable).

Dans le cas général, il n’est pas toujours possible de trouver un homomorphisme. Le contre-exemple de l’ordre lexicographique, dû à Debreu, est célèbre. Prenons $A = \mathbb{R}^2$, et définissons l’ordre lexicographique (partie symétrique) par :
\[(a, b) \succ_{\text{lex}} (c, d) \iff [a > c \text{ ou } (a = c \text{ et } b > d)].\]
Supposons qu’un homomorphisme f existe, nous aurions alors $f(a, 1) > f(a, 0)$. Donc il existerait un rationnel $g(a)$ tel que $f(a, 1) > g(a) > f(a, 0)$. Ceci étant valable pour tout $a \in \mathbb{R}$, on a ainsi défini une fonction $g : \mathbb{R} \rightarrow \mathbb{Q}$. Remarquons que cette fonction est injective. En effet, si $a \neq b$, on a nécessairement $a > b$ ou $b > a$. Dans le cas $a > b$, ceci implique que $g(a) > f(a, 0) > f(b, 1) > g(b)$. Cependant, aucune fonction injective des réels dans les rationnels ne peut exister.

Grossièrement dit, une représentation numérique n’est pas possible si A est d’un cardinal supérieur à celui de \mathbb{R}. Ceci est exprimé par le résultat de Birkhoff-Milgram, basé sur la notion d’ordre-densité. Soit (A, \succeq) un ordre large total (i.e. antisymétrique : $A/\sim A$). On dit qu’une partie B de A est ordre-dense dans (A, \succeq) si $\forall a, b \in A \setminus B$ tels que $a \succ b$, alors $\exists c \in B$ tel que $a \succeq c \succeq b$. Le résultat est alors le suivant.

Théorème 1 Soit (A, \succeq), \succeq étant binaire. Il existe $f : A \rightarrow \mathbb{R}$ tel que $a \succeq b \iff f(a) \geq f(b)$ si et seulement si \succeq est un préordre large total, et l’ensemble quotient A/\sim a un sous-ensemble ordre-dense au plus dénombrable. De plus, si un tel f existe, alors (A, B, f) est une échelle ordinaire.

Ce résultat apporte une réponse à notre première question dans le cas $n = 1$. La fonction d’utilité u_i joue le rôle de l’homomorphisme, et \succeq représente la préférence du sujet ; de plus, la fonction u_i étant définie à une transformation strictement croissante près, on obtient une échelle ordinaire.
Une échelle ordinaire est pauvre, et ne permet pas véritablement de manier des valeurs numériques. Est-il possible d’aller plus loin et de spécifier une échelle d’intervalle ? Cette question est reliée au mesure de différence, dont nous donnons un très bref aperçu. On considère cette fois une relation ≤ sur A qui est quadrinaire. Le sens donné à \(ab \preceq st \) pour \(a, b, s, t \in A \) est le suivant : la différence d’intensité entre \(a \) et \(b \) est plus grande que la différence d’intensité entre \(s \) et \(t \), l’intensité étant traduite par une fonction réelle \(f \) définie sur \(A \). Ainsi on a l’équivalence :
\[
abla ab \preceq st \iff f(a) - f(b) \geq f(s) - f(t).
\]
La question est de savoir quelles sont les conditions requises sur ≤ pour qu’une telle fonction \(f \) existe, et si cette fonction est unique. Krantz et col. [51] ont montré que les 5 conditions suivantes sont nécessaires et suffisantes pour l’existence de \(f \) :
1. La relation binaire \(R \) sur \(A^2 \) définie par \((a, b) R (s, t) := ab \preceq st \) est un
 préordre large total.
2. \(ab \preceq st \implies ts \preceq ba \).
3. \(ab \preceq a'b' \ et \ bc \preceq b'c' \ impliquent ac \preceq a'c' \).
4. \(ab \preceq st \ et \ st \preceq xx \ impliquent l’existence de \(u, v \in A \) tels que
 \(au \sim st \ et \ vb \sim st \) (solvabilité).
5. Toute séquence standard strictement bornée est finie (axiome archimédien).
 On dit que \(a_1, \ldots, a_n \) est une \textit{séquence standard} si \(a_{i+1}a_i \sim a_2a_1 \), \(i = 1, \ldots, n-1 \ et \ \neg a_2a_1 \sim a_1a_1 \) (espace régulier). La séquence standard
 est bornée strictement s’il existe \(s, t \in A \) tels que \(st \succ a_ia_1 \succ ts \),
 \(i = 1, \ldots, n \).
De plus, si un tel \(f \) existe, il est unique à une transformation affine positive
près, et défini ainsi une échelle d’intervalle.

Il existe un résultat dû à Scott dans le cas où \(A \) est fini, qui fait intervenir
cependant un schéma infini d’axiomes.

Il existe un troisième type de mesure, dit \textit{mesurage extensif}, où on cherche
un homomorphisme entre \((A, \preceq, *) \) et \((\mathbb{R}, \geq, +) \). Une représentation existe si et
seulement si \((A, \preceq, *) \) est un groupe ordonné archimédien (théorème de Hőlker).
Dans ce cas, on obtient une échelle de ratio.

Nous venons d’étudier le cas mono-dimensionnel \(n = 1 \). Que se passe-t-il
le cas multi-dimensionnel ? Conformément à nos notations, nous désignons
par \(X = X_1 \times \cdots \times X_n \) l’ensemble des objets. Nous cherchons une fonction
\(u : X \rightarrow \mathbb{R} \) telle que \(x \preceq y \) si et seulement si \(u(x) \geq u(y) \). L’existence de cette
fonction est donnée par le théorème de Birkhoff-Milgram : il faut et il suffit que \((X/ \sim, \preceq) \)
a un sous-ensemble ordre-dense dénombrable et que \(\preceq \) soit un
préordre large total. Afin de faire apparaître les dimensions \(X_1 \), on cherche des fonctions dites \textit{décomposables}, c’est-à-dire de la forme
\[
u(x_1, \ldots, x_n) = F(u_1(x_1), \ldots, u_n(x_n)),
\]
avec \(F \) strictement croissant. Une condition essentielle pour l’existence de cette
forme est la propriété de \textit{séparabilité faible} ou \textit{indépendance}\(^1\) de \((X, \preceq) \) :
\[
(x_i, z_i) \preceq (y_i, z_i') \iff (x_i, z_i') \preceq (y_i, z_i'), \quad \forall x, y, z, z' \in X.
\]
\(^1\)S’il n’y a pas de condition sur \(F \), on remplace dans (3) \(\preceq \) par \(\sim \). Cette condition est dite
\textit{substituabilité}.
La notation \(z = (x_A, y_A) \) signifie que l’objet \(z \) est tel que \(z_i = x_i \) si \(i \in A \), et \(z_i = y_i \) sinon. Cette propriété entraîne l’existence de relations \(\succeq_i \) sur chaque \(X_i \), et donc d’homomorphismes \(u_i : X_i \rightarrow \mathbb{R} \). En résumé, le résultat est le suivant :

\[\text{Théorème 2} \quad (X, \succeq) \text{ est représentable par une fonction } u \text{ décomposable avec } \begin{align*} F : \mathbb{R}^n \rightarrow \mathbb{R} & \text{ strictement croissante si et seulement si } \succeq \text{ est un prédécalage large total, } (X/\sim, \succeq^*) \text{ a un sous-ensemble ordre-dense dénombrable, et } (X, \succeq) \text{ est faiblement séparable.} \end{align*} \]

\(u \) définit une échelle ordinaire car elle est unique à une transformation strictement croissante près.

Ce résultat répond à nos deux questions du début, car les équations (1) et (2) sont identiques : \(F \) est donc la fonction d’agrégation cherchée, et les fonctions d’utilité \(u_i \) sont uniques. Cependant, cela reste un théorème d’existence avec des conditions qui sont difficilement vérifiables en pratique. D’autre part, il serait intéressant d’obtenir au moins une échelle de différence. La méthode MACBETH que nous présentons ci-dessous permet d’obtenir une échelle de différence (non unique), avec un dispositif expérimental, au prix de quelques hypothèses supplémentaires. Auparavant, nous introduisons les notions fondamentales d’échelles unipolaire et bipolaire.

3.3 Échelles unipolaires et bipolaires

Examinons dans ce paragraphe la notion d’échelle sous un autre angle, à la lumière des travaux faits en psychologie autour de la notion d’affect (Section 3.1). Ces travaux ont montré la nature bipolaire (bon/mauvais, positif/négatif) de l’évaluation, et l’existence d’un niveau neutre (théorie du signe). Nous allons tenter de formaliser ces notions, en nous rattachant à la théorie du mesurage.

La distinction entre échelle unipolaire et bipolaire tient à la présence d’une valeur particulière de l’échelle, dite valeur neutre, dont le sens exact est lié à la nature de la relation \(\succeq \). Dans bien des cas cependant, et notamment pour toutes les relations \(\succeq \) de caractère physique, cette distinction n’a aucun sens. Elle semble être cependant utile pour des relations de nature plus subjective où intervient l’affect, telle que la préférence.

Soit \((A, \succeq)\) un système relationnel, et \(f \) une échelle que l’on va supposer numérique (il est cependant possible de travailler sur n’importe quel ensemble totalement ordonné). Il peut exister dans \(A \) une valeur particulière \(e \), dite valeur neutre, qui a la propriété que si \(a > e \), alors \(a \) est jugé « bon », tandis que si \(e > a \), alors \(a \) est jugé « mauvais ». Il est commode (mais non obligatoire) d’attribuer à \(e \) la valeur \(f(e) = 0 \); ce faisant, les nombres positifs correspondent aux bonnes valeurs du descriptor, et les nombres négatifs aux mauvaises valeurs. Une valeur neutre existe chaque fois que la relation \(\succeq \) correspond à deux notions appariées et opposées du langage courant. Ainsi en est-il des relations « plus attractif que », « meilleur que », « aimer plus que », dont les paires opposées correspondent respectivement attirance/répulsion, bon/mauvais, aimer/détester.

Au contraire, des relations comme « plus prioritaire que », « plus permis que », « appartient plus à la catégorie \(C \) que » ne correspondent manifestement pas à des paires de concepts opposés (absence d’affect), et donc n’ont pas de valeur neutre.

Une échelle bipolaire a une valeur neutre, tandis qu’une échelle unipolaire n’en a pas. Typiquement, pour une échelle bipolaire le domaine image de \(f \) sera
\(\mathbb{R} \) (bipolaire non borné) ou un intervalle fermé de \(\mathbb{R} \) symétrique autour de 0 (bipolaire borné), considéré comme valeur neutre. Pour une échelle unipolaire, on considère généralement qu'elle a un plus petit élément, c'est-à-dire qu'il existe \(a \in A / \sim \) tel que \(b \succ a \) pour tout \(b \in A \) (c'est toujours le cas si \(A \) est fini et \(\succ \) est un préordre total). Il est commode, mais non obligatoire d'associer à \(a \) la valeur \(f(a) = 0 \). Dans ce cas, le domaine image de \(f \) est \(\mathbb{R}_+ \) (unipolaire non borné) ou un intervalle fermé \([0, a]\) (unipolaire borné). Si nous reprenons les exemples d'échelles unipolaires ci-dessus, les relations «plus permis que» et «appartient plus à la catégorie \(C \) que» ont un plus petit élément, que l'on peut exprimer respectivement par «interdit» (au sens strict), et «hors de la catégorie \(C \)». Par contre, il n'existe pas de plus petit élément pour «plus prioritaire que» car on peut toujours trouver quelque chose de moins prioritaire.

Il est commode de noter 0 la valeur neutre d'une échelle bipolaire ou le plus petit élément d'une échelle unipolaire.

Une échelle a un plus grand élément s'il existe une valeur \(a_1 \in A \) telle que \(a_1 \gtrless a \) pour tout élément \(a \) de \(A \). On dit qu'une échelle unipolaire est bornée si elle a un plus grand élément. Une échelle bipolaire est bornée si elle a un plus petit et un plus grand élément (du fait de la symétrie inhérente à ce type d'échelle, l'existence d'un plus grand élément entraîne celle d'un plus petit élément). Dans nos exemples précédents, les relations «plus attractif que», «mieux que», «plus prioritaire que» ne sont pas forcément bornées, tandis que «plus permis que» et «appartient plus à la catégorie \(C \) que» sont manifestement bornées, les plus grands éléments étant respectivement «tout-à-fait autorisé» et «appartient complètement à la catégorie \(C \)». Nous notons 1 le plus grand élément, et \(-1\) le plus petit élément d'une échelle bipolaire, quand ils existent.

L'absence de plus grand élément peut poser un problème quand plusieurs échelles sont utilisées en même temps (commensurabilité). Dans ce cas, il faut recourir un autre niveau remarquable, que nous appelons le niveau satisfaisant, et que nous notons également 1. Ce niveau est considéré comme bon et tout-à-fait satisfaisant si le décideur pouvait l'obtenir, même si des éléments plus attractifs peuvent exister dans \(A \), par l'hypothèse d'échelle non bornée. Comme on le verra dans le paragraphe suivant, l'existence d'un tel niveau est une hypothèse de base de l'approche MACBETH. L'existence d'un niveau «satisfaisant» qui contenterait le décideur, et serait tel que celui-ci n'éprouverait pas le besoin de chercher de meilleurs éléments, est une des thèses fondamentales de l'économiste Herbert Simon, dans sa théorie de la rationalité bornée (Satisficing bounded rationality) [89, 90, 79]. L'idée principale est que dans une situation réelle, donc complexe par essence (par ex. : jeu d'échecs) et souvent en information incomplète (par ex. : recherche de nourriture par un animal), le décideur ou l'agent ne cherche pas à optimiser, mais à satisfaire : celui-ci choisira toute solution qui lui procure un niveau de satisfaction jugé suffisant.

Par ailleurs, la nécessité d'avoir un point de repère sur l'échelle a bien été montré en psychologie : c'est la notion d'évaluabilité (voir Section 3.1). Quand l'échelle est bornée, on retrouve en outre le phénomène de dominance de la proportion (Section 3.1) : exprimer une valeur en pourcentage ou en proportion est bien faire référence à un plus grand élément, auquel on compare toutes les valeurs.

Quelle est la relation entre bipolaire/unipolaire et les types d'échelle (ordinaire, intervale, ratio, etc.) que nous avons évoquées ? A priori aucun, on peut être
par exemple ordinal et bipolaire ou unipolaire. Toutefois, la valeur neutre d’une échelle bipolaire est apparentée au 0 d’une échelle de ratio, point fixe de toute transformation admissible. Pour une échelle unipolaire sans plus petit élément, l’absence de point de référence impliquerait que l’on a une échelle d’intervalle. Si un plus petit élément existe, selon le sens de la relation \(\succcurlyeq \), on peut avoir une échelle de ratio ou d’intervalle.

3.4 L’approche MACBETH

La méthode MACBETH (Measuring Attractiveness by a Categorical Based Evaluation Tecnhique) est due à Bana e Costa et Vansnick. Nous renvoyons le lecteur à [1, 2, 3] pour plus de détails.

Commençons comme ci-dessus par le cas mono-dimensionnel. On considère un ensemble fini d’objets \(A = \{a, b, c, \ldots\} \). On pose au sujet deux types de questions, pour toute paire \((a, b) \in A^2 \):

- Est-ce que \(a \) est plus attractif (ou préférable, etc.) que \(b \)? (oui/non) Si la réponse est «oui», on note \(aPb \).
- Si \(aPb \), est-ce que la différence d’attractivité (ou préférence, etc.) est (une seule réponse possible):
 - très faible \((aC_1 b) \)
 - faible \((aC_2 b) \)
 - modérée \((aC_3 b) \)
 - forte \((aC_4 b) \)
 - très forte \((aC_5 b) \)
 - extrême \((aC_6 b) \).

Si on n’a ni \(aPb \) ni \(bPa \), on dit que \(a \) et \(b \) sont indifférents, ce qu’on note par \(aC_0 b \). On a \(P = C_1 \cup C_2 \cup \cdots \cup C_6 \), et on définit \(P_k := C_k \cup C_{k+1} \cup \cdots \cup C_6 \), \(k = 1, \ldots, 6 \).

En se référant à la théorie du mesurage, la réponse à la première question apporte une information ordinaire. On cherche une représentation numérique \(f : A \longrightarrow \mathbb{R} \) tel que \(f(a) > f(b) \) si et seulement si \(aPb \). On sait (cf. section 3.2) que dans ce cas il en existe toujours si \(P \) est un précordre strict total, et que cela définit une échelle ordinaire.

La seconde question est apparentée au mesurage de différence. La relation quaternaire \(\succcurlyeq \) est définie implicitement par le caractère ordonné des catégories \(C_1, \ldots, C_6 \). On a vu qu’une représentation par une échelle de différence n’existe pas toujours (résultat de Scott pour le cas fini, ou de Krantz et col. pour le cas général). Dans le cas présent, cela revient à chercher une fonction \(f : A \longrightarrow \mathbb{R} \) telle que \(aC_k b \) et \(cC_{k'} d \), avec \(k > k' \) est équivalent à la condition \(f(a) - f(b) > f(c) - f(d) \). Bana e Costa et Vansnick ont trouvé des conditions d’existence d’une telle fonction \(f \) plus simples que celles de Scott [1]. Premièrement, l’existence d’une telle fonction \(f \) est équivalente à l’existence de nombres réels \(0 =: t_1 < \cdots < t_6 \) et d’une fonction \(f : A \longrightarrow \mathbb{R} \) tels que

\[
 aP_k b \iff f(a) > f(b) + t_k, \quad k = 1, \ldots, 6. \tag{4}
\]

Cette condition est équivalente à son tour à une condition sur le graphe de la relation \(P \). Elle est également (et plus simplement) vérifiable par la résolution d’un programme linéaire.

Supposons que les deux conditions ordinaire et cardinale soient vérifiées. Par un programme linéaire, on cherche alors la plus petite fonction \(f \) possible en
imposant \(t_k := k \). La fonction \(f \) obtenue définit une échelle d’intervalle, car elle est unique à une transformation affine positive près.

Considérons maintenant le cas multi-dimensionnel. Nous notons comme ci-dessus \(X \) l’ensemble des objets potentiels, de la forme \(X_1 \times \cdots \times X_n \). Pour chaque descriptor \(X_i \), nous supposons qu’il est soit fini, soit qu’il existe un sous-ensemble \(\tilde{X}_i \) fini comportant les valeurs remarquables de \(X_i \). Cette hypothèse est nécessaire, car MACBETH ne peut travailler que sur un ensemble fini, qui plus est de cardinalité restreinte. Elle n’est en principe pas restrictive car n’oublions pas que l’ensemble des objets d’intérêt (considérés dans l’expérience) est nécessairement fini : \(x^1, x^2, \ldots, x^p \). Il suffit alors de prendre \(\tilde{X}_i := \{ x^1_i, x^2_i, \ldots, x^p_i \} \), pour tous les \(i \) tels que \(X_i \) est infini.

La méthode MACBETH rentre dans la catégorie des méthodes construisant une fonction \(u \) décomposable (cf. équation (2)), avec \(F \) étant de la forme \(\sum_{i=1}^n w_i x_i \), \(w_i \geq 0 \) (somme pondérée). Notons que les conditions nécessaires et suffisantes sur \(\succeq \) pour une représentation par une somme pondérée sont connues : voir [51, 82]). Nous savons d’après la section 3.2 qu’une représentation décomposable nécessite une hypothèse de séparabilité faible de \(\succeq \). MACBETH fait implicitement cette hypothèse, et se base dessus pour dans un premier temps construire les fonctions d’utilité \(u_i \) sur chaque \(X_i \). La façon de procéder est la suivante. Supposons que l’on veuille construire la fonction \(u_i \) sur \(X_i \). On considère l’ensemble des objets (fictifs le plus souvent)

\[
A_i := \{ (0_1, \ldots, 0_{i-1}, x^j_i, 0_{i+1}, \ldots, 0_n) \}_{x^j_i \in \tilde{X}_i},
\]

où \(0_j \) est une valeur particulière de \(X_j \) que nous allons expliciter. Sous l’hypothèse de séparabilité faible, l’application de la méthode MACBETH décrit ci-dessus sur l’ensemble d’objets \(A_i \) détermine sans ambiguïté une échelle d’intervalle \(u_i \), c’est-à-dire définie à une transformation affine positive près \(\alpha_i u_i + \beta_i \), \(\alpha_i > 0 \).

A priori, n’importe quelle valeur de \(X_j \) peut être choisie pour \(0_j \). Pour des raisons de commensurabilité que nous allons expliciter, il importe que les valeurs \(0_j \) puissent revêtir un sens absolu. Selon que l’échelle est unipolaire ou bipolaire (voir section 3.3), on définit \(0_j \) comme la valeur de \(X_j \) ressentie par le sujet comme étant tout-à-fait inacceptable (cas des échelles unipolaires : \(0_j \) est alors le plus petit élément), ou neutre (cas des échelles bipolaires : \(0_j \) est la valeur neutre de l’échelle).

MACBETH fait l’hypothèse qu’une telle valeur de sens absolu existe sur chaque descriptor, et qu’elle est exprimable par le sujet. Le sens absolu de ces valeurs signifie que pour tout \(j = 1, \ldots, n \), la satisfaction qu’induit la valeur \(0_j \) pour le sujet est la même. Ainsi on doit avoir \(u_i(0_j) = u_j(0_j) \), pour toute paire \(i, j \). Il semble naturel de prendre comme valeur commune \(u_i(0_j) = 0 \).

Afin de fixer les deux constantes \(\alpha_i, \beta_i \), il est nécessaire de fixer un deuxième point remarquable de sens absolu sur chaque \(X_i \), que l’on notera \(1_i \). Si l’échelle est bornée, alors \(1_i \) correspond au plus grand élément de \(A_i / \sim \) (valeur la plus

\footnote{Ainsi qu’il est présenté dans [40], il est possible de raisonner autrement et de se passer de l’hypothèse de séparabilité faible. On peut imposer que la fonction \(F \) vérifie la propriété suivante (que l’on pourrait appeler homogénéité faible) pour \(i = 1, \ldots, n \) : il existe un réel positif \(\alpha_i \) tel que \(F(a_i, 0_{i-}) = \alpha_i a_i \), pour tout \(a_i \in \mathbb{R}^+ \). Si on pose \(u_i(0_i) = 0 \), alors l’équation (5) permet de déterminer \(u_i \) sans ambiguïté. La somme pondérée vérifie la propriété d’homogénéité faible, ainsi que l’intégrale de Choquet.}

13
satisfaisante). Sinon, la valeur 1, est la valeur *satisfaisante* évoquée dans la Section 3.3. De même qu’auparavant, le sens absolu de ces valeurs implique que \(u_i(1_i) = u_j(1_j) \) pour toute paire \(i, j \). Par convention, nous posons \(u_i(1_i) := 1 \), \(i = 1, \ldots, n \).

Ceci étant réalisé, les fonctions \(u_i \) sont déterminées de façon unique. Elles sont *commensurables* au sens où une égalité des valeurs images implique une égalité de la satisfaction pour le sujet.

La dernière étape consiste à déterminer les poids \(w_i \) de chaque descripteur dans la somme pondérée \(F \). Pour cela, on construit l’ensemble des objets (fictifs)

\[
B := \{ (0_1, \ldots, 0_{i-1}, 1_i, 0_{i+1}, \ldots, 0_n) \}_{i=1, \ldots, n},
\]

et on applique la méthode MACBETH sur \(B \) pour trouver une échelle d’intervalle \(w \). En notant \(b_i \) l’élément de \(B \) ayant la valeur 1, à la \(i \)ème coordonnée, on obtient \(w_i = w(b_i), \ i = 1, \ldots, n \). Cette façon de procéder signifie que le poids d’un descripteur correspond à la valeur attribuée à un objet étant satisfaisant sur ce descripteur et neutre (ou inacceptable) ailleurs.

3.5 Construction du modèle d’évaluation subjective

L’application de la méthode MACBETH permet de donner une réponse constructive aux deux questions posées au début de cette section, cependant restreinte au cas où \(F \) est la somme pondérée. La somme pondérée est une fonction d’agrégation simple, mais limitée. D’autre part, on sait qu’il existe de nombreuses autres fonctions d’agrégation (voir Chapitre 4 de cet ouvrage). Nous proposons ici une approche plus générale.

Considérons l’exemple suivant afin de montrer les limitations de la somme pondérée et motiver notre approche.

Exemple 1 : Prenons \(X = X_1 \times X_2 \), et supposons que l’on ait construit les deux fonctions d’utilité \(u_1, u_2 \). Considérons 3 objets \(a, b, c \), dont les utilités sont :

\[
\begin{align*}
 u_1(a_1) &= 0.4 \quad u_1(b_1) = 0 \quad u_1(c_1) = 1 \\
 u_2(a_2) &= 0.4 \quad u_2(b_2) = 1 \quad u_2(c_2) = 0,
\end{align*}
\]

en supposant que \(u_i : X_i \rightarrow [0, 1], i = 1, 2 \). Le sujet a comme préférence \(a \succ b \sim c \). Cherchons \(w_1, w_2 \) tels que ce choix soit représenté par la somme pondérée. On obtient :

\[
\begin{align*}
 b \sim c &\iff w_1 = w_2 \\
 a \succ b &\iff 0.4(w_1 + w_2) > w_2
\end{align*}
\]

equivalent à \(0.8w_2 > w_2 \), ce qui est impossible. La raison en est que dans ce modèle, le sujet spécifie seulement la satisfaction des objets fictifs satisfaisants sur le premier critère et inacceptables pour le deuxième, et vice versa. Manifestement, le sujet est sensible aux objets ayant un critère inacceptable. Ainsi, si on l’avait interrogé sur les 3 objets fictifs \(b, c, d := (1_1, 1_2) \), il aurait exprimé une nette préférence pour \(d \) par rapport à \(b \) et \(c \).
Cet exemple suggère que pour établir F, il faut interroger le sujet sur des objets fictifs présentant une combinaison arbitraire de 1_i et 0_i, à priori toutes les combinaisons possibles (nous qualifierons un tel objet de binaire). Ainsi l’ensemble B des objets fictifs à considérer est, non pas celui défini par (6), mais l’ensemble des objets binaires :

$$B := \{ (1_A, 0_A) \mid A \subseteq N \}$$ (7)

en posant $N := \{1, \ldots, n\}$, et où l’objet fictif $z = (1_A, 0_A)$ est défini par $z_i = 1_i$ si $i \in A$ et $z_i = 0$, sinon. Appliquant MACBETH sur cet ensemble, on construit une échelle d’intervalle $\mu : P(N) \rightarrow \mathbb{R}$. En remarquant que $A = \emptyset$, N conduit aux objets $(0, 0, \ldots, 0_n)$ et $(1, 1, \ldots, 1_n)$, il semble naturel de poser $\mu(\emptyset) = 0$ et $\mu(N) = 1$.

Quand $A \subset B$, nous remarquons que l’objet fictif $(1_B, 0_B)$ domine l’objet $(1_A, 0_A)$, ce qui signifie que le premier est au moins aussi bon que le second sur chaque descripteur. Il semble raisonnable d’imposer alors que $\mu(A) \leq \mu(B)$, une propriété appelée monotonie ou mieux isotonie.

La valeur $\mu(A)$ est la valeur attribuée par le modèle à l’objet fictif $(1_A, 0_A)$. Puisque $u_i(1_i) = 1$, $u_i(0_i) = 0$, $\forall i \in N$, on a :

$$F(1_A, 0_A) = \mu(A), \quad \forall A \subset N.$$ (8)

Autrement dit, μ détermine F sur les sommets de l’hypercube $[0, 1]^n$. Il reste à déterminer F sur $[0, 1]^n$ entier, ou sur \mathbb{R}_+^n ou \mathbb{R}^n suivant le type d’échelle (unipolaire, bipolaire, bornée, etc.). Ceci est l’objet de la section 4.

En résumé, le modèle d’évaluation est construit de la façon suivante.

(0) **Données**: des descripteurs X_1, \ldots, X_n, et si nécessaire des sous-ensembles finis de ces descripteurs $\tilde{X}_1, \ldots, \tilde{X}_n$.

Hypothèses fondamentales :

(H1) La relation \succeq sur $X = X_1 \times \cdots \times X_n$ est un préordre large total faiblement séparable (cette hypothèse est vérifiable car \succeq ne peut être commu sur X entier). Voir Note 2 pour une autre hypothèse.

(H2) Sur chaque descripteur, il est possible d’identifier deux valeurs particulières 0_i et 1_i, possédant un sens absolu.

(i) **Construction des fonctions d’utilité** u_i: on considère pour $i \in N$ l’ensemble A_i donné par (5). L’application de la méthode MACBETH fournit une fonction u_i à une transformation affine positive près. On détermine les fonctions u_i de façon unique en imposant $u_i(0_i) = 0$, $u_i(1_i) = 1$, $\forall i \in N$.

Cette construction suppose que :

(O1) Les relations \succeq_i sur A_i sont des préordres larges totaux (Nota : implicitement vérifié si l’hypothèse fondamentale (H1) est satisfaite)

(D1) les conditions de mesure de différence sont satisfaites (équation (4)).

(ii) **Construction de la pondération** μ: on considère l’ensemble d’objets fictifs B défini par (7). On applique la méthode MACBETH pour déterminer la fonction $\mu : P(N) \rightarrow \mathbb{R}$, définie à une transformation affine positive près. On choisit l’unique fonction telle que $\mu(\emptyset) = 0$ et $\mu(N) = 1$. De la sorte, la fonction d’agréation F est définie aux sommets de l’hypercube $[0, 1]^n$ (voir l’équation (8)).

Cette construction suppose que :
(O) La relation \succeq restreinte à B est un préordre large total (Nota : implicitement vérifié si l’hypothèse fondamentale (H1) est satisfaite).
(D) les conditions de mesurage de différence sont satisfaits (équation (4)).
Nous ajoutons l’hypothèse additionnelle suivante :
(I) \succeq restreint à B vérifie la dominance (ou de façon équivalente sous la condition que \succeq restreint à B est un préordre large total, μ est isotone).
La construction que nous avons présentée reste théorique, du moins en ce qui concerne l’échelle μ. Elle est donnée afin de préciser toutes nos hypothèses de travail, et d’amener logiquement à notre modèle. Nous verrons dans la section 6 des méthodes pratiques d’identification de μ.

4 Construction de la fonction d’agrégation

Intéressons-nous à la construction de la fonction F. Nous avons montré ci-dessus que cette fonction est connue sur les sommets de l’hypercube $[0, 1]^n$ par (8), car coïncidant avec la fonction $\mu : \mathcal{P}(N) \rightarrow [0, 1]$. Rappelons que $N = \{1, \ldots, n\}$ est l’ensemble des index des descripteurs. Ainsi, F peut être vue comme une extension de μ sur l’hypercube entier (voire \mathbb{R}^n).
Nous avons fixé les valeurs de $\mu(\emptyset)$ et $\mu(N)$, et nous avons imposé que μ soit monotone (isotone) (hypothèse (I)).

Définition 1 Une fonction $\mu : \mathcal{P}(N) \rightarrow [0, 1]$ telle que $\mu(\emptyset) = 0$, $\mu(N) = 1$, et $A \subset B \Rightarrow \mu(A) \leq \mu(B)$ est appelée mesure floue [92] ou capacité [7].

La notion de mesure floue étend celle de mesure additive de la théorie de la mesure [47] (à ne pas confondre avec la théorie du mesurage!), et a donné lieu à une théorie de la mesure non-additive [9]. Rappelons qu’on dit que μ est additif si $\mu(A \cup B) = \mu(A) + \mu(B)$, $A \cap B = \emptyset$. D’autre part, on dit que μ est symétrique si pour tout $A \subset N$, $\mu(A)$ ne dépend que de $|A|$.

4.1 Cas des échelles cardinales unipolaires

Considérons le cas d’une échelle unipolaire bornée, soit typiquement $[0, 1]$. Notre but est donc de construire F sur $[0, 1]^n$. Il y a bien entendu une infinité de façons d’étendre F à partir de μ, cependant nous cherchons une façon simple de le faire. Un moyen simple est de recourir à l’interpolation : pour $x \in [0, 1]^n$, $F(x)$ serait déterminé par une formule faisant intervenir les valeurs $F(1_A, 0_{A^c})$, pour A dans un ensemble de sommets $\mathcal{A}(x)$, de telle sorte que l’enveloppe convexe $\overline{\mathcal{A}(x)}$ des sommets de $\mathcal{A}(x)$ contienne le point x en question : c’est là le sens même de la notion d’interpolation. D’autre part, afin d’éviter toute ambiguïté, un point x donné doit appartenir à une et une seule région. Par conséquent, l’hypercube $[0, 1]^n$ est partitionné en polyèdres définis par leurs ensembles de sommets $\mathcal{A}_1, \ldots, \mathcal{A}_s$, qui sont tous des sommets de $[0, 1]^n$. Ces polyèdres contiennent les points dont l’interpolation est obtenue à partir de leurs sommets.
L’interpolation la plus simple serait une interpolation de type linéaire :

$$F(x) = \sum_{A \in \mathcal{A}(x)} \left[\sum_{i=1}^{n} \alpha_i(A) x_i \right] F(1_A, 0_{A^c}),$$

16
rempli de polyèdres contenant le moins de sommets possible.

Examinons en détail le cas $n = 2$ (Figure 1). Pour interpoler F en x, il

\begin{figure}[h]
\centering
\includegraphics[width=0.4\textwidth]{figure1.png}
\caption{Interpolation linéaire : 2 découpages possibles}
\end{figure}

est nécessaire sauf cas particulier pour x d’avoir au moins 3 sommets, sinon leur enveloppe convexe ne pourra contenir x. Il y a seulement deux découpages possibles (a) et (b); examinons le premier, qui divise $[0,1]^2$ en deux régions $(\{x_1,x_2\} | x_1 \leq x_2\}$ et $(\{x_1,x_2\}|x_2 \leq x_1\}$. Supposons que $x_1 \leq x_2$. La formule devient, en remarquant que $F(0,0) = 0$ et $F(1,1) = 1$:

$$F(x_1,x_2) = (\alpha_1 x_1 + \alpha_2 x_2)F(0,1) + (\beta_1 x_1 + \beta_2 x_2).$$

En prenant $(x_1,x_2) = (0,1)$ et $(1,1)$, on obtient les équations suivantes :

$$\alpha_2 = 1, \quad \beta_2 = 0$$

$$\alpha_1 + \alpha_2 = 0, \quad \beta_1 + \beta_2 = 1,$$

d’où l’on obtient comme unique solution l’expression :

$$F(x_1,x_2) = (x_2 - x_1)\mu(\{2\}) + x_1. \quad (9)$$

En procédant de même avec le cas $x_2 \leq x_1$, on obtient :

$$F(x_1,x_2) = (x_1 - x_2)\mu(\{1\}) + x_2. \quad (10)$$

Examinons maintenant si l’autre découpage mène à une solution. Choisissons $x \in \{x_1 + x_2 \geq 1\}$, l’équation d’interpolation devient :

$$F(x_1,x_2) = (\alpha_1 x_1 + \alpha_2 x_2)F(0,1) + (\beta_1 x_1 + \beta_2 x_2)F(1,0) + (\gamma_1 x_1 + \gamma_2 x_2)F(1,1).$$

En posant $x = (1,0)$ et $x = (0,1)$, on a nécessairement $\gamma_1 = \gamma_2 = 0$, ce qui implique que le point $(1,1)$ ne pourra jamais être retrouvé par la formule d’interpolation. On comprend que pour que le découpage fonctionne, il faut que les sous-ensembles correspondants aux sommets choisis pour l’interpolation forment une chaîne $A_1 \subset A_2 \subset \cdots \subset A_n$, comme c’est le cas pour le découpage (a).

En généralisant ce raisonnement pour n quelconque, on peut montrer que l’unique solution avec des polyèdres contenant le moins de sommets possible est donnée par :

17
- $q = n!$.
- chaque polyèdre est défini par une permutation σ sur N :
 $$\mathbf{x}_\sigma = \{x \in [0,1]^n \mid x_{\sigma(1)} \leq x_{\sigma(2)} \leq \cdots \leq x_{\sigma(n)}\};$$
- chaque A_σ contient n sommets, plus le sommet origine $(0,0,\ldots,0)$;
- pour $x \in A_\sigma$, la formule d’interpolation est
 $$F(x) = \sum_{i=1}^n [x_{\sigma(i)} - x_{\sigma(i-1)}] \mu(\{\sigma(i),\ldots,\sigma(n)\}).$$

On peut trouver ce résultat également chez Lovász (extension de fonctions d’ensemble sous-modulaires [57]). L’équation (11) est en fait l’intégrale de Choquet de x (considéré comme une fonction de N dans $[0,1]$).

Définition 2 Soit μ une capacité sur N, et une fonction $f : N \to \mathbb{R}^+$. L’intégrale de Choquet de f par rapport à μ est définie par :
 $$C_\mu(f) := \sum_{i=1}^n [f(\sigma(i)) - f(\sigma(i-1))] \mu(\{\sigma(i),\ldots,\sigma(n)\}),$$

avec σ une permutation sur N telle que $f(\sigma(1)) \leq \cdots \leq f(\sigma(n))$.

Nous avons donc montré que l’intégrale de Choquet correspond à l’interpolation linéaire la plus simple pour résoudre notre problème dans le cas des échelles unipolaires bornées. Il n’y a cependant aucun inconvénient pour que x appartienne à \mathbb{R}^n_+, ce qui permet de traiter le cas de l’unipolaire non bornée également.

Il est facile de vérifier que si μ est additif, l’intégrale de Choquet se réduit à la somme pondérée $\sum_{i=1}^n \mu(\{i\})x_i$. D’autre part, on a pour tout $x \in \mathbb{R}^n_+$ et toute capacité μ, $\min x_i \leq C_\mu(x) \leq \max x_i$, les bornes étant atteintes par les capacités μ_{\min}, μ_{\max}, définies par $\mu_{\min}(A) := 0$, $\forall A \neq n$, et $\mu_{\max}(A) := 1$, $\forall A \neq 0$.

L’intégrale de Choquet est à la base de nombreux travaux en théorie de la décision. En décision dans l’incertain ou le risque, elle a donné lieu aux modèles de l’utilité espérée au sens de Choquet (voir les travaux de Schmeidler [87], Wakker [97]), de l’utilité dépendante du rang (Quiggin [78]), etc. (voir une synthèse de ces modèles dans [6]). En décision multicritère, l’intégrale de Choquet est utilisée comme une fonction générale d’agréation des scores, permettant de représenter l’interaction entre critères [22, 41, 40] (voir Section 7).

4.2 Cas des échelles cardinales bipolaires

Considérons maintenant le cas des échelles bipolaires ; il sera suffisant de considérer l’intervalle $[-1,1]$. Rappelons qu’une échelle bipolaire contient trois points remarquables : la valeur neutre 0, et les valeurs 1 et -1 (ici 0, 1 et -1 respectivement), et il semble donc nécessaire que ces valeurs apparaissent dans l’ensemble des objets fictifs à considérer pour construire le modèle (voir (7)).
La solution la plus simple est de supposer une symétrie entre les parties négative et positive, auquel cas l’ensemble B des objets binaires défini par (7) suffit. Par exemple, on pourrait dire que l’évaluation de l’objet $(-1_A, 0_A)$ est égale à l’opposé de celle de l’objet $(1_A, 0_A)$ (modèle dit symétrique) ou de l’objet $(1_A, -A)$ (modèle dit asymétrique). Pour un objet comportant à la fois des scores positifs et négatifs, le plus simple est de calculer des scores globaux pour la partie positive et la partie négative séparément, puis de les additionner. Dans le cas $n = 2$, cette procédure est illustrée sur la Figure 2 (a).

\[\begin{array}{c|cc}
 & x_2 & 1 \\
\hline
-\beta & (\alpha) & 0 \\
(\beta) & (\beta) & 1 \\
\hline
-1 & -1 & 1 \\
\hline
\end{array} \]

Fig. 2 – Cas d’une échelle bipolaire : modèles symétrique (a), CPT (b), bipolaire général (c). Les ronds noirs indiquent les objet fictifs déterminant le modèle, les valeurs entre parenthèses des évaluations globales; les scores dans les parties non grises sont calculés à partir des scores dans les parties grises.

Si on prend l’intégrale de Choquet C_μ pour calculer les scores globaux sur la partie positive de l’échelle, ces deux modèles s’écrits respectivement, pour $x \in \mathbb{R}^n$:

\begin{align*}
\hat{C}_\mu(x) := & C_\mu(x^+) - C_\mu(x^-) \quad \text{(symétrique)} \\
C_\mu(x) := & C_\mu(x^+) - C_\mu(\overline{x}^-) \quad \text{(asymétrique)}
\end{align*}

avec $x_i^+ := x_i \vee 0$ et $x_i^- := (-x_i)^+$, $i = 1, \ldots, n$. D’autre part $\overline{\mu}$ est la capacité conjuguée, définie par $\overline{\mu}(A) := 1 - \mu(A^C)$, $A \subset N$. Ces expressions définissent en fait ce qu’on appelle l’intégrale de Choquet symétrique (ou intégrale de Šipoš [96]) et l’intégrale de Choquet asymétrique [9].

Si l’on n’a pas de raison de supposer une quelconque symétrie entre les parties positive et négative, on peut ajouter à l’ensemble des objets binaires B, l’ensemble des objets binaires négatifs N :

\[N := \{-1_A, 0_A \mid A \subset N\}. \]

On construit ainsi deux capacités μ^+, μ^-, soit deux modèles unipolaires, dont on va simplement additionner les scores globaux :

\[C_{\mu^+, \mu^-}(x) := C_{\mu^+}(x^+) - C_{\mu^-}(x^-), \quad \forall x \in \mathbb{R}^n. \]

En décision dans le risque, ce modèle correspond au modèle des perspectives cumulées (Cumulative Prospect Theory (CPT)) de Tversky et Kahnemann [94].
Pour cette raison, on l’appellera modède CPT. Pour \(n = 2 \), il est illustré sur la Figure 2 (b).

Enfin, si on ne veut pas faire d’hypothèse d’indépendance des parties positive et négative de l’échelle, il faut considérer comme objets fictifs supplémentaires ceux qui comportent à la fois des niveaux satisfaits 1 et non satisfaits –1. On est donc conduit à considérer l’ensemble des objets fictifs ternaires :

\[
T := \{(1_A, -1_B, 0_{(A\cup B)\setminus\emptyset}) \mid A, B \subset N, \ A \cap B = \emptyset \}.
\]

(15)

Ceci est illustré sur la Figure 2 (c) dans le cas \(n = 2 \). En appliquant la méthode MACBETH sur \(T \), on construit une échelle d’intervalle \(v : \mathcal{Q}(N) \rightarrow \mathbb{R} \), en notant \(\mathcal{Q}(N) := \{(A, B) \in \mathcal{P}(N) \times \mathcal{P}(N) \mid A \cap B = \emptyset \}. \) Comme précédemment, on pose \(v(N, \emptyset) = 1 \) et \(v(\emptyset, \emptyset) = 0 \), puisque ce sont les scores globaux d’objets satisfaits partout et neutres partout respectivement. De même, on peut convenir que \(v(\emptyset, N) = -1 \). Enfin, la notion de dominance s’applique comme dans la Section 3.5, ce qui conduit à imposer une propriété d’isotonicité de \(v \) dans le sens suivant : \(A \subset B \) implique \(v(A, \cdot) \leq v(B, \cdot) \) et \(v(\cdot, A) \geq v(\cdot, B) \). Par analogie avec la notion de capacité, on appelle bi-capacité une telle fonction [37, 36].

Définition 3 Une bi-capacité sur \(N \) est une fonction \(v : \mathcal{Q}(N) \rightarrow \mathbb{R} \) vérifiant :

1. \(A \subset B \Rightarrow v(A, \cdot) \leq v(B, \cdot) \) et \(v(\cdot, A) \geq v(\cdot, B) \);
2. \(v(N, \emptyset) = 1 \) et \(v(\emptyset, \emptyset) = 0 \), \(v(\emptyset, N) = -1 \).

Une bi-capacité est dite du type CPT si elle peut s’écrire comme la différence de deux capacités \(\mu^+, \mu^- \) :

\[
v(A, B) = \mu^+(A) - \mu^-(B), \quad \forall(A, B) \in \mathcal{Q}(N).
\]

La bi-capacité est dite symétrique si en outre \(\mu^+ = \mu^- \).

Ainsi il attribue à chaque objet ternaire un score global par \(v(A, B) = F(1_A, -1_B) \), où \((1_A, -1_B) \) désigne le vecteur valant 1 pour \(i \in A \), –1 pour \(i \in B \), et 0 ailleurs.

Ceci est conforme à la vision bipolaire de l’affect, telle qu’elle a été initiée par Osgood et coll. [76] (voir Section 3.1). Gréco et coll. [46] ont proposé une notion de capacité bipolaire \(\zeta : \mathcal{Q}(N) \rightarrow [0, 1] \times [0, 1] \), à chaque élément \((A, B) \) de \(\mathcal{Q}(N) \), on associe deux scores \(\zeta^+(A, B) \) et \(\zeta^-(A, B) \), l’un concernant la partie positive du score, l’autre la partie négative du score, qui vérifient les propriétés suivantes :

- si \(A \subset A' \) et \(B \supset B' \), alors \(\zeta^+(A, B) \leq \zeta^+(A', B') \) et \(\zeta^-(A, B) \geq \zeta^-(A', B') \);
- \(\zeta^-(A, \emptyset) = 0 \), \(\zeta^+(\emptyset, A) = 0 \), \(\forall A \subset N \);
- \(\zeta(N, \emptyset) = (1, 0) \) et \(\zeta(\emptyset, N) = (0, 1) \).

Cette notion correspond à la vision unipolaire double de l’affect, telle qu’elle est défendue par Cacioppo et coll. [5], où l’on peut avoir coexistence de sentiments positifs et négatifs.

Considérons dans un premier temps les bi-capacités comme donnée de base, et tentons de construire la fonction \(F \) d’agrégation, vue comme une extension de \(v \) sur \([-1, 1]^n \), puis sur \(\mathbb{R}^n \). Comme pour le cas des échelles unipolaires, nous allons chercher une solution sous forme d’interpolation la plus simple possible, mais cette fois-ci, les points à considérer pour l’interpolation ne sont plus les
sommes de l'hypercube $[-1,1]^n$, mais tous les points correspondants aux objets ternaires, c'est-à-dire les points x tels que $x_i = -1, 0$ ou 1, $i = 1 \ldots , n$.

Examinons tout d'abord le cas $n = 2$ (voir Fig. 3). Prenons un point x tel que $x_1 \geq 0$, $x_2 \leq 0$ et $|x_1| \leq |x_2|$. Alors, pour le point $|x|$, qui se situe dans le quadrant positif, nous connaissons déjà la meilleure interpolation linéaire en appliquant le résultat de la Section 4.1 : c'est l'intégrale de Choquet. Il suffit maintenant par une symétrie adéquate de mettre les bons sommets d'interpolation :

$$F(x_1, x_2) := |x_1|F(1, -1) + (|x_2| - |x_1|)F(0, -1)$$

Cette expression est une intégrale de Choquet par rapport à une fonction d'ensemble ν_1 définie par :

$$\nu_1(\{1, 2\}) = F(1, -1)$$

$$\nu_1(\{2\}) = F(0, -1).$$

Considérons maintenant le cas général. Définissons $N^+ = \{i \in N \mid x_i \geq 0\}$, $N^- = N \setminus N^+$. Avec des considérations de symétrie analogues, nous obtenons :

$$F(x) = |x_{\sigma(1)}|F(1_{N^+}, -1_{N^-}) + \sum_{i=2}^n (|x_{\sigma(i)}| - |x_{\sigma(i-1)}|)F(1_{\{\sigma(i), \ldots, \sigma(n)\}\cap N^+}, -1_{\{\sigma(i), \ldots, \sigma(n)\}\cap N^-})$$

où σ est une permutation sur N telle que $|x_{\sigma(1)}| \leq \cdots \leq |x_{\sigma(n)}|$. Cette expression est l'intégrale de Choquet de $|x|$ par rapport à la fonction d'ensemble ν_{N^+} définie par :

$$\nu_{N^+}(A) := F(1_{A\cap N^+}, -1_{A\cap N^-}).$$

En se souvenant que $F(1_A, -1_B) := v(A, B)$, on obtient la définition suivante.

Définition 4 Soit v une bi-capacité sur N, et $x \in \mathbb{R}^n$. L'intégrale de Choquet de x par rapport à v est définie par :

$$C_v(x) := C_{\nu_{N^+}}(|x|),$$

avec $N^+ := \{i \in N \mid a_i \geq 0\}$, $N^- := N \setminus N^+$, et $\nu_{N^+}(A) := v(A \cap N^+, A \cap N^-)$. 21
Il est à noter que ν_{N^+} n’est pas en général une capacité, car pouvant être non monotone ou prendre des valeurs négatives.

Si v est du type CPT avec $v(A, B) = \mu^+(A) - \mu^-(B)$, alors on retrouve le modèle CPT $C_{\mu^+ - \mu^-}$ (et par conséquent on retrouve l’intégrale de Choquet symétrique quand v est symétrique). Ceci suggère deux remarques :

- L’intégrale de Choquet pour les bi-capacités constitue bien une généralisation des modèles symétrique et CPT ;
- Les modèles symétrique et CPT sont des cas particuliers d’interpolation linéaire entre les points «ternaires» x (avec $x_i = -1, 0, 1$).

Revenons maintenant au modèle unipolaire double de Greco et col. [46]. L’intégrale de Choquet par rapport à une capacité bipolaire est définie comme suit. Pour $x \in \mathbb{R}^n$, notons σ la permutation sur N telle que $|x_{\sigma(1)}| \leq \cdots \leq |x_{\sigma(n)}|$, et définissons :

\[
A^+_i := \{\sigma(j), \ j \in \{i, \ldots, n\} \mid x_{\sigma(j)} \geq 0\}
\]
\[
A^-_i := \{\sigma(j), \ j \in \{i, \ldots, n\} \mid x_{\sigma(j)} \leq 0\},
\]

et

\[
C^+_\zeta(x) := \sum_{i \in N} (x^+_{\sigma(i)} - x^+_{\sigma(i-1)}) \zeta^+(A^+_i, A^-_i)
\]
\[
C^-_\zeta(x) := \sum_{i \in N} (x^-_{\sigma(i)} - x^-_{\sigma(i-1)}) \zeta^-(A^+_i, A^-_i),
\]

avec les mêmes notations que précédemment. L’intégrale de Choquet par rapport à ζ est alors définie par

\[
C_\zeta(x) := C^+_\zeta(x) - C^-_\zeta(x), \quad \forall x \in \mathbb{R}^n.
\]

Il y a deux remarques importantes à faire ici. La première est que, si on veut rester dans l’esprit du double unipolaire de Cacioppo, il est préférable de considérer le couple $(C^+_\zeta(x), C^-_\zeta(x))$ comme l’intégrale de Choquet, sans effectuer la différence. La deuxième est que, dans l’hypothèse où on effectue la différence (17), on peut montrer que si on veut que l’expression ne dépend pas de la permutation σ choisie quand plusieurs conviennent, alors nécessairement la capacité bipolaire ζ doit se reduire à la bi-capacité $v(A, B) := \zeta^+(A, B) - \zeta^-(\emptyset, B)$, et l’expression de C_ζ coïncide avec C_v donné par (16) [40].

5 Le cas des échelles ordinales

5.1 Introduction

Jusqu’à présent nous avons supposé que les quantités manipulées et les échelles étaient numériques, soit d’intervalle, soit de ratio (échelles cardinales). Dans la pratique cependant, il n’est pas souvent possible d’obtenir directement de l’information cardinale, et le but de la méthode MACBETH est justement d’obtenir par une approche théoriquement fondée une information cardinale à partir d’information ordinaire, au prix cependant de quelques hypothèses (mesurage de différence, obtention des niveaux neutres et satisfaisants, etc.). Dans certaines
situations, il est possible que l'on ne soit pas en mesure d'obtenir cette information du décideur, ou que le décideur ne soit pas cohérent dans ses réponses, ou que les hypothèses de base ne puissent être vérifiées. Dans ce cas, il ne reste plus qu'à utiliser l'information ordinaire telle quelle, en se contentant de la structure pauvre qu'elle induit, et en évitant de faire des hypothèses arbitraires pour se ramener dans le monde cardinal.

Évoluer dans un monde purement ordinal crée en fait de nombreuses difficultés. Outre le fait que notre construction des fonctions d’utilité et de la pondération exposée dans la Section 3.5 n’est plus possible, notre approche ci-dessus basée sur l’interpolation ne peut être transposée, et il en est de mêmes des approches multicritères de l’intégrale de Choquet exposées dans [41, 54]. Dans cette section, nous tentons de donner les outils existants pour aborder ce type de problème.

Dans toute cette section, on considère des échelles ordinaires finies (notées souvent \(L \)), avec un plus petit élément \(\varnothing \) et un plus grand élément \(\mathbb{I} \).

Nous avons montré dans la Section 3.2 que pour les échelles ordinaires, les opérations arithmétiques usuelles n’étaient pas significatives. Ainsi, on est obligé grosso modo de se contenter des opérations minimum (\(\wedge \)) et maximum (\(\vee \)) et de leurs combinaisons. On appelle **polynôme booléen** toute expression \(P(x_1, \ldots, x_n) \) formée de \(n \) variables \(x_1, \ldots, x_n \) à valeurs dans \(L \), de constantes dans \(L \), et reliées par \(\wedge, \vee \) dans une combinaison arbitraire de parenthèses, par exemple \(((\alpha \wedge x_1) \vee (x_2 \wedge (\beta \vee x_3))) \wedge x_4 \). Un résultat important de Marichal dit que l’**intégrale de Sugeno** (que l’on définira plus loin) coïncide avec la classe des polynômes booléens tels que \(P(\varnothing, \varnothing, \ldots, \varnothing) = \varnothing, \ P(\mathbb{I}, \mathbb{I}, \ldots, \mathbb{I}) = \mathbb{I} \), et \(P \) est croissant selon chaque variable [61]. Puisque ces conditions sont celles sur lesquelles nous avons appuyé toute notre étude jusqu’ici, on comprend que l’intégrale de Sugeno constitue l’outil incontournable dans le cadre ordinal.

Insistons cependant sur le fait que d’autres voies peuvent exister : par exemple Roubens a proposé une méthode basée sur l’intégrale de Choquet, où les scores sont en fait reliés au nombre de fois que l’objet en question est meilleur ou moins bon que les autres sur le même critère [83] (voir Section 6.2).

Il nous paraît important avant tout de souligner les difficultés propres au traitement des informations ordinales.

- **Finitude des échelles** : si on définit la fonction d’agrégation \(F \) comme allant de \(L^n \) dans \(L \), il est clair qu’il est impossible d’avoir une fonction strictement croissante, et de plus, il y aura de grandes zones d’indifférence où la fonction aura la même valeur, ce qui rend la construction peu intéressante. C’est pourquoi les études sur les t-normes et t-conormes sur des échelles finies donnent une très faible variété de fonctions [19]. Il est préférable d’avoir pour image de \(F \) une échelle \(L' \) plus grande, construite «au fur et à mesure» des besoins. C’est l’approche choisie dans [33] pour l’intégrale de Sugeno (voir aussi une étude générale sur cette question dans [27]).

D’autre part, dans le cas fini, on dispose de très peu de résultats en théorie du mesurage, car la plupart les modèles supposent une condition de solvabilité ou un axiome archimédien qui ne peuvent exister dans un cadre fini.

- **Nature ordinaire de l’échelle** : même en considérant une échelle continue comme \([0, 1]\), l’intégrale de Sugeno ne peut être strictement croissante,
et par ailleurs, ainsi que l’a montré Marichal [61], l’intégrale de Sugeno
induit une relation de préférence qui satisfait la séparabilité faible si et
seulement si il y a un critère dictateur. En fait, l’intégrale de Sugeno
induit une propriété plus faible qui est la séparabilité faible directionnelle,
définie par :

\[(x_i, z_i) \succ (y_i, z_{-i}) \Rightarrow (x_i, z'_i) \succeq (y_i, z'_{-i}), \ \forall x, y, z, z' \in X.\]

Cette condition empêche qu’un renversement de préférence survienne.

- construction des fonctions d’utilité : à l’inverse du cas cardinal,
il n’est pas possible de déterminer les fonctions d’utilité sans connaître
la pondération. On verra ci-dessous que l’évaluation globale d’un objet
\((x_i, 0, \ldots)\) par l’intégrale de Sugeno s’écrit \(u_i(x_i) \land \mu(\{i\})\). Ainsi, il n’est pas
toujours possible de retrouver \(u_i(x_i)\) car la valeur de \(\mu(\{i\})\), qu’elle soit
connue ou non, agit comme un seuil. C’est pourquoi dans la plupart des
applications, et bien que cette hypothèse soit sujette à caution supposée
que tous les attributs sont définis sur une échelle commune \(L\) qui sert en
fait à noter les scores des attributs. Dans [33], Grabisch et col. proposent
une méthode construisant les fonctions d’utilité, après avoir construit la
pondération \(\mu\).

5.2 L’intégrale de Sugeno

Soit \(\mu\) une capacité sur \(N\) prenant ses valeurs dans \(L\), avec \(\mu(\emptyset) = 0\)
et \(\mu(N) = 1\). Soit \(a := (a_1, \ldots, a_n)\) un vecteur de scores dans \(L^n\). L’intégrale de
Sugeno de \(a\) par rapport à \(\mu\) est définie par [92] :

\[S_\mu(a) := \bigvee_{i=1}^n [a_{\sigma(i)} \land \mu(A_{\sigma(i)})],\]

(18)

où \(\sigma\) est une permutation sur \(N\) telle que \(a_{\sigma(1)} \leq a_{\sigma(2)} \leq \cdots \leq a_{\sigma(n)}\), et
\(A_{\sigma(i)} := \{\sigma(i), \ldots, \sigma(n)\}\). On notera la ressemblance avec l’intégrale de Choquet (Déf. 2).
Si l’on prend \(L = [0, 1]\), les intégrales de Choquet et Sugeno coïncident quand
soit la capacité, soit l’intégrande prend ses valeurs dans \([0, 1]\), plus précisément :

\[S_\mu(1_A, 0_{A'}) = \mu(A) = C_\mu(1_A, 0_{A'}), \ \forall A \subset N\]

\[S_\mu(a) = C_\mu(a) \ \forall a \in [0, 1]^n \iff \mu(A) \in \{0, 1\}, \ \forall A \subset N.\]

Le lecteur pourra se référer à [12, 73] pour des articles de synthèse, et à [61, 60]
pour une étude détaillée des propriétés de l’intégrale de Sugeno, en particulier
dans une perspective de la théorie de la décision. Nous mentionnons également
une axiomatisation de l’intégrale de Sugeno dans un cadre de décision dans
l’incertain, similaire à celle de Savage pour l’utilité espérée [14, 15].

Comme nous l’avons dit dans l’introduction, la pauvreté du cadre ordi-
nal implique des difficultés, ainsi que quelques résultats surprenants, auxquels
n’échappe pas l’intégrale de Sugeno. Par exemple, il peut arriver que pour
\(a, a' \in \mathbb{R}_n\), tels que \(a_i > a'_i, i = 1, \ldots, n\), on ait cependant \(S_\mu(a) = S_\mu(a')\)
(Effet dit de nayade). L’ensemble de ces effets indésirables est très bien résumé
dans la proposition suivante [60, 71]. Soit \(\succeq\) un préordre large total (complet,
refléxif, transitif) sur \([0, 1]^n\), et pour \(a, b \in [0, 1]^n\), nous écrivons \(a \succeq b\) si \(a_i \geq b_i\).
pour tout $i \in N$, et $a > b$ si $a \geq b$ et $a_i > b_i$ pour au moins un $i \in N$, enfin $a \gg b$ si $a_i > b_i$ pour tout $i \in N$. On dit que \succeq vérifie la monotonie si $a \geq b$ implique $a \succeq b$, la dominance forte de Pareto si $a > b$ implique $a \succ b$, et la dominance faible de Pareto si $a \gg b$ implique $a \succ b$. On a alors le résultat suivant.

Proposition 1 Soit μ une capacité sur N, et \succeq_{μ} le préordre large total induit par l'intégrale de Sugeno S_{μ},

(i) \succeq_{μ} vérifie toujours la monotonie ;

(ii) \succeq_{μ} vérifie la dominance faible de Pareto si et seulement si μ prend ses valeurs dans $\{0, 1\}$;

(iii) \succeq_{μ} ne vérifie jamais la dominance forte de Pareto.

Il est à noter que l'intégrale de Choquet vérifie toujours la dominance faible de Pareto, et la dominance forte si et seulement si μ est strictement monotone.

5.3 L’intégrale de Sugeno symétrique et les modèles bipolaires

Le paragraphe ci-dessus vient de présenter le pendant ordinal de l'intégrale de Choquet. Ce modèle ne suppose aucun point particulier sur l'échelle, hormis les extrémités \emptyset et \mathbb{I}, et donc peut être considéré comme unipolaire. La question se pose maintenant de définir un modèle bipolaire ordinal, similaire à celui proposé dans le cadre cardinal. Cette section est basée sur [30, 31, 28].

Connaître par construire une échelle bipolaire ordinal, c'est-à-dire avec un point central noté \emptyset marquant la limite entre la zone des «bons» scores, avec un plus grand élément noté \mathbb{I}, et la zone des «mauvais» scores, de plus petit élément noté \emptyset. Pour cela il suffit de faire une copie renversée d'une échelle ordinaire L^+ avec des plus petit et plus grand éléments \emptyset et \mathbb{I}, notée L^-, et de les mettre bout à bout. En d'autres termes, $L^- := \{-a \mid a \in L^+\}$, avec $(-a) \leq (-b)$ si et seulement si $b \leq a$, et l'échelle bipolaire est $L := L^+ \cup L^-$, en faisant coïncider \emptyset et \mathbb{I}.

La deuxième étape consiste à munir cette échelle bipolaire d'opérations adéquates, qui permettent d'effectuer des calculs tenant compte du caractère ordinal, mais aussi de la symétrie de l'échelle. Comme \vee et \wedge sont les deux opérations de base permises en ordinal, nous voulons construire des opérations notées \odot, \otimes vérifiant en particulier les conditions suivantes.

1. **(C1)** \odot, \otimes coïncident avec \vee, \wedge sur L^+ ;
2. **(C2)** $-a$ est l'opposé de a, au sens où $a \odot (-a) = \emptyset$;
3. **(C3)** $a \odot b$ suit la règle des signes pour la multiplication des réels : $-(a \odot b) = (-a) \odot b$, $\forall a, b \in L$.

La première condition dit que les opérations cherchées sont des extensions du min et max. La deuxième dit que \odot se comporte comme une addition des réels et la troisième dit que \otimes est le pendant de la multiplication. Ces analogies nous sont dictées par la comparaison des expressions de l'intégrale de Choquet (Déf. 2) et de Sugeno (18). Les conditions de symétrie (C2) et (C3) devraient permettre de définir des modèles semblables à CPT et au bipolaire général.

Une difficulté survient cependant. Les conditions (C1) et (C2) impliquent que \otimes ne peut être associatif en général. En effet, prenons $\emptyset < a < b$ et considérons l'expression $(-b) \otimes b \otimes a$. Selon la place des parenthèses, le résultat diffère car on a $((-b) \otimes b) \otimes a = \emptyset \otimes a = a$, mais $(-b) \otimes (b \otimes a) = (-b) \otimes b = \emptyset$. On
peut montrer que la meilleure solution (c’est-à-dire associative sur le plus grand domaine possible) est donnée par :

\[a \otimes b := \begin{cases}
- (|a| \lor |b|) & \text{si } b \neq -a \text{ et } |a| \lor |b| = -a \text{ ou } = -b \\
\emptyset & \text{si } b = -a \\
|a| \lor |b| & \text{sinon.}
\end{cases} \]

(19)

Sauf pour le cas \(b = -a \), \(a \otimes b \) vaut celui entre \(a \) et \(b \) qui est le plus grand en valeur absolue.

La non-associativité de \(\otimes \) fait qu’on ne peut écrire une expression du type \(\otimes a_i \) si on ne spécifie pas quelque règle de calcul. Plusieurs sont possibles, et dans la suite nous utiliserons la règle suivante, qui consiste simplement à agréger séparément les quantités positives et négatives :

\[\langle \otimes a_i \rangle := (\otimes a_i^+) \otimes (\otimes a_i^-). \]

La définition de \(\otimes \) suivant les conditions (C1) et (C3) ne pose pas de problème, et l’opération est associative :

\[a \otimes b := \begin{cases}
- (|a| \land |b|) & \text{si sign } a \neq \text{sign } b \\
|a| \land |b| & \text{sinon.}
\end{cases} \]

(20)

Nous sommes maintenant en mesure de définir l’intégrale de Sugeno symétrique et le pendant ordinal du modèle CPT. Celui-ci s’écrit :

\[S_{\mu^+, \mu^-}(a) := S_{\mu^+}(a^+) \otimes (\otimes S_{\mu^-}(a^-)). \]

Quand \(\mu^+ = \mu^- \), on obtient l’intégrale de Sugeno symétrique, notée \(S_{\mu} \).

À partir de là, nous pouvons définir l’intégrale de Sugeno pour une bi-capacité \(\nu \), en procédant comme dans la définition 4, c’est-à-dire en posant \(S_{\nu}(a) := S_{\nu^+}(\{|a|\}) \), avec les mêmes notations que précédemment, et en remplaçant dans la définition de l’intégrale de Sugeno \(\lor, \land \) par \(\otimes, \otimes \). On peut montrer que l’intégrale de Sugeno peut alors s’écrit de la façon suivante [38] :

\[S_{\nu}(a) := \left\langle \otimes a_{i} \right\rangle \left(\nu(A_{\sigma(1)} \land N^+, A_{\sigma(i)} \land N^-) \right). \]

(21)

avec \(\sigma \) une permutation sur \(N \) telle que \(|a_{\sigma(1)}| \leq \cdots \leq |a_{\sigma(n)}| \), et \(N^+ := \{i \in N \mid a_i \geq \emptyset\} \), \(N^- := N \setminus N^+ \). Une expression semblable pour les capacités bipolaires a été proposée par Greco et col. [46].

On peut montrer que si \(\nu \) est du type CPT, on retrouve le modèle CPT ordinal. Enfin, nous mentionnons Denneberg et Grabisch [11], qui ont proposé une formulation générale de l’intégrale de Sugeno sur des échelles bipolaires de structure arbitraire (finie ou infinie, avec ou sans trou, etc.).

6 Identification des paramètres de la fonction d’agrégation

Supposons que l’on veuille déterminer un modèle d’évaluation subjective du type décrit dans ce chapitre, à partir de données et mesures expérimentales.
Les buts d’une telle démarche peuvent être variés, ainsi qu’on le détaillera dans la Section 9. Nous avons expliqué dans la Section 3.5 la construction générale du modèle, en se basant sur MACBETH. Si cette méthodologie est praticable pour la détermination des fonctions d’utilité, en revanche la façon de déterminer la fonction d’agrégation, ce qui, dans notre approche, revient à déterminer la pondération \(\mu \) (capacité) ou \(v \) dans le cas bipolaire (bi-capacité), n’est pas la plupart du temps pas envisageable dans un cadre d’évaluation subjective. En effet, les objets binaire (\(1_A, 0_A \)) (ternaires dans le cas bipolaire) dont on a besoin pour la détermination de \(\mu \) ou de \(v \), sont des objets fictifs sur lesquels on ne peut procéder à des expérimentations réelles. On est donc contraint d’utiliser les objets physiques à disposition, souvent en nombre limité. Appelons \(O \subset X \) l’ensemble des objets à disposition, que nous assimilons comme précédemment à leurs vecteurs de descriptor.

Le principe général est d’utiliser des méthodes d’optimisation, après définition d’un critère de validité du modèle adéquat. On peut distinguer deux principaux types de critères :

- les critères du type minimisation d’une erreur ou d’une distance \(d \), entre la sortie du modèle \(F(u_1(x_1), \ldots, u_n(x_n)) \) (le score global calculé) et la sortie « désirée » \(y(x) \), \(x \in O \). Cela implique que l’on doit nécessairement avoir une mesure du score global \(y(x) \) pour chaque objet de \(O \), ce qui n’est pas forcément toujours le cas en pratique.

- les critères cherchant à respecter les préférences exprimées sur \(O \). Si pour \(x, x' \in O \), l’expérience révèle que \(x \) est « au moins aussi bon » que \(x' \) (noté \(x \geq x' \)), alors sous l’hypothèse que \(\geq \) est complet, transitif et réflexif sur \(O \), le modèle doit retrouver cette préférence : \(F(u_1(x_1), \ldots, u_n(x_n)) \geq F(u_1(x'_1), \ldots, u_n(x'_n)) \).

En fait la représentation fidèle des préférences induit des contraintes sur \(\mu \) ou \(v \), et ne définit pas à proprement parler un critère de validité. L’ensemble des solutions obtenues étant en général vide ou infini, il est nécessaire de définir un critère de validité afin de choisir une des solutions (par exemple celle qui produit les scores globaux les plus différenciés).

Les deux approches ont leurs propres avantages et inconvénients, et peuvent être complémentaires. Notons qu’en appliquant la méthode MACBETH sur \(O \), il est possible d’obtenir des scores globaux sur une échelle de différence. L’avantage du critère de distance est qu’on trouve toujours une solution, mais rien ne garantit que celle-ci représente la relation de préférence induite par les scores globaux : on peut avoir à la fois \(y(x) > y(x') \) et \(F(u(x)) < F(u(x')) \), en notant \(F(u(x)) := F(u_1(x_1), \ldots, u_n(x_n)) \). Afin d’éviter ceci, on peut incorporer les contraintes d’us aux préférences dans le problème d’optimisation, au risque de ne trouver aucune solution. L’inconvénient essentiel de la seconde approche est qu’il n’y a pas toujours de solution, et que dans ce cas, il n’est pas simple de savoir quelle(s) préférence(s) inverse(s).

Nous décrivons maintenant plus spécifiquement ces approches, suivant que les échelles sont cardinales ou ordinaires.

6.1 Cas cardinal

Le critère d’erreur le plus fréquent est la somme des carrés des écarts. Dans le cas où \(F \) est l’intégrale de Choquet par rapport à une capacité, le problème
d’optimisation s’écrit :

\[
\text{Minimiser } \sum_{x \in \mathcal{D}} \left[C_\mu(u_1(x_1), \ldots, u_n(x_n)) - y(x) \right]^2
\]

Sous les contraintes \(\mu(A) \leq \mu(B), \quad \forall A, B \subset N, A \subset B, \)
en fixant \(\mu(0) = 0, \mu(N) = 1. \) On peut montrer que ceci se ramène à un problème quadratique sous contraintes linéaires [43, 22], de \(2^n - 2 \) variables (les valeurs prises par \(\mu \), sauf sur \(0 \) et \(N \)) et \(n(2^{n-1} - 1) \) contraintes.

Il y a toujours une solution à ce problème, mais pas forcément unique. L’ensemble des solutions forme un ensemble convexe. L’étude de l’unicité de la solution n’est pas simple et peut être trouvée dans [67]. Donnons-en quelques aperçus. Supposons qu’il y ait \(l \) données \(x^1, \ldots, x^l \) dans \(\mathcal{O} \), et notons \(y := [y^1, \ldots, y^l]^T \) le vecteur de leurs scores globaux. On peut écrire sous forme vectorielle \([d^k]^T u \) l’intégrale de Choquet de \(x^k \in \mathcal{O} \), où \(u \) est le vecteur de taille \(2^n - 2 \) contenant les valeurs de \(\mu \), et \(d^k \) est un vecteur de taille \(2^n - 2 \) contenant les scores de \(x^k \) disposés de façon adéquate. En formant la matrice \(D^T := [d^1, \ldots, d^l] \), la minimisation du critère revient donc à trouver \(u^* \) tel que :

\[
d(Du^*, y) = \min_{u \in \mathcal{F}(N)} d(Du, y)
\]

où \(\mathcal{F}(N) \) est l’ensemble des capacités sur \(N \), et \(d \) la distance euclidienne. \(\mathcal{F}(N) \) étant convexe, l’ensemble des produits \(\mathcal{V} := \{Du \mid u \in \mathcal{F}(N)\} \) l’est aussi, et donc il existe un unique \(y^* \in \mathcal{V} \) qui satisfait :

\[
d(y^*, y) = \min_{u \in \mathcal{F}(N)} d(Du, y).
\]

Il reste à résoudre le système \(Du^* = y^* \), dont l’unicité de la solution dépend du rang de la matrice \(D \). Cependant, \(u^* \) doit être membre de \(\mathcal{F}(N) \), ce qui rend l’étude de l’unicité compliquée. On peut très bien avoir un rang très inférieur à \(2^n - 2 \) et avoir une unique solution.

D’un point de vue expérimental, la méthode quadratique, bien qu’optimale, présente des inconvénients :

- Si le nombre de données est faible, l’ensemble des solutions possibles peut être grand, et la solution donnée par les logiciels de programmation quadratique est souvent « extrême », au sens où elle contient beaucoup de valeurs à 0 et à 1. La capacité ainsi obtenue induit des comportements proches du min et du max pour l’intégrale de Choquet.
- La taille des matrices du programme quadratique croît exponentiellement avec \(n \). Le temps de calcul, la taille mémoire, ainsi que les problèmes de matrices mal conditionnées croissent de même. Ainsi, \(n = 8 \) est déjà une valeur importante, et il est illusoire de vouloir aller au-delà de \(n = 10 \).

Des algorithmes heuristiques sous-optimaux existent, comme celui de Ishii et Sugeno [49], et Mori et Murofushi [70]. Basé sur ce dernier, l’auteur a proposé un algorithme d’optimisation [21], qui bien que sous-optimal, a des performances meilleures que celles des tentatives précédentes. Le critère utilisé reste le critère de l’erreur quadratique, auquel on applique le gradient. L’idée de base de cet algorithme est que, en l’absence de toute information, la manière la moins arbitraire d’agréger les scores est la moyenne arithmétique, c’est-à-dire une intégrale.
de Choquet par rapport à une capacité additive et équidistribuée. Toute information fournie tend à éloigner la capacité de ce point initial. Par conséquent, s'il y a peu de données d'apprentissage, les valeurs de μ qui ne sont pas concernées par les données dans le calcul seront gardées aussi près que possible du point initial, tout en assurant la monotonie de la capacité.

Des expérimentations faites dans des problèmes de classification ont montré les bonnes performances de cet algorithme, parfois meilleures que l'algorithme quadratique optimal quand n devient grand. En particulier, la mémoire et le temps de calcul requis sont bien inférieurs à ceux requis par l'algorithme quadratique, et il est ainsi possible d'aller au-delà de $n = 10$ ($n = 16$ dans [65]).

Plus récemment, beaucoup d'auteurs ont appliqué les algorithmes génétiques pour identifier μ, citons en particulier Wang [98], Kwon et Sugeno [52], Grabisch [29], et enfin Combarro et Miranda [8], dans une approche originale.

Examinons maintenant les approches du second type, où les scores globaux des objets de \mathcal{O} sont remplacés par une relation d'ordre \succeq, que l'on supposera réflexive, transitive, mais pas forcément complète. On désire trouver une capacité μ telle que

$$x \succeq x' \iff C_\mu(u_1(x_1), \ldots, u_n(x_n)) > C_\mu(u_1(x'_1), \ldots, u_n(x'_n))$$

pour tout $x, x' \in \mathcal{O}$. L'espace des solutions, s'il est non vide, est un polyèdre convexe, et il importe de le réduire le plus possible, puis de choisir une solution particulière à l'intérieur. Afin de le réduire, on peut ajouter des contraintes exprimant que l'on désire un certain type de capacité (capacité k-additive, voir Section 7), ou certains comportements de la fonction d'agrégation des scores (importances des critères, interaction ; voir également la Section 7). Pour choisir une solution, Marichal et Roubens [63] proposent de maximiser l'écart entre les scores globaux calculés par le modèle, pour les objets de \mathcal{O}. En effet, si l'expert estime que $x \succeq x'$, c'est que x est significativement meilleur que x', et donc leurs scores globaux doivent refléter cette différence sensible. Ceci peut s'exprimer par le programme linéaire suivant :

Maximiser ϵ

Sous les contraintes

$$C_\mu(u_1(x_1), \ldots, u_n(x_n)) \geq 0,$$
$$C_\mu(u_1(x'_1), \ldots, u_n(x'_n)) + \epsilon \geq \epsilon,$$
$$\forall x, x', x \succeq x'$$
$$\forall x, x', \mu(A) \leq \mu(B), \quad \forall A, B \subset N, A \subset B,$$

en fixant $\mu(\emptyset) = 0, \mu(N) = 1$. On peut trouver dans [45] une description de cette méthode, ainsi qu'un exemple traité par cette approche, et comparé avec l'approche du critère d'erreur.

Tout ce que nous avons exposé ci-dessus concerne l'intégrale de Choquet par rapport à une capacité. On peut généraliser sans peine aux modèles bipolaires (bi-capacités, etc.).

6.2 Cas ordinal

En premier lieu, remarquons que les spécificités du cas ordinal rendent caduques les approches du type critère d'erreur, car la notion de différence, et donc
aussi celle d’erreur ou de distance, n’est pas définie de façon adéquate sur une échelle ordinaire, sans parler de la notion de carré d’erreur ou d’erreur moyenne.

Même si l’on se place dans le cas où \(L \) est l’intervalle \([0, 1]\), ce qui permet de définir l’erreur quadratique moyenne, le problème de minimisation obtenu avec l’intégrale de Sugeno est difficile à résoudre, car faisant intervenir les opérations \(\lor, \land, \oplus, \ominus \), non linéaires et non dérivables. Dans ce cas, il ne reste que les méthodes dites méta-heuristiques (algorithmes génétiques, recuit simulé, etc.) pour résoudre le problème. Il y a quelques travaux dans cette direction, bien que la plupart soient appliqués en fait à l’intégrale de Choquet [98, 29, 95].

En revanche, le cadre ordinal est tout-à-fait compatible avec les approches du type représentation des préférences. Une étude détaillée de cette approche a été faite par Rico et al., dans le cas où le modèle est l’intégrale de Sugeno par rapport à une capacité [81]. Nous en donnons brièvement les résultats.

On suppose que les fonctions d’utilité sont construites, et prennent leurs valeurs dans une échelle \(L \) unipolaire ; ainsi on peut considérer que la préférence \(\geq \) de l’expert est exprimée directement sur \(L^n \). Appelons \(A \subseteq L^n \) l’ensemble correspondant à \(O \). Distinguons deux niveaux de représentation.

- la représentation forte, où la capacité \(\mu \) doit être telle que \(S_\mu(a) \geq S_\mu(b) \) si et seulement si \(a \geq b \);
- la représentation faible, où l’on empêche simplement une inversion : \(a \succ b \) implique \(S_\mu(a) \geq S_\mu(b) \).

On peut penser à priori que la représentation faible convient mieux à l’intégrale de Sugeno de par ses propriétés (séparabilité faible directionnelle).

Supposons que les objets dans \(A \) puissent être regroupés en \(p \) classes d’indifférence \([a^1], \ldots, [a^p] \) par \(\sim \), la partie symétrique de \(\geq \), en numérotant de façon à ce que \(a^1 \prec \cdots \prec a^p \). Le problème de la représentation forte revient à trouver \(p \) valeurs \(\alpha_1 < \alpha_2 < \cdots < \alpha_p \) dans \(L \) telles qu’il existe une capacité \(\mu \) vérifiant \(S_\mu(a) = \alpha_i \), pour tout \(a \in [a^i] \), \(i = 1, \ldots, p \). En ce qui concerne le problème de la représentation faible, il suffit de trouver \(p - 1 \) nombres \(0 :\alpha_0 \leq \alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_p : 1 \) dans \(L \) tels qu’il existe une capacité \(\mu \) vérifiant \(\alpha_{i-1} \leq S_\mu(a) \leq \alpha_i \), pour tout \(a \in [a^i] \), \(i = 1, \ldots, p \).

En notant comme précédemment \(\sigma \) une permutation sur \(N \) qui réarrange les scores par ordre croissant, l’ensemble des capacités telles que \(S_\mu(a) = \alpha \) est non vide si \(a_{\sigma(n)} < \alpha \) ou \(a_{\sigma(1)} > \alpha \), et est l’intervalle \([\hat{\mu}^{\alpha, \sigma}, \hat{\mu}^{\alpha, 1}]\), où pour tout \(A \neq \emptyset, N \)

\[
\hat{\mu}^{\alpha, \sigma}(A) := \begin{cases}
\alpha & \text{si } A \subseteq A(i_{\hat{\alpha}, \sigma}) \\
\bot & \text{sinon}
\end{cases}
\]

\[
\hat{\mu}^{\alpha, 1}(A) := \begin{cases}
\alpha & \text{si } A(i_{\hat{\alpha}, \sigma}) \subseteq A \\
\bot & \text{sinon}
\end{cases}
\]

avec \(i_{\hat{\alpha}, \sigma} \in N \) tel que \(a(i_{\hat{\alpha}, \sigma} - 1) < \alpha \leq a(i_{\hat{\alpha}, \sigma}) \), et \(i_{\hat{\alpha}, \sigma} \in N \) tel que \(a(i_{\hat{\alpha}, \sigma} + 1) \leq \alpha < a(i_{\hat{\alpha}, \sigma}) \). L’ensemble des solutions pour la représentation forte est alors l’intersection de tous ces intervalles, pour tout \(\alpha_i \).

L’ensemble des capacités solutions du problème de représentation faible est vide si et seulement s’il existe \(i \) tel que \(a_{\sigma(i)} > \alpha_i \) pour un certain \(a \in [a^i] \) ou s’il existe \(i \) tel que \(b_{\sigma(n)} < \alpha_i \) pour un certain \(b \in [a^{i+1}] \), et sinon est un intervalle
[\hat{\mu}, \tilde{\mu}], \text{ avec }

\hat{\mu}(A) = \bigvee_{i=1}^{p-1} \bigvee_{a \in \{a^i\}^{a+1}} \hat{\mu}_{a,\alpha}^i(A), \quad \tilde{\mu}(A) = \bigwedge_{i=1}^{p-1} \bigwedge_{a \in \{a^i\}^a} \tilde{\mu}_{a,\alpha}^i(A).

Une autre approche a été proposée par Roubens [84, 64], basée sur l'intégrale de Choquet. On suppose que sur chaque attribut X_i, le sujet est capable de comparer les objets (relation \ge_i). Pour des objets x, y, on pose $R_i(x, y) = 1$ si $x_i \ge_i y_i$, et 0 sinon. D'autre part, le sujet est capable de ranger dans des catégories ordonnées C_1, \ldots, C_m les différents objets de O, définissant ainsi une partition de O en O_1, \ldots, O_m. Pour $i < j$, le sujet estime que $x \in O_i$ est moins bon (au sens strict) que $y \in O_j$. On définit le score marginal net de $x \in O$ sur l'attribut i par :

$$S_i(x) := \sum_{y \in O} [R_i(x, y) - R_i(y, x)].$$

On peut montrer facilement que S_i est une représentation (mesurage ordinal) de \ge_i, au sens où $x_i \ge_i y_i \iff S_i(x) \ge S_i(y)$. Les fonctions S_1, \ldots, S_n sont commensurables, car elles véhiculent toutes le même sens (nombre de fois sur un critère où x est meilleur diminué du nombre de fois où il est battu), d'autre part on peut les considérer comme des échelles de ratio, car une multiplication par une constante positive ne change pas le sens. Il est donc possible d'utiliser S_1^N, \ldots, S_n^N qui sont les versions normalisées entre 0 et 1. Marichal et Roubens proposent alors d'utiliser ces scores normalisés dans une intégrale de Choquet pour calculer un score global de chaque objet, soit $C_\mu(S_1^N, \ldots, S_n^N)$.

On évite ainsi les inconvénients de l'intégrale de Sugeno, tout en respectant le caractère ordinal des données. Cependant, les scores nets d'un objet $x \in O$ dépendent fortement de tous les autres objets dans O, alors qu'un score devrait refléter la qualité intrinsèque d'un objet selon un critère.

Ceci étant, il reste à déterminer la capacité μ. Si l'on veut que le modèle sépare correctement les classes C_1, \ldots, C_m, il suffit que

$$C_\mu(S_1^N(x), \ldots, S_n^N(x)) - C_\mu(S_1^N(x'), \ldots, S_n^N(x')) \ge \varepsilon,$$

pour toute paire $(x, x') \in O_j \times O_{j-1}$, $j = 2, \ldots, m$, et $\varepsilon > 0$. On peut réduire le nombre de contraintes en introduisant pour chaque classe les ensembles des objets dominés et dominants :

$$N_{d_j} := \{x \in O_j \mid \exists x' \in O_j \setminus \{x\}, x \ge x'\}$$

$$N_{D_j} := \{x \in O_j \mid \exists x' \in O_j \setminus \{x\}, x' \ge x\}$$

avec la relation de dominance définie par $x \ge y$ si et seulement si $x_i \ge_i y_i$, $i = 1, \ldots, n$. Il suffit alors de considérer les contraintes ci-dessus pour les paires $(x, x') \in N_{d_j} \times N_{D_{j-1}}$, $j = 2, \ldots, m$. Ces contraintes, ajoutées aux contraintes de monotonie de μ, forment un programme linéaire où la fonction objectif est simplement $\max \varepsilon$.

Le modèle étant entièrement déterminé, il faut maintenant être capable d'évaluer un objet quelconque x qui n'appartient pas à l'ensemble d'apprentissage O, c'est-à-dire de le classer dans l'une des catégories C_1, \ldots, C_m. La
règle est la suivante :

\[x \in C_j \text{ si } z_j \leq C_\mu(S_1^N(x), \ldots, S_n^N(x)) \leq Z_j \]

\[x \in C_j \cup C_{j-1} \text{ si } Z_{j-1} \leq C_\mu(S_1^N(x), \ldots, S_n^N(x)) \leq z_j. \]

avec \(z_j := \min_{x \in V_D} C_\mu(S_1^N(x), \ldots, S_n^N(x)) \) et \(Z_j := \max_{x \in V_D} C_\mu(S_1^N(x), \ldots, S_n^N(x)) \).

Les intervalles \([z_j, Z_j]\) constituent un ordre d’intervale, mais pas nécessairement un quasi-ordre. Pour une exploitation détaillée du classement nous renvoyons le lecteur à [66].

7 Interprétation de la fonction d’agrégation

Supposons que le modèle ait été obtenu par l’une des méthodes d’identification ci-dessus, c’est-à-dire que l’on connait les fonctions d’utilité et la fonction d’agrégation \(F \). Les fonctions d’utilité traduisent les attributs de l’objet, quelle que soit leur nature, en score quantitatif ou qualitatif, et de ce fait ont une interprétation claire. Par contre, dans le cas général \(F \) étant une intégrale de Choquet ou de Sugeno, il n’est pas simple d’avoir une compréhension intuitive de la façon dont \(F \) agrège les scores. Or, pour certaines applications (voir Section 9), ceci peut s’avérer de première importance.

Il y a de nombreuses façons d’interpréter \(F \), énumérons-en quelques unes parmi les plus significatives.

- les degrés avec lesquels \(F \) est proche du min (\(\wedge \)) et du max (\(\vee \)). Ces degrés indiquent si \(F \) agrège les scores de manière plutôt conjonctive (reliés par un “et”) ou disjonctive (reliés par un “ou”). Ces degrés ont été introduits par Yager [100] (degrés de “\(\mu \)ness” et “\(\nu \)ness”) pour les moyennes pondérées ordonnées (OWA), qui sont des intégrales de Choquet où la capacité est symétrique (\(\mu(A) \) ne dépend que de \(|A|\)).

- la présence de vetos et de favoris [23]. On dit que le critère \(i \) est un veto si quelque soit le vecteur de scores \((a_1, \ldots, a_n)\), on a \(F(a_1, \ldots, a_n) \leq a_i \). Si l’inégalité est renversée, on dit alors que \(i \) est un critère de faveur. Les situations où \(i \) est un veto ou une faveur étant plutôt rares, Marichal a défini un degré de veto (fait) pour l’intégrale de Choquet [62].

- le degré d’importance d’un critère. Ce degré indique le poids moyen d’un critère dans le modèle. Quand \(F \) est la somme pondérée, ce degré d’importance est simplement la pondération sur le critère en question. Dans le cas d’une intégrale de Choquet, nous allons voir que ce degré peut être défini comme la valeur de Shapley.

- le degré d’interaction entre critères. Si nous reprenons l’exemple de la Section 3.5 avec les 3 objets \(a, b, c \), nous avons là un exemple d’interaction entre critères car la satisfaction de l’un agit sur la nécessité que l’autre critère soit également satisfait pour avoir un score global satisfaisant (dans cet exemple, il est nécessaire que l’autre soit satisfait ; on a donc une agrégation conjonctive des scores). Cela montre de façon intuitive que la somme pondérée ne peut représenter des phénomènes d’interaction entre critères, et que les degrés de “\(\mu \)ness” and “\(\nu \)ness” sont liés à l’interaction, ainsi que les phénomènes de veto et faveur.

- le degré de pouvoir améliorant d’un critère. Il permet de répondre à la question suivante : pour un objet donné, si l’on désire améliorer significativement son score global, sur quel critère doit-on agir en priorité ? Ou
encore : en moyenne, quel critère doit-on satisfaire pour avoir un score global élevé ? Bien que semblable au degré d’importance, nous verrons que cette notion est en fait différente. Nous détaillerons dans la suite ces divers degrés (que nous appellerons indices).

7.1 Indice d’importance d’un critère

Considérons tout d’abord le cas d’une échelle unipolaire cardinale. Il semble naturel de dire qu’un critère \(i \) est important si pour toute coalition de critères \(A \), le score global de l’objet \((1_{A \cup i}, 0_{(A \cup i)}) \) est significativement plus élevé que celui de \((1_A, 0, A) \). Par conséquent, l’indice d’importance est défini comme une valeur moyenne \(\Delta_i \) de la quantité \(\mu(A \cup i) - \mu(A) \), pour tout \(A \subset N \setminus i \). Par ailleurs, il est souhaitable que la somme des indices sur tous les critères soit constante, de façon à pouvoir effectuer des comparaisons, et que la numérotation des critères n’influence pas sur le résultat. Si de plus on impose de prendre comme valeur moyenne \(\Delta_i \), une somme pondérée, alors Shapley [88] a montré que l’expression de l’indice d’importance est unique (indice d’importance de Shapley) :

\[
\phi^\mu(i) := \sum_{K \subset N \setminus i} \frac{(n-k-1)!k!}{n!} [\mu(K \cup i) - \mu(K)]
\]

(22)

avec \(k := |K| \) (on omettra le sur-indice \(\mu \) s’il n’y a pas ambiguïté). On a \(\sum_{i=1}^n \phi(i) = \mu(N) = 1 \), et si \(\mu \) est additif, alors \(\phi(i) = \mu(\{i\}) \).

On peut adapter cette notion au cas d’une échelle bipolaire. On dira qu’un critère \(i \) est important si chaque fois qu’on l’ajoute à une coalition de critères satisfaits, ou qu’on l’enlève d’une coalition de critères non satisfaits, on obtient une amélioration significative du score global. En termes de bi-capacités, cela veut dire que l’index d’importance doit être une moyenne des quantités \(v(A \cup i, B) - v(A, B) \) et \(v(A, B) - v(A, B \cup i) \) sur tous les \((A, B) \in \mathcal{Q}(N \setminus i) \). En sommant ces deux expressions on obtient \(v(A \cup i, B) - v(A, B \cup i) \), où le terme où \(i \) a une valeur neutre a disparu. Dans [36, 53], c’est cette dernière expression qui est choisie, faisant ainsi l’hypothèse que l’indice d’importance ne doit pas dépendre des situations où \(i \) est neutre (Felsenthal et Machover [18] prennent l’autre voie et gardent les deux expressions séparées dans la moyenne, voir une discussion détaillée de ce point dans [55]).

Comme pour les capacités, sous une hypothèse de linéarité, il suffit d’imposer des conditions de symétrie (pas d’influence de la numérotation des critères) et de normalisation (la somme des indices sur tous les critères est constante) pour obtenir une expression unique de l’indice d’importance, appelé également indice d’importance de Shapley, qui s’écrit :

\[
\phi^v(i) = \sum_{K \subset N \setminus \{i\}} \frac{(n-k-1)!k!}{n!} [v(K \cup \{i\}, N \setminus (K \cup \{i\})) - v(K, N \setminus K)].
\]

(23)

Cette expression est très semblable à celle originale de Shapley (22). La propriété de normalisation s’écrit \(\sum_{i=1}^n \phi(i) = v(N, \emptyset) - v(\emptyset, N) = 2 \). Si \(v \) est du type CPT avec \(v(A, B) := \mu^+(A) - \mu^-(B) \), alors \(\phi^v(i) = \phi^{\mu^+}(i) + \phi^{\mu^-}(i) \).

Si on travaille dans un cadre ordinal, alors \(\mu \) et \(v \) prennent leurs valeurs sur une échelle ordinaire, et les définitions ci-dessus n’ont plus de sens. Des définitions
similaires pour les capacités, adaptées au cas ordinal ont été proposées par l’auteur [26]. Cependant, bien qu’elles conservent des propriétés semblables, leur interprétation pratique reste problématique.

7.2 Indice d’interaction

Essayons de donner une définition précise de l’interaction. Considérons tout d’abord le cas

\(n = 2 \) et les 4 objets suivants (voir Fig. 4) :

\[
\begin{align*}
-x &= (0_1, 0_2) \\
y &= (1_1, 0_2) \\
z &= (0_1, 1_2) \\
t &= (1_1, 1_2)
\end{align*}
\]

Fig. 4 – Différents cas d’interaction

Il est clair que \(t \) est meilleur que \(x \), mais les préférences sur les autres paires dépendent du sujet. À cause de la condition de dominance, on peut se situer entre les deux extrêmes suivants :

situation extrême 1 : on pose \(\mu(\{1\}) = \mu(\{2\}) = 0 \), ce qui revient aux préférences \(x \sim y \sim z \) (figure 4 (a)). Cela signifie que pour le sujet, les deux critères doivent être satisfaits pour avoir un objet satisfaisant, et la satisfaction de seulement l’un des deux ne suffit pas. On dit que les critères sont *complémentaires*.

situation extrême 2 : on pose \(\mu(\{1\}) = \mu(\{2\}) = 1 \), ce qui équivaut aux préférences \(y \sim z \sim t \) (figure 4 (b)). Dans ce cas, le sujet estime que la satisfaction de l’un des deux critères suffit pour avoir un objet satisfaisant, et satisfaire les deux critères n’est pas nécessaire. On dit que les critères sont *substitutifs*.

Dans ces deux situations, les critères ne sont pas indépendants dans le sens où la satisfaction de l’un influe sur l’utilité de l’autre pour avoir un objet globalement satisfaisant (nécessaire dans le premier cas, inutile dans le second). On dit alors qu’il y a *interaction* entre les critères.

Une situation sans interaction est telle que la satisfaction de chaque critère apporte sa propre contribution à la satisfaction globale, ce qui se traduit par :

\[
\mu(\{1,2\}) = \mu(\{1\}) + \mu(\{2\})
\]

(additivité) (voir Fig. 4 (c)). Dans la situation 1, on a \(\mu(\{1,2\}) > \mu(\{1\}) + \mu(\{2\}) \), avec l’inégalité inversée pour la situation 2. Cela suggère que l’interaction
\(I_{12} \) entre les critères 1 et 2 devrait être défini par :

\[
I_{12}^\mu := \mu(\{1, 2\}) - \mu(\{1\}) - \mu(\{2\}) + \mu(\emptyset).
\]

(25)

Remarquons que cette expression n’est autre que la différence entre la somme des scores globaux des objets sur la diagonale (où il y a dominance stricte), et la somme des scores sur l’antidiagonale (où il n’y a aucune relation de dominance). L’interaction est positive quand les critères sont complémentaires, et négative quand ils sont substitutifs.

Dans le cas de plus de 2 critères, la définition de l’interaction est similaire à celle de l’indice de Shapley, c’est-à-dire que toutes les coalitions de \(N \) doivent être prises en compte. La définition suivante a été proposée par Murofushi et Soneda [72], pour une paire de critères \(i, j \) :

\[
I_{ij}^\mu := \sum_{K \subseteq N \setminus \{i, j\}} \frac{(n-k-2)!k!}{(n-1)!}[\mu(K \cup \{i, j\}) - \mu(K \cup \{i\}) - \mu(K \cup \{j\}) + \mu(K)].
\]

(26)

On a \(I_{ij} > 0 \) (resp. \(< 0 = 0 \)) pour des critères complémentaires (resp. substitutifs, indépendants). La définition de cet indice a été ensuite étendue par l’auteur à toute coalition de critères \(\emptyset \neq A \subset N \) [25] :

\[
I^\mu(A) := \sum_{K \subseteq N \setminus A} \frac{(n-k-|A|)!k!}{(n-|A|+1)!} \sum_{L \subseteq A} (-1)^{|A|-|L|} \mu(K \cup L), \forall A \subset N, A \neq \emptyset.
\]

(27)

On remarque que l’on a \(I_{ij} = I(\{i, j\}) \), et aussi \(I(\{i\}) = \phi(i) \), l’indice d’importance de Shapley. Pour cette raison, on appelle la fonction \(I \) l’indice d’interaction de Shapley. Il est facile de voir que, quand la capacité est additive, on a \(I(A) = 0 \) pour tout \(A \) tel que \(|A| > 1 \). Signalons enfin que \(I \) a été axiomatisé par Grabisch et Roubens [44], d’une façon similaire à l’indice d’importance de Shapley. Une autre axiomatisation a été proposée par Fujimoto [20].

On a vu que l’indice d’interaction contient comme cas particulier l’indice d’importance de Shapley. En fait, il est possible d’obtenir l’indice d’interaction de façon récursive à partir de l’indice d’importance de Shapley, en considérant des sous-problèmes avec moins de critères [44]. Pour \(I_{ij}^\mu \), cette relation s’écrit :

\[
I_{ij}^\mu = \phi^{\mu^{[ij]}}([ij]) - \phi^{\mu^{N \setminus \{j\}}}(j) - \phi^{\mu^{N \setminus \{i\}}}(i),
\]

(28)

où \([ij]\) est un critère fictif (i et j pris ensemble), \(\mu^{[ij]} : \mathcal{P}((N \setminus \{i, j\}) \cup \{[ij]\}) \rightarrow [0, 1], \) avec \(\mu^{[ij]}(A) := \mu((A \setminus [ij]) \cup \{i, j\}) \) si \(A \supseteq [ij] \), et \(\mu(A) \) sinon, et \(\mu_{N \setminus \{i\}} \) est la restriction de \(\mu \) à \(N \setminus \{i\} \).

Examinons maintenant comment ce concept peut se généraliser au cas des bi-capacités. Une première façon serait de procéder de manière récursive à partir de l’indice d’importance de Shapley (23), en utilisant une formule similaire à (28) [37]. Cependant, à cause de la bipolarité, il semble plus naturel de distinguer les critiques satisfaits de ceux qui ne le sont pas. En notant \(A, B \) les coalitions de critères satisfaits et non satisfaits, on est conduit à un indice d’interaction à deux arguments \(I_{A,B} \) (appelé bi-interaction dans [37]). Détailons ceci dans le cas \(n = 2 \), en suivant le même argument que pour les capacités. À cause de la
bipolarité, nous avons maintenant 9 objets ternaires (voir Fig. 5). Dans chaque sous-carré de \([-1, 1]^2\), il suffit d’appliquer la définition de l’indice d’interaction classique donnée par (24). On obtient :

\[
\begin{align*}
I_{\{1,2\}, \emptyset} & := v(\{1,2\}, \emptyset) - v(\{1\}, \emptyset) - v(\{2\}, \emptyset) + v(\emptyset, \emptyset) \\
I_{\emptyset, \{1,2\}} & := v(\emptyset, \emptyset) - v(\emptyset, \{1\}) - v(\emptyset, \{2\}) + v(\emptyset, \{1,2\}) \\
I_{1,2} & := v(\{1\}, \emptyset) - v(\emptyset, \emptyset) - v(\{1\}, \{2\}) + v(\emptyset, \{2\}) \\
I_{2,1} & := v(\{2\}, \emptyset) - v(\{2\}, \{1\}) - v(\emptyset, \emptyset) + v(\emptyset, \{1\}).
\end{align*}
\]

En se basant sur ce principe, on peut montrer que la formule générale est :

\[
I^v(A, B) = \sum_{K \subseteq N \setminus (A \cup B)} \frac{(n - a - b - k)!k!}{(n - a - b)!} \Delta_{A, B} v(K, N \setminus (A \cup K)),
\]

avec \(\Delta_{A, B} v(S, T) := \sum_{K \subseteq A, L \subseteq B} (-1)^{(a-k)+(b-l)} v(S \cup K, T \setminus (K \cup L))\). On peut vérifier que l’indice d’importance de Shapley pour les bi-capacités s’écrit :

\[
\phi(i) = I_{i, \emptyset} + I_{\emptyset, i}
\]

En fait, on retrouve avec \(I_{i, \emptyset}\) et \(I_{\emptyset, i}\) les moyennes des quantités \(v(A \cup i, B) - v(A, B)\) et \(v(A, B) - v(A, B \cup i)\) introduites dans la Section 7.1, et qui représentent respectivement un indice pour les critères satisfaisants et un indice pour les critères non satisfaisants.

Si \(v\) est du type CPT avec \(v(S, T) := \mu^+(S) - \mu^-(T)\), l’interaction s’exprime de la façon suivante :

(i) \(I_{S, T}^v = 0\) sauf si \(S = \emptyset\) ou \(T = \emptyset\),
(ii) en notant \(I_{\mu_i}^v\) l’indice d’interaction de la capacité \(\mu_i\), nous avons :

\[
\begin{align*}
I_{S, \emptyset}^v & = I_{\mu_i}^+(S), \quad \forall \emptyset \neq S \subseteq N \\
I_{\emptyset, T}^v & = I_{\mu_i}^-(T), \quad \forall T \subseteq N.
\end{align*}
\]
La propriété (i) exprime clairement la faible que pour un modèle CPT, il n’y a pas d’interaction entre les parties positive et négative. La propriété (ii) montre la relation entre l’interaction pour les bi-capacités et pour les capacités.

Là aussi, il existe pour les capacités un équivalent ordinal de l’interaction [26], qui présente cependant les mêmes défauts que l’indice d’importance ordinal.

7.3 Indice de pouvoir améliorant moyen

Le but de cet indice est de quantifier l’intérêt que l’on a à améliorer les scores sur une coalition A de critères, afin d’obtenir un gain maximum sur le score global, ceci étant vu en moyenne sur tous les objets fictifs (en fait tous les vecteurs de scores) possibles. Une construction axiomatique de cet indice a été proposée par Labreuche et Grabisch [35], dont nous donnons brièvement ci-dessous les arguments principaux. Pour $A \subset N$, notons $W_A(F)$ cet indice, vu comme une fonctionnelle associant à une fonction d’agrégation F un nombre réel.

On suppose en premier lieu que W_A est continu, et linéaire. Considérons maintenant une famille de fonctions d’agrégation à seuil, notées $1_{\alpha} : [0, 1]^n \rightarrow \{0, 1\}$, $\alpha \in [0, 1]^n$ et définies pour tout $x \in [0, 1]^n$ par :

$$1_{\alpha}(x) = \begin{cases} 1, & \text{si } x_i \geq \alpha_i, \quad i = 1, \ldots, n \\ 0, & \text{sinon.} \end{cases}$$

Soit $N_{A, \alpha}$ la proportion de vecteurs de $[0, 1]^n$ dont le score global passe de 0 à 1 si seuls les scores des critères dans A sont améliorés. Il semble naturel de poser que $W_A(1_{\alpha})$ doit être proportionnel à $N_{A, \alpha}$. Il reste à rajouter un axiome de normalisation, disant que quand F est la somme pondérée $\sum_{i=1}^n \lambda_i x_i$, alors $W_A(F) = \sum_{i \in A} \lambda_i$. Ces 4 axiomes déterminent de façon unique l’indice, qui s’écrit :

$$W_A(F) = 3 \cdot 2^{|A|} \int_{x \in [0, 1]^n} \int_{y_A \in [x_A, 1]} \left[F(y_A, x_{A^c}) - F(x) \right] dx dy_A$$

avec les notations habituelles et $y_A \in [x_A, 1]$ signifiant $y_i \in [x_i, 1]$ pour tout $i \in A$. Quand F est l’intégrale de Choquet, on obtient pour $A = \{i\}$:

$$W_i(C_\mu) = 6 \sum_{K \subset N \setminus i} \frac{(n - k)!(k + 1)!}{(n + 2)!} [\mu(K \cup i) - \mu(K)],$$

qui est très semblable, quoique différent de l’indice de Shapley. On peut montrer qu’en général $W_i(C_\mu) \leq 3\phi^\mu(i)$. Pour $A = \{i, j\}$ on obtient de façon générale :

$$W_{ij}(F) = W_i(F) + W_j(F),$$

mais cette additivité n’est plus vraie dès que $|A| > 2$.

Il est possible de construire d’une façon analogue un indice qui soit propre à un objet particulier, et non pas une moyenne sur tous les objets possibles.
7.4 Indice de conjonction et de disjonction

En adaptant une définition de Dujmović [16], Marichal [58, 62] a proposé la
definition générale suivante pour les indices de conjonction et disjonction d’une
intégrale de Choquet par rapport à une capacité μ :

\[
\text{conj}_\mu := \frac{E(\max) - E(C_\mu)}{E(\max) - E(\min)}
\]

\[
\text{disj}_\mu := \frac{E(C_\mu) - E(\min)}{E(\max) - E(\min)}
\]

avec \(E(F) \) la valeur moyenne d’une fonction d’agrégation \(F \) sur l’hypercube
unité, soit :

\[
E(F) := \int_{[0,1]^n} F(x)dx.
\]

Rappelons que le minimum et le maximum sont les cas limites de l’intégrale de
Choquet. Ainsi ces indices traduisent un distance normalisée à ces bornes. Leurs
definitions peuvent aisément s’étendre à d’autres fonctions d’agrégation.

On peut montrer que ces indices généralisent ceux introduits par Yager pour
les moyennes pondérées ordonnées [100].

7.5 Veto et indice de veto

On a vu que \(i \) est un critère de veto (resp. de faveur) si \(F(a_1, \ldots, a_n) \leq a_i \)
(resp. \(\geq a_i \)) quelque soit le vecteur de scores. Quand \(F \) est l’intégrale de Choquet
par rapport à une capacité \(\mu \), il est facile de montrer que \(i \) est un veto si et
seulement si \(\mu \) est telle que \(\mu(A) = 0 \) quand \(A \not= i \), et que \(i \) est un veto implique
que l’interaction \(I_{ij} \) est positive \(\forall j \not= i \) [23]. De même, \(i \) est une faveur équivalent à
\(\mu(A) = 1 \) quand \(i \in A \), ce qui implique également que \(I_{ij} \leq 0 \ \forall j \not= i \).

Comme il est rare de trouver des vetos et faveurs dans le sens ci-dessus,
Marichal a proposé des indices de veto et faveur valués dans \([0,1]\), définis comme
suit [58, 62].

\[
\text{veto}_\mu(i) := 1 - \frac{1}{n-1} \sum_{T \subset N \setminus i} \frac{(n-t-1)!t!}{(n-1)!} \mu(T)
\]

\[
\text{faveur}(i) := \frac{1}{n-1} \sum_{T \subset N \setminus i} \frac{(n-t-1)!t!}{(n-1)!} \mu(T \cup i) - \frac{1}{n-1}.
\]

Ces définitions qui peuvent sembler quelque peu arbitraires sont en fait dictées
par 4 axiomes qui les déterminent de façon unique. Ainsi que pour l’indice de
Shapley, on impose que ces indices soient linéaires en fonction de \(\mu \), et symé-
triques au sens où ils sont insensibles à une renuméroation des critères. On
impose d’autre part que l’indice de veto du minimum soit égal à 1, de même
pour l’indice de faveur du maximum. Enfin, une condition de normalisation dit
que si tous les critères ont le même indice de veto (resp. de faveur), alors cette
valeur doit coïncider avec l’indice de conjonction (resp. de disjonction).

38
On a comme propriétés :

\[
\frac{1}{n} \sum_{i=1}^{n} \text{veto}_\mu(i) = \text{conj}_\mu \\
\frac{1}{n} \sum_{i=1}^{n} \text{faveur}_\mu(i) = \text{disj}_\mu.
\]

8 Familles particulières de capacités et bi-capacités

Nous avons vu dans les sections qui précèdent que les capacités et les bi-capacités sont un moyen puissant et très général de construire des modèles d'évaluation multicritère. Cependant cette richesse a un prix non négligeable, car la complexité de ces modèles est exponentielle (de l'ordre de \(2^n\) pour les capacités et \(3^n\) pour les bi-capacités). La question se pose alors s'il ne serait pas possible d'avoir des modèles basés sur des capacités nécessitant moins de \(2^n\) coefficients, sans pour autant que la dégradation des performances soit trop sensible. Une première famille de capacités est celle des mesures décomposables [13, 99], qui incluent les \(\lambda\)-mesures de Sugeno [92], très souvent utilisées en pratique. Ces capacités sont définies par une fonction sur \(N\) analogue à une densité, et ne nécessitent que \(n-1\) coefficients. Toutefois, les modèles basés sur ces capacités ont un pouvoir d’expression réduit, car en particulier l’interaction \(I_{ij}\) a toujours le même signe, quelque soit \(i, j\).

Il est possible de généraliser ce concept aux bi-capacités [36].

Une famille plus adaptée à nos besoins est la famille des capacités \(k\)-additives.

Définition 5 [25] Soit \(k \in \{1, \ldots, n-1\}\). Une capacité \(\mu\) est dite \(k\)-additive si \(I(A) = 0\) quand \(|A| > k\), et il existe \(A \subset N\) contenant exactement \(k\) éléments telle que \(I(A) \neq 0\).

D’après les propriétés de l’indice d’interaction, une capacité 1-additive est en fait une capacité additive. D’une façon générale, une capacité \(k\)-additive nécessite \(1 + n + \binom{n}{2} + \ldots + \binom{n}{k} - 2\) coefficients pour être définie.

Une capacité 2-additive, qui nécessite seulement \(\frac{n(n+1)}{2} - 1\) coefficients, est un bon compromis entre richesse et complexité, car elle permet de représenter l’interaction entre deux critères, ce qui est suffisant en pratique dans la plupart des cas. Expérimentalement, on constate que la différence de précision entre un modèle 2-additif et un modèle complet est faible (voir [34]).

Quand la mesure est 2-additive, il est possible d’exprimer l’intégrale de Choquet de façon très éclairante avec \(I\) au lieu de \(\mu\) [23] :

\[
C_\mu(a_1, \ldots, a_n) = \sum_{I_{ij} > 0} (a_i \land a_j)I_{ij} + \sum_{I_{ij} < 0} (a_i \lor a_j)|I_{ij}|
\]

\[
+ \sum_{i=1}^{n} a_i(\phi_i - \frac{1}{2} \sum_{j \neq i} |I_{ij}|), \quad \forall a \in [0, 1]^n, \quad (30)
\]

pour tout \((a_1, \ldots, a_n) \in \mathbb{R}_+^n\). De plus on a \(\phi_i - \frac{1}{2} \sum_{j \neq i} |I_{ij}| \geq 0\) pour tout \(i\). Cela montre que l’intégrale de Choquet pour les mesures 2-additives est une somme de parties conjonctive, correspondant aux interactions positives, disjonctives.
(interaction négatives) et une partie linéaire (indice d’importance de Shapley). Tout cela correspond à l’interprétation que nous avons donnée de l’interaction. De plus cette somme est convexe car \(\sum_{i=1}^{n} \phi_i = 1 \). Ainsi, l’intégrale de Choquet est la fermeture convexe de toutes les conjonctions et disjonctions de paires de critères, et de tous les dictateurs (critères pris seuls).

Le concept de bi-capacité \(k \)-additive se définit de façon analogue. Nous voyons le lecteur à [36] pour les raisons sous-jacentes à cette définition.

Définition 6 Une bi-capacité est dite \(k \)-additive pour un \(k \) dans \(\{1, \ldots, n-1\} \) si son indice d’interaction est tel que \(I_{A,B} = 0 \) quand \(|B| < n-k \), et il existe \((A,B)\) avec \(|B| = n-k \) tel que \(I_{A,B} \neq 0 \).

Une bi-capacité nécessite \(1+2(n_{n-1})+2^2(n_{n-2})+\cdots+2^k(n_{n-k})-3 \) coefficients pour être définie. Pour une bi-capacité \(2 \)-additive, le nombre de coefficients s’élève à \(2n^2-3 \). L’expression de l’intégrale de Choquet pour une bi-capacité \(2 \)-additive n’est cependant pas simple (voir [39]) et peu utilisable.

Nous mentionnons enfin une troisième famille de capacités introduite par Miranda et Grabisch [69], dite capacités \(p \)-symétriques. L’idée est de généraliser la notion de mesure symétrique (voir Section 4), en considérant une partition \(\{A_1, \ldots, A_p\} \) de \(N \) en sous-ensembles d’influence. Ce sont des ensembles tels que \(\mu(A) \) ne dépend que de \(|A| \), pour tout \(A \subset A_n \). Une capacité symétrique est donc une capacité \(1 \)-symétrique, où la partition est \(N \) lui-même. Le nombre de coefficients pour définir une capacité \(p \)-symétrique est \(\prod_{i=1}^{p}(|A_i| + 1) - 2 \).

Ce concept peut se généraliser au bi-capacités [68].

9 Applications

Avant de présenter brièvement quelques applications, il est bon d’indiquer quelques généralités à leur propos. La question qui se pose est la suivante :

Pourquoi construire un modèle mathématique de l’évaluation subjective ?

Si l’on veut connaître comment est ressenti un produit nouveau, pourquoi ne pas le faire évaluer, tester par un individu ou une population d’individus ? Si l’on veut savoir si un projet ou un candidat est bon, pourquoi ne suffit-il pas de le faire noter par un expert ?

Parmi les réponses possibles, donnons-en les plus significatives.

- Le modèle mathématique peut permettre un traitement automatique ou semi-automatique, en cas de nombreuses données à traiter. De plus, dans ce cas, il peut assurer une stabilité dans le temps qu’un expert humain aura du mal à maintenir ;
- Le modèle mathématique peut servir à prédire le résultat d’un test de nouveau produit, sans effectuer de coûteux tests sur des consommateurs ;
- Le modèle mathématique permet l’analyse et l’explication du processus d’évaluation. Pour un industriel lançant un nouveau produit sur un marché, il est plus important de savoir pourquoi le produit a eu (aura) du succès plutôt que de savoir s’il aura ou non du succès. La section 7 a donné tous les outils pour une telle analyse : importance des critères, interaction, attitude conjonctive ou disjonctive, vetos, etc.

Quelques exemples plus récents peuvent être trouvés dans [42], dont notamment une application sur l’évaluation des motos par Kwon et Sugeno (voir également [93]). Au Japon toujours, Nakamori a effectué un certain nombre d’études sur l’évaluation de l’environnement [75], et sur l’impression d’espace dans une pièce d’une habitation [74].

Mauris et col. ont réalisé des applications en aide à la gestion de projets [50], et évaluation de site web [4]. Dans le domaine de l’environnement, Verkeyn et col. ont appliqué l’intégrale de Sugeno à l’évaluation de la nuisance sonore [95].

Enfin, l’auteur a réalisé également quelques applications, notamment en évaluation de cosmétique [32], de charge mentale de travail, [80], et de confort de siège [34]. Nous terminons ce paragraphe en détaillant cette dernière application, afin de montrer comment l’analyse du modèle peut être utilisée.

Il s’agit de mesurer la sensation d’inconfort ressentie sur un siège automobile après une longue station immobile. Le corps est divisé en 38 zones, et on considère 5 types d’inconfort, dénommés : vibrations, échauffement, fourmillement, point dur et contraction. L’intensité de l’inconfort va de 0 (pas d’inconfort) à 10 (insupportable). Le but est d’expliquer la sensation globale d’inconfort ressentie en fonction des inconforts locaux (zones et type d’inconfort). 11 sujets, 2 sièges et 2 modes (avec ou sans vibration de la route) ont été utilisés. Afin de maintenir le nombre de descripteurs à un niveau raisonnable étant donné le faible nombre de données, deux types de modèles ont été construits :
- les descripteurs sont les 5 types d’inconfort, et on moyenne sur toutes les zones du corps ;
- les descripteurs sont 5 macro-zones du corps (bras, jambes, haut du dos, bas du dos, poitrine), et on moyenne sur les types d’inconfort.

Nous avons obtenu respectivement les deux modèles suivants (intégrale de Choquet par rapport à une capacité 2-additive) :

1. Modèle par type d’inconfort (les variables sont les niveaux d’inconfort sur les attributs vibrations, échauffement, fourmillement, point dur et contraction respectivement. e est le niveau global d’inconfort, avec une précision de 10^{-3}).

\[e = 0.022(a_2 \land a_3) + 0.337(a_2 \lor a_4) + 0.256(a_2 \lor a_5) \\
+ 0.163(a_3 \lor a_5) + 0.142(a_4 \lor a_5) + 0.003(a_1 \lor a_3) + 0.028a_3. \]

2. Modèle par macro-zones (les variables sont les niveaux d’inconfort sur les macro-zones jambes, bras, bas du dos, haut du dos et poitrine respectivement. e est le niveau global d’inconfort, avec une précision de 10^{-3}).

\[e = 0.517(a_2 \lor a_4) + 0.134(a_4 \lor a_5) + 0.122(a_2 \lor a_3) \\
+ 0.095(a_1 \lor a_3) + 0.051(a_3 \lor a_4) + 0.039(a_1 \lor a_5) + 0.043a_5. \]

On peut contacter que la partie linéaire de ces modèles est très faible. Les indices d’importance de Shapley et les indices d’interaction trouvés sont les suivants :

41
- Modèle par type d'inconfort

<table>
<thead>
<tr>
<th>Indice de Shapley (×5)</th>
<th>Interaction I(i, j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>vibrations</td>
<td>I(1, 2) -0.000</td>
</tr>
<tr>
<td>échauffement</td>
<td>I(1, 3) -0.002</td>
</tr>
<tr>
<td>fourmillement</td>
<td>I(1, 4) -0.000</td>
</tr>
<tr>
<td>point dur</td>
<td>I(1, 5) -0.000</td>
</tr>
<tr>
<td>contraction</td>
<td>I(2, 3) 0.022</td>
</tr>
</tbody>
</table>

- Modèle par macro-zones

<table>
<thead>
<tr>
<th>Indice de Shapley (×5)</th>
<th>Interaction I(i, j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>jambes</td>
<td>I(1, 2) -0.000</td>
</tr>
<tr>
<td>bras</td>
<td>I(1, 3) -0.095</td>
</tr>
<tr>
<td>bas du dos</td>
<td>I(1, 4) -0.000</td>
</tr>
<tr>
<td>haut du dos</td>
<td>I(1, 5) -0.039</td>
</tr>
<tr>
<td>poitrine</td>
<td>I(2, 3) -0.122</td>
</tr>
</tbody>
</table>

Ces résultats peuvent s'interpréter comme suit :

- Modèle par type d'inconfort : les critères les plus importants sont : échauffement, contraction et point dur. Le critère vibrations n'intervient pas dans l'inconfort global. Dans son ensemble, le modèle est du type disjonctif. On peut paraphraser cela en disant que :

 Il suffit qu'un inconfort du type échauffement, contraction ou point dur apparaisse pour qu'un inconfort global soit ressenti. Aucune sensation d'inconfort peut compenser une autre sensation d'inconfort.

- Modèle par macro-zones : les macro-zones les plus importantes sont le haut du dos et les bras, et ensuite le bas du dos. Les jambes interviennent peu dans le modèle, qui est principalement exprimé par une disjonction entre les inconforts dans le haut du dos et les bras, les autres paires de critères étant plus ou moins indépendants. Ceci peut se paraphraser en :

 Il suffit qu'un inconfort soit ressenti dans les bras ou le haut du dos pour qu'une sensation globale d'inconfort soit ressentie. Les autres sensations locales (particulièrement le bas du dos) viennent renforcer la sensation globale d'inconfort.

On imagine comment ces résultats peuvent être ensuite exploités pour la conception des sièges.

10 Conclusion

Nous avons tenté de donner une vue d’ensemble constructive des méthodes d’évaluation subjective basées sur une approche multicritère. Ainsi que nous l’avons signalé, ces approches viennent en complément de l’analyse de données, et ne sont utilisables que lorsque des scores ou degrés de satisfaction peuvent être définis sur les attributs. Le lecteur aura pu être voir une parenté entre l’Analyse en Composantes Principales (ACP), qui détermine les axes les plus importants, et l’indice d’importance de Shapley ou l’interaction. Ces indices ont effectivement pour but de détecter les attributs les plus importants dans le modèle et de comprendre comment ils interagissent. Ce qui nous inciterait à
penser que ces derniers peuvent s'avérer plus utiles dans la pratique, c'est que dans le cas de l'ACP, les axes trouvés sont en fait des combinaisons linéaires des attributs, ce qui les rend difficiles à interpréter. Par contre, les méthodes que nous présentons travaillent sur les attributs tels quels.

Références

44

