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Abstract

This paper studies foundational issues in securities markets models with
�xed costs of trading, i.e. transactions costs that are bounded regardless
of the transaction size, such as: �xed brokerage fees, investment taxes, op-
erational and processing costs, or opportunity costs. We show that the
absence of free lunches in such models is equivalent to the existence of a
family of absolutely continuous probability measures for which the normal-
ized securities price processes are martingales, conditional on any possible
future event. This is a weaker condition than the absence of free lunches
in frictionless models, which is equivalent to the existence of an equivalent
martingale measure. We also show that the only arbitrage free pricing rules
on the set of attainable contingent claims are those that are equal to the sum
of an expected value with respect to any absolutely continuous martingale
measure and of a bounded �xed cost functional. Moreover, these pricing
rules are the only ones to be viable as models of economic equilibrium.
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The Fundamental Theorem of Asset Pricing, which originates in the Arrow-
Debreu model (Debreu [1959]) and is further formalized in (among others) Cox
and Ross (1976), Harrison and Kreps (1979), Harrison and Pliska (1981), Du¢ e
and Huang (1986), Dybvig and Ross (1987), Dalang, Morton andWillinger (1989),
Back and Pliska (1990), and Delbaen and Schachermayer (1994), asserts that the
absence of free lunch in a frictionless securities market model is equivalent to the
existence of an equivalent martingale measure for the normalized securities price
processes. The only arbitrage free and viable pricing rule on the set of attainable
contingent claims, which is a linear space, is then equal to the expected value with
respect to any equivalent martingale measure.
In this paper, we study some foundational issues in the theory of asset pricing

in securities markets models with �xed trading costs. Transaction costs are said
to be �xed in the sense that they are bounded regardless of the transaction size.
Such �xed costs include for example �xed brokerage fees, brokerage arrangements
where marginal fees go to zero beyond a given volume that is reset periodically
(such arrangements are common in the industry), �xed investment taxes to gain
access to a market (such as a foreign market), operational and processing costs
that typically exhibit strong economies of scale (e.g. through automation), �xed
costs involved in setting up an o¢ ce and obtaining access to information, and the
opportunity cost of looking at a market or of doing a speci�c trade. We �nd that
the absence of free lunches in models with �xed trading costs is equivalent to the
existence of a family of �absolutely continuous" probability measures1 for which
the normalized (by a numeraire) securities price processes are martingales, condi-
tional on any possible future event. Note that this is a weaker condition than the
existence of an equivalent martingale measure (as in frictionless markets) because
in this case the martingale measures are only required to be absolutely continuous.
As in the Fundamental Theorem of Asset Pricing, we �nd that the absence of free
lunches is also equivalent to the existence of a family of nonnegative state price
densities and to the existence of a family of continuous weakly positive linear oper-
ators. We de�ne admissible pricing rules on the set of attainable contingent claims
as the price functionals that are arbitrage free and are lower than or equal to the
surreplication cost (i.e. the lowest cost of dominating a given payo¤). Indeed, no
rational agent would pay more than its surreplication cost for a contingent claim
since there is a cheaper way to achieve at least the same payo¤ using a trading

1Let (
; F; P ) be a given probability space. We say that another probability measure Q
de�ned on the same probability space (
; F; P ) is absolutely continuous with respect to P , and
we shall write Q << P; if for all event A in F satisfying P (A) = 0 we have Q (A) = 0:
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strategy. We then show that the only admissible pricing rules on the set of attain-
able contingent claims are those that are equal to the sum of an expected value
with respect to any absolutely continuous martingale measure and of a bounded
�xed cost functional. Moreover, these pricing rules are the only ones to be viable
as models of economic equilibrium, i.e. such that there exist some price-taking
maximizing agents who are happy with their initial endowment, and hence for
whom supply is equal to demand.
A simple example can illustrate our main result. Consider a model where two

securities, denoted by A and B; can be traded at two dates 0 and 1 and in two
possible states of the world s1 and s2 at date 1: Security A; the numeraire, is
normalized to be always worth one unit of account and security B has a value
of 1 at date 0 and a value of 1 or 2 at date 1 in state s1 or s2 respectively (all
in numeraire units). In the perfect market case, this model yields an arbitrage
opportunity which consists in buying one unit of B and selling one unit of A at
date 0 at a zero investment cost, and closing the position at date 1 at a pro�t in
state s1 and at no loss in state s2: If we introduce �xed trading costs, this arbitrage
opportunity disappears since the investment required at date 0 by the strategy is
not zero anymore but is equal to the �xed cost. According to the Fundamental
Theorem of Asset Pricing, there cannot exist an equivalent martingale measure.
Nevertheless, the probability Q de�ned on the set S = fs1; s2g of the possible
states of the world at date 1 by Q (s1) = 1 and Q (s2) = 0 is an absolutely
continuous martingale measure for securities A and B:
There is an existing body of literature that studies transaction costs and other

market frictions. For instance, Jouini and Kallal (1995a) studies proportional
transaction costs and �nds that a bid-ask price process is arbitrage free if and
only if there exists an equivalent probability measure that transforms some process
between the normalized bid and ask price processes into a martingale. Jouini and
Kallal (1995b) studies the case of short sales constraints and shortselling costs
(as well as di¤erent borrowing and lending rates) and �nds that the absence of
arbitrage is equivalent to the existence of an equivalent supermartingale measure.
The set of expected values of the payo¤ of a contingent claim with respect to all
the martingale (resp. supermartingale) measures is an interval and coincides with
the set of its possible prices compatible with arbitrage and economic equilibrium.
The characteristic of this class of frictions is that they lead to a pricing rule
that is sublinear, i.e. positively homogeneous and subadditive, and since this is
not the case for �xed transaction costs they require a speci�c analysis. Also,
Cvitanic and Karatzas (1993 and 1996) study the optimal hedging problem in a
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di¤usion model with portfolios constrained to belong to a given convex set and
proportional transaction costs respectively. Pham and Touzi (1996) studies the
case of constraints that take the form of closed convex cones in �nite discrete time.2

As far as �xed transaction costs are concerned Du¢ e and Sun (1990), Grossman
and Laroque (1990) and Morton and Pliska (1995), among others, have studied
the optimal portfolio problem with transaction fees that are proportional to the
size of the overall portfolio (as opposed to the size of the speci�c transaction).
The remainder of the paper is organized as follows. Section 2 describes our

securities markets model with �xed trading costs. Section 3 characterizes the
absence of free lunches in such a model. Section 4 characterizes the arbitrage free
and viable pricing rules. Section 5 concludes.

The model with �xed costs
ê

The securities market model consists of a set T = [0; T ] of trading dates, where
T denotes the terminal date for all economic activity; a complete probability
space (
; F; P ) ; where the set 
 represents all possible states of the world; an
information structure which describes how information is revealed to agents, given
by a �ltration F = fFtgt2T with F0 = f;;
g and FT = F ; n+1 traded securities
0; :::; n and a (n+ 1)-dimensional, F ê -adapted process Z = fZt; t 2 Tg with
component processes Z0; :::; Zn where Zkt represents the price of security k at
time t: We assume that for all t; Z0t = 1; which means that the riskless rate
is equal to zero. Note that this assumption amounts to a normalization of all
securities prices by a numeraire, and can be made without any loss of generality
as long as at least one of the securities has a positive price at any time. In the
remainder of the paper we shall refer to the 0th security as the riskless asset. We
also make the technical assumption3 that for any trading date t in T ; Zt is in
L1 (
; Ft; P ) :
A trading strategy is a (n+ 1)-dimensional F -adapted process � = f�t; t 2 Tg

with component processes �0t ; :::; �
n
t where �

k
t represents the quantity of security

k held at time t. The vector �t represents the agent�s portfolio at time t and its

2Other papers on market frictions include Magill and Constantinides (1976), Constantinides
(1986), Dybvig and Ross (1986), Prisman (1986), Ross (1987), Taksar et al. (1988), He and
Pearson (1991), Bensaid et al. (1992), Hindy (1995) and Jouini and Kallal (1999).

3We recall that L1 (
; F; P ) denotes the set of measurable random variables with �nite ex-
pected value with respect to P:
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components may take negative as well as positive values. Hence, 4 V �t = �t�Zt is the
market value of the portfolio �t at date t and we call the process V � =

�
V �t ; t 2 T

	
the value process for the strategy �: Let ��êt denote for each date t the vector�
�1t ; :::; �

n
t

�
of quantities of risky securities held at time t. As in Harrison and

Kreps (1979), we only consider simple strategies, i.e., strategies such that: for all
t; �t � Zt is in êL1 (
; Ft; P ); agents may trade only at a �nite number of dates
(although that number can be arbitrarily large) that must be speci�ed in advance.5

Note that simple strategies are natural in our context because we shall assume
that agents incur a �xed transaction cost each time they trade.
We denote by ct the positive �xed transaction cost paid at date t if trading

has occurred in any of the risky securities and c = fct; t 2 Tg : If agents do not
trade in any of the risky securities at time t; then we assume that they do not
incur any transaction cost. The transaction cost is �xed in the sense that it is
bounded regardless of the amount of securities traded, i.e. for all t there ex-
ists some real number Ct such that 0 < ct < Ct a:s: P . We assume that the
process c is F -adapted, which means that agents only know at time t the past
and current values of the �xed trading cost but nothing more. We also allow the
�xed transaction costs to depend upon the trading strategy (and not to be nec-
essarily strictly positive at each trading date), i.e., to each simple strategy � with
trading dates t0; :::; tN = T is associated a nonnegative transaction cost process
c� =

�
c�t
�
t2ft0;:::;tNg

with c�t = C (t; (�t0)t0�t) such that:

� for any simple trading strategy � with trading dates t0; :::tN ;
c�ti1(��ti=��ti�1 ) = 0 for all i with 1 � i � N
c�t01(��t0=0) = 0; c�T1(��T=0) = 0

c�t = 0 for all t =2 ft0; :::; tNg
i.e., agents do not pay any �xed transaction cost if they do not trade the
risky securities6

� for any date t, there exists a positive random variable ct such that for any
simple strategy � with trading dates t0; :::tN ;

c�t1(��t 6=0;��ti=0 for all ti<t)
� ct1(��t 6=0;��ti=0 for all ti<t) for all i with 1 � i � N;

4For all (x; y) in Rd �Rd for some positive real number d, we let x � y =
Pd

i=1 xiyi.
5The extension to trading dates that are stopping times (instead of being speci�ed in advance)

is straightforward.
6We can also consider a model in which agents incur a �xed cost each time they trade, even

in the riskless asset. The conditions on the �xed costs are then :
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i.e., the �rst time real trading occurs, the �xed cost must be positive.

Or,

there exists a positive real number " such that for any simple strategy � with
trading dates t0; :::tN ; X

ftig

c�ti � "

i.e., the cumulative transaction cost from the �rst to the last trading date
must be greater than some positive constant.

� for all t, there exists a positive real number Ct such that for any simple
strategy �

c�t � Ct
i.e., the transaction cost is bounded at each date. This implies that for any
simple strategy � with trading dates t0; :::tN , the cumulative transaction
cost

P
ftig c

�
ti
is smaller than or equal to some constant (that depends on the

strategy � only, and not on the state of the world).

We could indi¤erently assume that for any strategy � and any trading date
t; the transaction cost at time t is such that c

��
t

�
!�!1 0, which means that

the transaction cost per unit of security traded goes to zero as the amount
traded becomes arbitrarily large.

Note that these conditions are consistent with a large class of transaction costs
that can be identi�ed in �nancial markets. They include �xed brokerage fees or
brokerage arrangements where marginal fees go to zero beyond a given volume

� For any simple strategy � with trading dates t0; :::tN ;

c�ti1(�ti=�ti�1 ) = 0 for all i with 1 � i � N and

c�t01(�t0=0) = 0

� For any simple strategy � with trading dates t0; :::tN ;

if �ti 6= 0 and �ti0 = 0 for all i
0 < i; then c�ti > 0; for all i with 1 � i � N:

� For all t, there exists a positive real number Ct such that for any simple strategy �

c�t � Ct:
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that is reset periodically (such arrangements are common in the industry), and
�xed investment taxes to gain access to a market such as a foreign market. They
also include operational and trade processing costs that typically exhibit strong
economies of scale (especially if these tasks have been automated), and �xed costs
incurred in setting up an o¢ ce and obtaining access to price or other relevant
information. Also, the opportunity cost of focusing on a market or of doing a
speci�c trade can be viewed as a �xed cost.
In order to get some of our results, we shall need the following additional

assumption7 (that we shall mention each time it is needed):
Assumption A : There exists a real number C such that for every strategy �;P

t2T c
�
t < C.

This means that, under Assumption A, the cumulative transaction costs of
any trading strategy are assumed to be bounded by a constant. Note that this
condition is automatically satis�ed in a discrete time model with a �nite or in�nite
number of states of the world (as long as transaction costs are bounded at each
time), but a �nite number of possible trading dates. It is also automatically
satis�ed in a model where there is a �xed cost to access a market such as a
�xed investment tax, a �xed cost for setting up information technology or a trade
processing department, or a �xed opportunity cost of looking at a market. It
is also consistent with a situation where the �xed transaction costs consist in
brokerage fees with a brokerage arrangement where transactions go free beyond
a certain volume which is reset on a periodical basis (this type of arrangement is
common in the industry).
Agents transfer wealth from all dates and events (for contingent wealth) to the

terminal date using the traded securities, subject to paying the �xed transaction
costs. In doing so they use self-�nancing strategies de�ned as follows. Let i be
a date in T and let B be an event in Fi (in the remainder of the paper we shall
always suppose that P (B) 6= 0): We then have:

De�nition 0.1. A self �nancing simple strategy from the date i and the event B
is a strategy � that is null before the date i and outside the event B =

�
��i 6= 0

	
;

and such that there exist trading dates t0; :::; tN ; with i = t0 � ::: � tN = T; for
which � (t; !) is a:s: constant over each interval [tk�1; tk[ and satis�es

�tk � Ztk + c�tk � �tk�1 � Ztk for k = 1; :::; N � 1
7For instance, we shall need Assumption A when we use the same de�nition of free lunch

as in Kreps (1981). However, we shall also introduce an alternative de�nition of free lunch for
which Assumption A is not required for any of our results.
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and
�T � ZT + c�T = �tN�1 � ZT :

This means that a self-�nancing simple strategy does not require any additional
investment beyond what is required at the initial date: purchases of securities as
well as transaction costs after the initial date are �nanced by the sale of other
securities. Note that the �nal budget constraint �T � ZT + c�T = �tN�1 � ZT re�ects
to the fact that we assume that agents transfer all their wealth into the riskless
asset at the terminal date T: Let Si;B denote the set of such strategies. We also
have:

De�nition 0.2. A frictionless self �nancing simple strategy from the date i and
the eventB is a strategy � that is null before the date i and outside the eventB and
such that there exist trading dates t0; :::; tN with i = t0 � ::: � tN = T for which
� (t; !) is a:s: constant over each interval [tk�1; tk[ and satis�es �tk �Ztk = �tk�1 �Ztk
a:s: P for k = 1; :::; N .

This means that a frictionless self �nancing simple strategy is a self �nancing
simple strategy in an otherwise identical economy where there are no transaction
costs. Let W i;B denote the set of such strategies.

Arbitrage opportunities and free lunches

Arbitrage opportunities

An arbitrage opportunity is a trading strategy that yields a positive gain in
some circumstances without a countervailing threat of loss in any other circum-
stances. A free lunch is the possibility of getting arbitrarily close to an arbitrage
opportunity. We shall de�ne two concepts of arbitrage opportunities as follows :

De�nition 0.3. 1. An arbitrage opportunity with �xed costs (AO1) is a strat-
egy � such that there exist (i; j) in T , 0 � i � j � T , an event B in Fi,
for which �� is null after date j, � belongs to Si;B, V �i + c

�
i � 0 on B, V �j � 0

and either V �i + c
�
i or V

�
j is di¤erent from 0.

2. A frictionless strong arbitrage opportunity (AO2) is a strategy � such that
there exist (i; j) in T , 0 � i � j � T , an event B in Fi, for which �� is null
after date j; � belongs to W i;B, V �i < 0 on B and V

�
j � 0:
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This means that an AO1 is a trading strategy that yields, in our model with
�xed transaction costs, a positive gain in some circumstances without a threat of
loss in other circumstances. An AO2 is a trading strategy that yields a positive
gain at the starting date and event of the trading strategy without a countervailing
threat of loss in other circumstances. We then have:

Proposition 0.4. 1. There exists an AO1 if and only if there exists a net gain
arbitrage opportunity with �xed trading costs, i.e. a strategy � such that
there exist a date i in T and an event B in Fi for which � belongs to Si;B,
��i 6= 0 and

�
V �T � V �i � c�i

�
� 0, 6= 0 on B.

2. There exists an AO2 if and only if there exists a frictionless "-net gain
arbitrage opportunity, i.e. a strategy � such that there exist a date i in T ;
an event B in Fi and a positive real number " for which � belongs to W i;B

and V �T � V �i � " on B.

3. There exists an AO1 if and only if there exists an AO2.

This means that the two notions of arbitrage opportunities that we have in-
troduced are equivalent. Also, an arbitrage opportunity in our model with �xed
transaction costs corresponds to the possibility of achieving a positive net gain.
An arbitrage opportunity in the otherwise identical frictionless model corresponds
to a net gain that is greater than some positive constant in all states of the world.
It is hence clear that the set of arbitrage opportunities in our model with �xed
transaction costs is strictly smaller than the set of arbitrage opportunities in the
frictionless model, or equivalently that the assumption of no arbitrage in our model
with �xed transaction costs is less stringent than in the frictionless model.

Free lunches

As in Kreps (1981), we de�ne a free lunch as the possibility of getting arbi-
trarily close to an arbitrage opportunity. More precisely, we have

De�nition 0.5. 1. A free lunch with �xed costs (FL1) is a sequence (�
n)n2N

of trading strategies such that there exist i in T ; B in Fi; sequences (xn)n2N
and ("ni )n2Nof random variables belonging respectively to L1 (
; F; P ) and
L1 (
; Fi; P ) and converging in L1 (
; F; P ) respectively to x � 0 and "i � 0
on B with x+ "i 6= 0 for which for all n;ê

�n is in Si;B, ��ni 6= 0, V �
n

i + c�
n

i � �"ni on B and V �
n

T � xn:
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2. A frictionless strong free lunch (FL2) is a sequence (�
n)n2N of trading strate-

gies such that there exist i in T ; B in Fi and sequences (xn)n2N and (r
n)n2N

of random variables belonging respectively to L1 (
; F; P ) and L1 (
; Fi; P )
and converging in L1 (
; F; P ) respectively to x � 0 and r > 0 on B for
which for all n;ê

�n is in W i;B and satis�es V �
n

i � �rn and V �nT � xn:

3. An �asymptotic free lunch� (AsFL) is a sequence (�n)n2N of strategies
such that there exist i in T ; B in Fi, a sequence (�n)n�0 of positive real
numbers and sequences (xn)n2N and ("

n
i )n2N of random variables belonging

respectively to L1 (
; F; P ) and L1 (
; Fi; P ) and converging in L1 (
; F; P )
respectively to x � 0 and "i > 0 on B for which for all n;ê

�n is in Si;B, ��ni 6= 0,
V �

n

i + c�
n

i

�n
� �"ni on B and

V �
n

T

�n
� xn:

This means that a free lunch is a sequence of strategies with a payo¤ that con-
verges to an arbitrage opportunity. A frictionless strong free lunch is a sequence
of strategies with a payo¤ that converges to a frictionless strong arbitrage oppor-
tunity. An �asymptotic free lunch�is a sequence of strategies that are strong free
lunches when renormalized by a sequence of scaling factors. We introduce this
notion in order to avoid using Assumption A in our characterization Theorems in
the next section.
Note that, as in the de�nition of arbitrage opportunities, we could replace the

date T with any date j, satifying 0 � i � j � T for which ��n is null after the date
j. We then have

Proposition 0.6. 1. There exists a FL1 if and only if there exists a net gain
free lunch with �xed costs, i.e. a sequence (�n)n2N of strategies such that
there exist i in T ; B in Fi and a sequence (xn)n2N of random variables
belonging to L1 (
; F; P ) and converging in L1 (
; F; P ) to some x � 0; 6= 0
on B for which for all n; �n is in Si;B; ��ni 6= 0 and V �

n

T �
�
V �

n

i + c�
n

i

�
� xn.

2. There exists a FL2 if and only if there exists a frictionless "-net gain free
lunch, i.e., a sequence (�n)n2N of strategies such that there exist i in T ; B
in Fi; a positive real number " and a sequence (xn)n2N of random variables
belonging to L1 (
; F; P ) and converging to some x � " on B for which for
all n, �n is in W i;B and satis�es V �

n

T � V �ni � xn.
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This means that a free lunch corresponds to a sequence of trading strategies
with a payo¤ that converges to a positive net gain. Similarly a frictionless strong
free lunch corresponds to a sequence of trading strategies with a payo¤ that con-
verges to a net gain that is strictly positive in all states of the world. We then have
the following characterization of the absence of frictionless strong free lunches:

Corollary 0.7. LetKi;B =
�
V �T � V �i ; � 2 W i;B

	
� L1 (
; F; P ) ; the set of possi-

ble gains from date i and event B in the frictionless model, and Ci;B = Ki;B � L1+;
where the closure is taken in L1: Let

AB =
�
f 2 L1+;9" > 0 such that f � " on B

	
:

The assumption of no frictionless strong free lunch (NFL2) is equivalent to the
condition that for all i in T and B in Fi; the two convex sets Ci;B and AB have
an empty intersection.

We also have

Lemma 0.8. 1. The absence of frictionless strong free lunch (NFL2) implies
the absence of free lunch in our model with �xed trading costs (NFL1) :

2. Under Assumption A, the absence of free lunch in our model with �xed
costs (NFL1) and the absence of frictionless strong free lunch (NFL2) are
equivalent.

3. The absence of �asymptotic free lunch� (NAsFL) in our model with �xed
trading costs and the absence of frictionless strong free lunch (NFL2) are
equivalent.

It is easy to see that the absence of frictionless strong free lunch implies the
absence of free lunch with �xed trading costs. But, unlike for arbitrage oppor-
tunities, the converse is not necessarily true. Indeed, although the number of
trading dates for each trading strategy �n is �nite, it can be arbitrarily large, and
therefore so can the cumulative trading costs. Hence the need to bound the total
trading costs of any simple strategy as in Assumption A or to consider the notion
of �asymptotic free lunch�. In both cases we obtain the equivalence between the
absence of strong frictionless free lunches and the absence of free lunches in our
model with �xed trading costs.
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Absolutely continuous martingale measures

With the notations of corollary 1, it is easy to see, using the de�nition of
the set of self �nancing simple trading strategies in the frictionless model W i;B

and the fact that Z0t = 1; that K
i;B =

�
V �T � V �i ; � 2 W i;B

	
; the set of possible

gains from date i and event B in the frictionless model, is a vector space and
that it is equal to Ki;B = Lin

�
�s �

�
�Zt � �Zs

�
; �s 2 P s;B; i � s � t

	
; where for all

s � i; �Zs = (Z1s ; :::; Zns ) and where P s;B denotes the set of n -dimensional random
variables �s =

�
�1s; :::; �

n
s

�
that are Fs -measurable, null outside B and before i

and such that �s � �Zs is in L1 (
; Fs; P ) :
The use of corollary 1 and of a separation theorem will now enable us to

obtain our main result: the characterization of the absence of frictionless strong
free lunches in terms of absolutely continuous martingale mesures.

Theorem 0.9. There exists no frictionless strong free lunch if and only if for all
i in T and all B in Fi; there exists an absolutely continuous probability mea-
sure P i;Bde�ned on (
; F ), with bounded density, such that P i;B (B) = 1 and
EP

i;B
[Zt j Fs] = Zs on B for all (s; t) such that i � s � t:

We then obtain the Fundamental Theorem of Asset Pricing for securities mar-
kets models with �xed trading costs.

Theorem 0.10. The following are equivalent:

1. There exists no �asymptotic free lunch" in our model with �xed trading
costs.

2. There exists a family of absolutely continuous martingale measures: for all
i in T and for all B in Fi; there exists an absolutely continuous probability
measure with bounded density P i;Bde�ned on (
; F ) such that P i;B (B) = 1
and satisfying

EP
i;B

[Zt j Fs] = Zs on B for all (s; t) with i � s � t:

3. There exists a family of nonnegative state price densities: for all i in T and
for all B in Fi, there exists a bounded random variable gi;B in L1 (
; F; P )
with gi;B � 0; 6= 0 on B and such that for all (s; t) with i � s � tê

E
�
gi;BZt1A\B

�
= E

�
gi;BZs1A\B

�
for all A in Fs:
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4. There exists a family of weakly positive8 continuous linear operators: let
Ri;B denote the set of random variables null outside B and belonging to
L1 (
; Fi; P ) : For all i in T ; for all B in Fi; there exists a weakly positive
continuous linear operator �i;Bde�ned on RT;B and taking values in Ri;B,
such that there exists an event A in Fi with A � B and P (A) 6= 0 for which

�i;B
�
V �T
�
= V �i on A, for all � in W

i;B:

Under Assumption A, these statements are all equivalent to:

5. There exists no free lunch in our model with �xed trading costs.

This means that the absence of free lunches in our model with �xed trading
costs (or equivalently the absence of free lunches in the otherwise identical fric-
tionless model) is equivalent to the existence of a family of absolutely continuous
martingale probability measures: absolutely continuous martingale measures con-
ditional on any possible future event. Note the di¤erence with the frictionless
case where the absence of free lunches (a weaker condition than the absence of
free lunches in the model with �xed trading costs) is equivalent to the existence of
an equivalent martingale probability measures (a stronger condition since a family
of absolutely continuous martingale measures can be derived from any equivalent
martingale measure) as shown in Harrison and Kreps (1979).
We can also obtain the slightly more general results in the spirit of Yan�s

(1980) theorems ( also see Stricker (1990), among others, for an application of
Yan�s theorem).

Theorem 0.11. LetK be a convex set in L1 (
; F; P ) containing 0: The following
conditions are equivalent :

1. For all � in L1 such that � > 0; there exists a positive real number c for
which c� is not in K � L1+:

2. There exists a positive real number c such that c1
 is not in K � L1+:

3. There exists a random variable Z in L1 (
; F; P ) satisfying Z � 0; 6= 0 and
sup�2KE [Z�] <1

8Let X denote the set of random variables on (
; F; P ) : A functional p de�ned on X is said
to be weakly positive if for all x in X such that P (x � 0) = 1; we have p (x) � 0:
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We also have

Corollary 0.12. Let K denote K0;
 with

Ki;B =
�
V �T � V �i ; � 2 W i;B

	
= Lin

�
�s �

�
�Zt � �Zs

�
; �s is in P s;B; t � s � i

	
where for all s � i; �Zs = (Z1s ; :::; Zns ) and P s;B denotes the set of n -dimensional
random variables �s =

�
�1s; :::; �

n
s

�
that are Fsê -measurable, null outside B and be-

fore i; and such that �s�Zs is in L1 (
; Fs; P ) :Also, letAB denote
�
f 2 L1+;9" > 0 such

that f � " on Bg : The following conditions are equivalent :

1. The intersection A
 \K � L1+ is empty.

2. The random variable 1
 does not belong to K � L1+:

3. There exists an absolutely continuous martingale measure for Z:

This concludes our characterization of processes that admit an absolutely con-
tinuous martingale measure - which relates to the Theorem of Asset Pricing in
securities markets models with �xed trading costs (note that the implications
2) ) 1) in Theorems 3 and Corollary 2 are quite general and can be useful in
other contexts as well). The characterization of processes that admit an equivalent
martingale measure (or the Fundamental Theorem of Asset Pricing in frictionless
securities markets models) can be found in Harrison and Kreps (1979), Yan (1980),
Kreps (1981), Du¢ e and Huang (1986), Stricker (1990) or Delbaen and Schacher-
mayer (1994 and 1998), as well as Back and Pliska (1988) and Dalang et al. (1980)
for the discrete time case.
We shall now exhibit an example of a process that admits a family of absolutely

continuous martingale probability measures but does not admit any equivalent
martingale probability measure.

Example : Let W be a standard Wiener process, with its natural �ltration
(Gt)0�t�1: We de�ne a local martingale of exponential type by:
Lt = exp(�(f �W )t � 1

2
(
R t
0
f 2(u)du)) if t < 1; and

L1 = 0;
where f(t) = 1p

1�t :We de�ne the stopping time T by T = infft; Lt � 2g:We then
de�ne the price process St by:
dSt = dWt +

1p
1�tdt if t � T; and

dSt = 0 if t � T;

14



and the �ltration (Ft)0�t�1 = (Gmin(t;T ))0�t�1:
According to Delbaen and Schachermayer (1994), there exists a unique prob-

ability measure Q that is absolutely continuous with respect to P and makes the
process S a martingale. It is given by dQ = LTdP: Since P [LT = 0] > 0; Q is
not equivalent to P: Moreover, for all t < 1; the measures Q and P are equivalent
on Ft since the density LT is positive. It is now easy to see that for any date t
and for all event B at that date, there exists a probability measure Qt;B given by
dQt;B = LT 1B

E[LT 1B ]
dP such that Qt;B(B) = 1 and EQ

t;B
[SujFu] = Su for all (u; v)

with t � u � v:

Pricing and viability with �xed costs

Admissible pricing rules

A contingent claim B to consumption at the terminal date T is a random
variable belonging to L1 (
; F; P ) : A contingent claim B is said to be attainable
(in the model without �xed cost) if there exists some frictionless self �nancing
strategy � in W 0;
 such that V �T = B: Note that the set M of all attainable
contingent claims is a linear space. We shall now de�ne and characterize pricing
rules p (B) on M that are admissible.

De�nition 0.13. An admissible pricing rule on M is a functional p de�ned on
M , such that

1. p induces no arbitrage, i.e., it is not possible to �nd strategies �1,...,�n in
W 0;
, for which

Pn
i=1 p

�
V �iT
�
� 0,

Pn
i=1 V

�i
T � 0 and one of the two is

nonnull.

2. p (B) � �s (B), where �s (B) := inf
�
V �0 + c

�
0, � 2 S0;
, V �T � B

	
:

Part 1 is the usual no-arbitrage condition. Part 2 says that an admissible price
for the contingent claim B must be smaller than its superreplication price: if it is
possible to obtain a payo¤ at least equal to B at a cost �s (B), then no rational
agent (who prefers more to less) will accept to pay more than �s (B) for the
contingent claim B: Note that since B is attainable by a frictionless self �nancing
strategy, and since the total trading costs incurred by any strategy are bounded,
there always exists at least a self �nancing (inclusive of transaction costs) strategy
dominating B; i.e. B is also attainable in our model with �xed trading costs.
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The following Proposition characterizes the admissible pricing rules on M
through the use of the absolutely continuous martingale measures obtained in
Theorem 1.

Proposition 0.14. Under Assumption A and the assumption of NFL1, or under
the assumption of NAsFL, any admissible pricing rule p on M can be written as

p (B) = EP
�
[B] + c (B) for all B in M

where P � is any absolutely continuous martingale measure and c(�B)
�

!�!1 0.

This means that if B = V �T then p(B) = V
�
0 + c(B) since E

P �(V �T ) = V
�
0 for

any absolutely continuous martingale measure P �: Moreover, if p (�x) � � [p (x)]
for any real number � large enough, then the �xed cost c is nonnegative. And if
there exists " > 0ê , such that for any � large enough, p (�x) � � [p (x)� "] , then
the �xed cost c is greater than or equal to this positive constant ". Notice that
under Assumption A, i.e. if the cumulative �xed costs incurred by any strategy
are bounded by a positive real number C, then c (B) := p (B) � EP � (B) �
�s (B) � EP

�
(B) � C; for any absolutely continuous martingale measure P �:

Also, Proposition 3 implies that p(�B)
�

!�!1 E
P � [B] for any attainable contingent

claim B; where P � is any absolutely continuous martingale measure. This means
that the unit price of any attainable contingent claim B is equal to EP

�
[B] in the

limit of large quantities.
As usual, we say that the market is complete in the frictionless model if any

contingent claim is attainable. If the market is complete, there exists a unique
admissible pricing rule. However, in incomplete markets (i.e., if there are some
non attainable contingent claims), even in a frictionless model there is no universal
pricing concept. We can only �nd arbitrage bounds and the pricing rules are
sublinear9 lower semicontinuous functionals (see Jouini and Kallal (1995a and
1999). By analogy with the case of attainable contingent claims, we de�ne an
admissible pricing rule on the set of contingent claims in the following way.

De�nition 0.15. A pricing rule on L1 (
; F; P ) is admissible if it is of the form
p (B) = � (B) + c (B) for all B in L1 (
; F; P ), where

1. � is a sublinear lower semicontinuous functional and c is such that c(�B)
�

!�!1
0:

9A functional � is sublinear if �(�x) = ��(x) and �(x+ y) � �(x) + �(y) for all contingent
claims x; y and nonnegative real numbers �:
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2. p (B) � �s (B), where �s (B) := inf
�
V �0 + c

�
0, � 2 S0;
, V �T � B

	
:

We then obtain the following characterization of the admissible pricing rules.

Proposition 0.16. Under Assumption A and the assumption of NFL1; or under
the assumption of NAsFL, any admissible pricing rule p on L1 (
; F; P ) can be
written as

p (B) = sup
P �2K

EP
�
[B] + c (B) for all B in M

whereK denotes a convex subset of the set of all absolutely continuous martingale
measures, and c is the �xed cost given in De�nition 6.

This means that any admissible sublinear lower semicontinuous functional �
can be written as the supremum of a subset of all continuous linear functionals
~l, which lie below �, are weakly positive and such that ~l

�
V �T
�
= V �0 for all � in

W 0;
: It also means that p(�B)
�

!�!1 supP �2K E
P � [B] for any contingent claim

B; where K is a convex subset of the set of absolutely continuous martingale
measures. This means that the unit price of any attainable contingent claim B
must belong to an interval [� infP �2K EP

�
[�B] ; supP �2K EP

�
[B]] in the limit of

large quantities.
Note that since the absence of free lunch in our model with �xed trading costs

is weaker than the absence of free lunch in a frictionless model, these theorems
enable us to price contingent claims in a wider class of models. We shall now turn
to the study the viability of such admissible pricing rules.

Viability

Agents are assumed to be characterized by their preferences on the space
of net trades R � X where X = L1 (
; F; P ). A pair (r; x) represents r units
of consumption today and x units of consumption tomorrow. Preferences are
modeled by complete and transitive binary relations � on R � X. In the usual
fashion, � denotes the strict preference de�ned from � : We also make
Assumption P: Preferences are assumed to satisfy the following three require-
ments:

1. For all (r; x) 2 R�X; the set f(r0; x0) 2 R�X : (r0; x0) � (r; x)g is convex.

2. For all (r; x) 2 R�X; the set f(r0; x0) 2 R�X : (r0; x0) � (r; x)g as well as
the set f(r0; x0) 2 R�X : (r; x) � (r0; x0)g are closed.
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3. For all (r; x) 2 R � X; r0 > 0 and x0 2 L1+ such that there exists a real
number " > 0 with x0 � "; (r + r0; x) � (r; x) and (r; x+ x0) � (r; x) :

The class of such preferences is denoted by A: Part 1 says that agents are risk
averse. Part 2 says that their preferences are continuous. Part 3 says that agents
prefer more to less.
A price system (M; p) is a subspace M of X and a linear functional p on

M: In the economy associated to this price system, agents can buy and sell any
contingent claim m 2M at a price p (m) + c (m) in terms of date 0 consumption
where c(m) is a bounded nonnegative �xed trading cost satisfying c(0) = 0; c(m) >
0 if m 6= 0; and c(�m)

�
!�!1 0:

De�nition 0.17. A price system ( M; p) is said to be viable if there exist some
binary relation � satisfying Assumption P and (r�;m�) in R � M such that
c (m�) + r� + p (m�) � 0 and

(r�;m�) � (r;m)

for all (r;m) in R�M such that c (m) + r + p (m) � 0:

This de�nition is analogous to the de�nition in Harrison and Kreps (1979) and
Kreps (1981). It means that a price system is viable if there is some agent with
preferences satisfying Assumption P who can �nd an optimal net trade subject
to his budget constraint. Note that if we assume that the �xed cost function c
is subadditive, i.e. c(m1 + m2) � c(m1) + c(m2) for all m1;m2 2 M; a natural
assumption to make about �xed costs, then a price system is viable if and only if
there are some agents with preferences satisfying Assumption P for whom (0; 0)
is an optimal trade,ê 10 i.e. who are happy with their initial endowment. This
means that a price system is viable if and only if it is compatible with economic
equilibrium.

10Indeed, suppose that there exists an agent with preferences � satisfying Assumption P
and such that (r�;m�) is an optimal net trade (i.e. c (m�) + r� + p (m�) � 0 and (r�;m�) �
(r;m) for all (r;m) in R �M such that c (m) + r + p (m) � 0): De�ne the preferences ~� by
(r1;m1) ~� (r2;m2) if (r1 + r�;m1 +m

�) ~� (r2 + r�;m2 +m
�) : They satisfy Assumption P: Also

note that c (0) + 0 + p (0) = 0: Now suppose that c ( ~m) + ~r + p ( ~m) � 0 and (~r; ~m) ~� (0; 0) ;
i.e. (~r + r�; ~m+m�) � (r�;m�) : We have c ( ~m+m�) + ~r + r� + p ( ~m+m�) = [c ( ~m+m�) �
c ( ~m)� c (m�)] + c ( ~m) + ~r+ p ( ~m) + c (m�) + r� + p (m�) � c ( ~m+m�)� c ( ~m)� c (m�) � 0 by
subadditivity of the �xed cost functional c:
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De�nition 0.18. A free lunch for a price system (M; p) is a sequence (mn)n2N
inM , such that there exist sequences (rn)n2N , (x

n)n2N in L
1 (
; F; P ) converging

respectively to r � 0 and x � 0 with r + x 6= 0; for which for all n in Nê

mn � xn and c (mn) + rn + p (mn) � 0:

We shall now consider the case whereM =
�
V �T ; � in W

0;

	
; the set of attain-

able contingent claims in the frictionless economy, and where the pricing rule is
the linear functional p de�ned onM by p

�
V �T
�
= V �0 for all � inW

0;
. As we have
seen in Proposition 3, if we want a price system (M;�) to be compatible with the
assumption of no arbitrage - which must be the case for viable price systems as
well as for price systems that admit no free lunch - then we must have � = p:
We shall now investigate the converse, i.e. the conditions under which this price
system is a viable one and the conditions under which it admits no free lunch.
But �rst let us have:

De�nition 0.19. A free lunch from time 0 in the frictionless securities market
model is a sequence (�n)n2N of simple strategies such that there exist sequences
(~xn)n2N of random variables belonging to L1 (
; F; P ) and (~rn)n2N in RN con-
verging respectively to x � 0 in L1 (
; F; P ) and r > 0 in R for which for all
n,

�n is in W 0;
, V �
n

0 � �~rn and V �nT � ~xn:

We then have

Theorem 0.20. The following conditions are equivalent :

1. (M; p) is viable.

2. (M; p) admits no free lunch.

3. There exists a weakly positive continuous linear functional � on L1 (
; F; P )
such that � jM= p and such that for all f inA = ff 2 L1;9" > 0 such that f � " g ;
we have � (f) > 0:

4. There is no free lunch from time 0.
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For each date i and each eventB in Fi; we shall de�ne a price system
�
M i;B; pi;B

�
where M i;B is a subspace of X and pi;B a linear functional on M i;B. The inter-
pretation is that in this economy, at that date i and in that event B; agents are
able to buy and sell some contingent claims m in M i;B at a cost pi;B (m) + ci (m)
in date i, event B consumption. We consider M i;B =

�
V �T ; � in W

i;B
	
and pi;B

de�ned on M i;B by pi;B
�
V �T
�
= V �i and we obtain

Theorem 0.21. The following conditions are equivalent :

1. For all i in T ; for all B in Fi;
�
M i;B; pi;B

�
is viable.

2. For all i in T ; for all B in Fi;
�
M i;B; pi;B

�
admits no free lunch.

3. There is no free lunch in our securities markets model with �xed trading
costs.

Therefore, the price system we have considered is viable and admits no free
lunch if and only if there is no free lunch in our model with �xed trading costs.

Conclusion

In this paper, we have shown that a securities markets model with �xed trad-
ing costs admits no free lunch if and only if there exists a family of absolutely
continuous probability measures for which the normalized (by a numeraire) price
processes are martingales, conditional on any possible future event. The main
di¤erence with the frictionless case is that the martingale measures only need to
be absolutely continuous instead of equivalent (but we need a whole family of
martingale measures). Since the absence of arbitrage opportunity or free lunch is
a weaker condition in the presence of �xed trading costs than in the frictionless
case, this result will allow future research to consider a wider class of models.
The transaction costs are assumed to be �xed in the sense that they are bounded
(regardless of the transaction size). This is compatible with �xed brokerage fees,
brokerage arrangements where marginal fees go to zero beyond a given volume (a
common arrangement in the industry), �xed investment taxes to gain access to
a market, operational and processing costs, �xed costs involved in setting up an
o¢ ce and information technology, and the opportunity cost of looking at a market
or of doing a speci�c trade. We also show that the only arbitrage free pricing rules
on the set of attainable contingent claims are those that are equal to the sum of
an expected value with respect to any absolutely continuous martingale measure
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and of a bounded �xed cost functional. Moreover, these pricing rules are the only
ones to be viable as models of economic equilibrium, i.e. such that there exist
some rational agents who are happy with their initial endowment - and hence for
whom supply is equal to demand.
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Appendix

Proof of Proposition 1 We will write EAO for existence of an arbitrage
opportunity and NAO for no arbitrage opportunity. We will denote a net gain
arbitrage opportunity with �xed costs by AO3 and a frictionless "-net gain ar-
bitrage opportunity by AO4. We shall prove that the four notions of NAO are
equivalent. We shall treat here the case where the �xed cost does not depend
upon the strategy, the case where the cost depends upon the strategy being an
immediate extension.

1. NAO3 , NAO1: EAO1 ) EAO3 is immediate. EAO3 ) EAO1: we
consider the strategy ~� null before i and outside B such that for all t � i;ê

~�
0

t = �
0
t +

�
�ci � V �i

�
on B and ~�

k

t = �
k
t for all k 6= 0:

It is easy to check that ~� is in Si;B; V ~�i + ci = 0 and V
~�
T � 0; 6= 0 on B.

2. NAO2 , NAO1: EAO1 ) EAO2: we consider the strategy ~� null before i
and outside B such that

~�i = �i and for all t > i

~�
0

t = �0t �
tX

j=i+1

(�j � �j�1) � Zj on B and

~�
k

t = �kt for all k 6= 0.

Then ~� is in W i;B, V ~�T � 0 and as ci > 0, we have V
~�
i < 0 on B. EAO2 )

EAO1: notice that, by considering some B0 � B, one can replace the con-
dition V �i < 0 on B by either the condition �V �i � 0; 6= 0 on B�or by the
condition �there exists a positive real number " such that V �i � �" on B"
because V �i is Fi�measurable. So there exists � � 1 satisfying �V �i � �C
where C =

PT
k=iCk and Ck = sup!2Bck (!) : We consider the strategy ~�

null before i and outside B such that for all t � iê

~�
0

t = ��0t + C �
tX
j=i

cj and

~�
k

t = ��kt for all k 6= 0:

Then ~� is in Si;B and satis�es V ~�i + ci = �V
�
i + C � 0 on B; V

~�
T � 0:
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3. NAO2 , NAO4: EAO2 ) EAO4 is easy with the technical remark made
for the proof of EAO2 ) EAO1. EAO4 ) EAO2: we consider the strategy
~� null before i and outside B and such that for all t � iê

~�
0

t = �0t � V �i � "=2 on B and
~�
k

t = �kt for all k 6= 0 :

Then ~� is in W i;B and satis�es V ~�i = �("=2) < 0 on B. We have V ~�T = 0

outside B; and V ~�T 1B = (V
~�
T � V

~�
i )1B + V

~�
i 1B = (V

�
T � V �i )1B� ("=2)1B so

V
~�
T � "=2 on B and V

~�
T � 0.�

Proof of Proposition 2 We adopt the same notations as in the proof of
Proposition 1.

1. NFL3 , NFL1: We shall treat here the case where the �xed cost does
not depend upon the strategy. The case where the cost depends upon the
strategy is an immediate extension, replacing ci with c�

n

i each time it is
needed. EFL1 ) EFL3: There exists a sequence (�

n)n�0 in S
i;B for which

V �
n

T �
�
V �

n

i + ci
�
� xn + (kni � ci) that converges to x + (ki � ci) � 0; 6= 0.

For EFL3 ) EFL1, we consider the sequence ~� of strategies ~�
n
null before

i and outside B such that for all n in N; for all t � iê

(~�
n
)0t = (�n)0t +

�
�ci � V �

n

i

�
on B and

(~�
n
)kt = (�n)kt for all k 6= 0

It is then easy to check that for all n in N; ~�
n
is in Si;B, V ~�

n

i + ci = 0 and
V
~�
n

T = V �
n

T �
�
V �

n

i + ci
�
� xn ! x � 0; 6= 0 on B.

2. NFL2 , NFL4: EFL2 ) EFL4 is immediate since we can indi¤erently
assume r � 0; 6= 0 or r > 0 or there exists a positive real number " such
that r � " by considering for all n in N the random variables ~rn = rn1r>0
and r̂n = rn1r�"; and the following corresponding strategies ~�

n
and �̂n such

that for all t; ~�
n

t = �
n
t 1r>0; �̂

n

t = �
n
t 1r�". For EFL4 ) EFL2; we consider

the sequence ~� of strategies ~�
n
null before i and outside B and such that for

all n in N; for all t � i;ê

(~�
n
)0t = (�n)0t � V �

n

i � "=2 on B and
(~�
n
)kt = (�n)kt for all k 6= 0:
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Then for all n inN , ~�
n
is inW i;B and satis�es (V ~�

n

T �V
~�
n

i )1B = (V
�n

T �V �
n

i )1B
so V ~�

n

T � xn ! "=2 on B: As V ~�
n

i = �"=2 < 0 on B and V ~�
n

T = 0 outside
B, this completes the proof.

Proof of Corollary 1 immediate using Proposition 2.

Proof of Lemma 1

1. For NFL2 ) NFL1, we prove the implication NFL2 ) NFL3, which is
immediate using the fact that ci > 0 (or that c�

n

i � ci > 0 in the case where
the cost depends upon the strategy) and changing a strategy belonging to
Si;B into a strategy belonging to W i;B by proceding like in the proof of
proposition 1.

2. Under Assumption A, NFL1 ) NFL2: suppose there is a FL2; in the
form of a sequence (�n)n2N of simple strategies like in De�nition 4. As we
have seen in the proof of Proposition 2, we can indi¤erently assume that
r � 0; 6= 0 or r > 0 or there exists a positive real number " such that
r � " by considering for all n in N the random variables ~rn = rn1r>0 and
r̂n = rn1r�"; and the following corresponding strategies ~�

n
and �̂n such that

for all t; ~�
n

t = �
n
t 1r>0; �̂

n

t = �
n
t 1r�". So there exists a real number � � 1 such

that �r � C where C denotes the real number in the additional Assumption
A: We consider a sequence ~� of strategies ~�

n
such that

~�
n
is in Si;B

(~�
n
)kt = �(�n)kt for all k 6= 0 and for all t � i

(~�
n
)0i = �(�n)0i + C � ci:

We then have for all n;

V
~�
n

i = �V �
n

i + C � ci

so V ~�
n

i + (�rn�C + ci) � 0 with (�rn�C + ci)� ci ! �r�C � 0:We can
choose ~� such that for all nê

V
~�
n

T � �V �ni � �xn with �xn ! �x � 0

so the sequence ~� constitutes a free lunch with �xed costs.
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3. NAsFL, NFL2: EFL2 ) EAsFL: here again, we can assume that r is
(strictly) greater than some positive real number " on B. The �xed cost at
each date is supposed to be bounded (ct < Ct in the case where the �xed
cost does not depend on the strategy and c�t < Ct in the case where the �xed
cost depends upon the strategy). Then for all n, there exists �n such that
�n" is greater than the cumulative �xed costs of any simple strategy with
the same trading dates as �n so that for all n, there exists a strategy ~�n in
Si;B for which

V
~�
n

i = �nV
�n

i + �n"� c�n�
n

i

V
~�
n

T � �nV
�n

T � �nxn.

We get

V
~�
n

i

�n
= V �

n

i + "� c
�n�

n

i

�n
� �rn + "! �r + " > 0

V
~�
n

T

�n
� xn ! x

EAsFL ) EFL2: by investing at each date the �xed cost in the riskless
asset, we obtain a sequence (~�

n
)n�0 of strategies in W i;B. Letting for all n,

�0n := �n

�n
, we obtain a sequence (�0n)n�0 of strategies in W

i;B such that

V �
0n

i � �kn ! �k < 0 on B
V �

0n

T � xn ! x � 0

Proof of Theorem 1 First notice that the existence of such a family of prob-
ability measures is equivalent to the existence of a family of random variables
denoted by gi;B in L1 (
; F; P ) satisfying gi;B � 0; 6= 0 on B and such that for all
(s; t) with i � s � t and for all A in Fs; E

�
gi;BZt1A\B

�
= E

�
gi;BZs1A\B

�
: the

equivalence is easily obtained by taking gi;B = dP i;B=dP and by de�ning P i;B by

P i;B (A) =
E
�
gi;B1A\B

�
E [gi;B1B]

for all A in Fs:

1) Assume �rst the existence of such a family of martingale measures and of a
sequence (�n)n2N of strategies such that there exist i in T and B in Fi for which
for all n, �n is in W i;B. Let

�
i = tn0 ; t

n
1 ; :::; t

n
Nn
= T

�
denote the trading dates of
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the simple strategy �n. Then using the de�nition of V �
n
, the fact that �n is a

frictionless self �nancing strategy, the martingale property of P i;B and the fact
that �n is null outside B, we have for all n;

EP
i;B �

V �
n

T j Fi
�
= EP

i;B

[�nT � ZT j Fi]

= EP
i;B
h
�ntnNn�1

� ZT j Fi
i

= EP
i;B
h
�ntnNn�1

� EP i;B
h
ZT j FtnNn�1

i
j Fi
i

= EP
i;B
h
V �

n

tnNn�1
j Fi
i

so that for all n,

EP
i;B �

V �
n

T j Fi
�
= ::: = EP

i;B �
V �

n

i j Fi
�
= V �

n

i on B a:s: P i;B

and
EP

i;B �
(V �

n

T � V �ni )1B j Fi
�
= 0:

Then for all A in Fi; for all n in N , E
�
gi;B(V �

n

T � V �ni )1B\A
�
= 0. Now it is

impossible to have V �
n

T �V �ni � xn with xn!L1x � " on B because this would lead
to 0 = E

�
gi;B(V �

n

T � V �ni )1B
�
� E

�
gi;Bxn1B

�
and E

�
gi;Bxn1B

�
! E

�
gi;Bx1B

�
>

0 -because gi;B is assumed to be bounded-: there exists no frictionless "-net gain
free lunch, which using proposition 2, completes the proof of the �rst implication.

2) Conversely, assume there exists no frictionless strong free lunch. As we have
seen in corollary 1, if Ci;B = Ki;B � L1+ and

AB =
�
f 2 L1+;9" > 0 such that f � " on B

	
;

the condition of no frictionless strong free lunch is equivalent to the condition that
for all i in T and for all B in Fi;

Ci;B \ AB = ;:

For each �xed (i; B), we apply a strict separation theorem in L1 (
; F; P ) to the
closed convex set Ci;B and the compact set f1Bg to �nd gi;B in L1 (
; F; P ) and
two real numbers � and � with � < � such that

gi;B jCi;B� � < � <


1B; g

i;B
�
:

The random variable gi;B is bounded from above on Ci;B and therefore on L1�, so
gi;B � 0: As 0 belongs to Ci;B and Ci;B is a convex cone, we can take � = 0: Then
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1B; g

i;B
�
> 0 so gi;B 6= 0 on B. As 0 belongs to L1+; we have gi;B jKi;B� 0 and

we even get the equality because Ki;B is a vector space. For all s � i, for all A
in Fs, we consider for all k in f1; :::; ng, the n -dimensional random variable �s;A;k
2 P s;B given by

�ks;A;k = 1A\B

�ls;A;k = 0 for all l 6= k:

AsKi;B =Lin
�
�s �

�
�Zt � �Zs

�
; �s 2 P s;B; i � s � t

	
, we get that for all k in f0; :::; ng,

for all (s; t) with i � s � t and for all A in Fs, we have

Zkt 1A\B � Zks 1A\B 2 Ki;B.

Then for all (s; t) with i � s � t, for all A in Fs we obtain

E
�
gi;B (Zt � Zs) 1A\B

�
= 0

or E
�
gi;BZt1A\B

�
= E

�
gi;BZs1A\B

�
:

Proof of Theorem 2 1)) 2): see Theorem 1.
2)) 3): consider gi;B = dP i;B=dP:
3) ) 4): let i in T and B in Fi be �xed. We will write g for gi;B and � for
�i;B: We can assume g = 0 outside B. As g � 0; 6= 0 on B; the same is true for
the random variable E [g j Fi] and there exists a positive real number � such that
P (E [g j Fi] � �) > 0: Let A = fE [g j Fi] � �g : Then A belongs to Fi; A � B
and P (A) 6= 0: We de�ne an operator � on RT;B by

� (C) =
E [gC j Fi]
E [g j Fi]

1A for all C 2 RT;B.

The linear operator � is linear, continuous and takes values in Ri;B. If C � 0;
gC � 0 so � is weakly positive. Only the last condition remains to be checked.
Notice �rst that for all i � s � t, E [gZt j Fs] 1A = ZsE [g j Fs] 1A. Now, for

all � in W i;B with trading dates denoted by (i = t0; t1; :::; tN = T ), we have

�
�
V �T
�
=

E [g�T � ZT j Fi]
E [g j Fi]

1A

=
E
�
�TN�1 � E

�
gZT j FTN�1

�
j Fi
�

E [g j Fi]
1A

=
E
h
V �TN�1E

�
g j FTN�1

�
j Fi
i

E [g j Fi]
1A
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so �
�
V �T
�
= �

�
V �TN�1

�
= ::: = V �i 1A:

4) ) 1): consider a sequence (�n)n2N of strategies such that there exist i in
T and B in Fi such that for all n; �

n is in W i;B: For all n in N; we then
have 1A�i;B

�
V �

n

T � V �ni
�
= 0: Now it is impossible to have V �

n

T � V �ni � xn

with xn!L1x � " on B because this would lead to 0 = 1A�
i;B
�
V �

n

T � V �ni
�
�

1A�
i;B (xn) because �i;B is linear and weakly positive; as �i;B is continuous,

1A�
i;B (xn) ! 1A�

i;B (x) � 1A�
i;B ("1A) � "1A because 1A�i;B (1A) = 1A: a

contradiction.

Proof of Theorem 3 1)) 2) is immediate.
2) ) 3): using a strict separation theorem exactly like in the proof of our main
theorem, we get that there exists a random variable Z in L1 (
; F; P ) such that

� 2 K;� 2 L1+ sup
�2K;�2L1+

E [Z (� � �)] < cE [Z1
] .:

As 0 belongs to K; replacing � by a� with a � 0; we get Z � 0: We have Z 6= 0;
because if Z = 0; then cE [Z1
] = 0 and we would get 0 < 0: Taking � = 0; we
obtain sup�2KE [Z�] < cE [Z1
] <1:
3) ) 1): Suppose 1) does not hold; then there exists � in L1; � > 0 such that
for all n in N�; n� is in K � L1+. As n� is in K � L1+, for all n in N�; there is
a sequence (�pn)p2N such that n� = limp �

p
n and for all n; for all p; there is �

p
n in

K satisfying �pn � �pn: Then E [Z�
p
n] � E [Z�pn] and as Z is uniformly bounded,

E [Z�pn]!pE [Zn�] = nE [Z�]!1 so condition 3) is not satis�ed.

Proof of Corollary 2 1) ) 2) is obvious. 2) ) 3) and 3) ) 1) are in the
proof of our main theorem.�
Proof of Proposition 3: we have assumed that there is no arbitrage in the primitive
market, so that if two frictionless self �nancing strategies � and �0 are such that
V �T = V

�0
T , then V

�
0 = V

�0
0 . We de�ne on M a linear functional l given by l

�
V �T
�
=

V �0 . Now it is easy to see that for all B in M ,

lim
�!+1

�s (�B)

�
= lim

�!+1

��s (��B)
�

= l (B)

Since there is no arbitrage, we must have p (B) � �p (�B) so that

��s (�B) � �p (�B) � p (B) � �s (B) ,
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and the price functional p can be written as the sum of a continuous linear func-
tional and a �xed cost, i.e., for all B, p (B) = l (B) + c (B) where c(�B)

�
!�!1 0.

If we assume that p (�x) < � [p (x)], then the �xed cost is positive; moreover,
if we assume that there exists " > 0, such that for a large enough �, p (�x) <
� [p (x)� "], then the �xed cost c is greater than this positive constant ". Notice
that c (B) := p (B)� l (B) � �s (B)� l (B) � C.
Consequently, the fair price p (B) associated with any attainable contingent

claim B is given by
p (B) = EP

�
[B] + a �xed cost

where P � is any absolutely continuous martingale measure.

Proof of Proposition 4 Since � is a sublinear lower semicontinuous functional
de�ned on a vector space, it can be written as the supremum of all continuous
linear functionals lying below it,

� (x) = sup
~l��;~l cont. lin. funct.

~l (x) .

We �rst show that ~l
�
V �T
�
= V �0 for � 2 W 0;
. Since ~l + c lies below the super-

replication price, it satis�es ~l
�
V �T
�
+ c

�
V �T
�
� V �0 +C, so that for all positive real

number �,
~l(V ��T )
�

+
c(V ��T )
�

� V ��0
�
+ C

�
and letting � go to 1, ~l

�
V �T
�
� V �0 . In the

same way, we obtain ~l
�
�V �T

�
� �V �0 , which gives us ~l

�
V �T
�
= V �0 :

It is easy to see that ~l is weakly positive. Indeed, for all B � 0, �s (B) � 0 so
that ~l (B) � 0 and for all B � 0, ~l (B) � 0.
According to (the following) Lemma 4.1, there is a one-to-one correspondence

between absolutely continuous martingale measures with bounded density P � and
weakly positive continuous linear functionals ~l such that ~l

�
V �T
�
= V �0 . The func-

tional � can therefore be written in the form � (x) = supP �2K E
P � [x] where K de-

notes a convex subset of the set of all absolutely continuous martingale measures.

Proof of Lemma 4.1 Let P � be such that for all B in F; P � (B) = p (1B).
As there exists a strategy in W 0;
 with terminal value V �T = 1
 and initial value
V �0 = 1; we have p (1
) = 1; as p is assumed to be weakly positive and sublinear,
P � takes values in [0; 1]; as -according to the remark preceding the lemma- p is
continuous and linear, P � is a probability measure. As p (0) = 0; we get P � << P:
As p is a continuous linear functional on L1 (
; F; P ) ; there exists g in L1 (
; F; P )
such that for all C in L1 (
; F; P ), p (C) = E [gC] : Then EP

�
[C] = E [gC] = p (C)
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so for all strategy � in W 0;
; EP
� �
V �T
�
= p

�
V �T
�
= V �0 so for all (s; t) with s � t;ê

EP
�
[(Zt � Zs) 1A] = 0 for all A in Fs

or Z is a P ��martingale.
Conversely let p be de�ned by p (C) = EP

�
[C] for all C in L1 (
; F; P ) : Then

p is linear, continuous because dP �=dP belongs to L1 (
; F; P ) ; weakly positive
because, as P � is absolutely continuous with respect to P , we have g = dP �=dP �
0. Finally, for all strategy � in W 0;
 , p

�
V �T
�
= EP

� �
V �T
�
= V �0 :

Proof of Theorem 5 (3), (4) is equivalent to (1), (4) for i = 0 and B = 

in Theorem 2.
(2) , (4): (4) ) (2): we take ~rn = rn + " that converges to r + " > 0 and
~xn = xn: (2) ) (4): there is a real number � � 1 such that �r > C: We get
V ��

n

0 + c
�
V ��

n

T

�
� V ��

n

0 + C � C � �~rn with C � �~rn ! C � �r < 0 and
V ��

n

T � �~xn with �~xn ! �x � 0 so that
�
V ��

n

T

�
n2N is a free lunch for (M; p).

(1) , (3): (1) ) (4): suppose there is a free lunch (�n)n2N : we can assume
V �

n

T � ~xn + " for some " > 0; V �
n

0 � �C. Since (r�;m�) is optimal, and r� +
c
�
V �

n+��

T

�
+ V �

n+��

0 � r� + V ��0 + V �
n

0 + C � �c
�
V �

�
T

�
� 0, we have (r�;m�) ��

r�; V �
n+��

T

�
. So for all n, (r�;m�) �

�
r�; ~xn + "+ V �

�
T

�
because � is increasing

and V �
n

T � ~xn + " which gives, using the fact that preferences are continuous,
(r�;m�) � (r�; x+ "+m�): a contradiction.
(3) ) (1): We de�ne � by (r; x) � (r0; x0) , r + � (x) � r0 + � (x0). Then one
can show that � belongs to A and that (0; 0) is optimal.
Proof of Theorem 6 We proceed exactly like in the proof of the previous
theorem.
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