La construction dynamique du sens
Bernard Victorri

To cite this version:


HAL Id: halshs-00139120
https://halshs.archives-ouvertes.fr/halshs-00139120
Submitted on 29 Mar 2007
LA CONSTRUCTION DYNAMIQUE DU SENS

Toute tentative de formalisation de la sémantique linguistique se trouve confrontée à deux problèmes essentiels. D'abord un problème de représentation : comment représenter le sens des unités linguistiques significatives (les "monèmes" de Martinet) et, au-delà, le sens des expressions linguistiques issues de la combinaison de ces unités : syntagmes, énoncés ?

Ensuite un problème de calcul sur ces représentations : comment rendre compte du sens d'une expression linguistique complexe donnée à partir du sens des unités qui la composent ? Ces deux problèmes sont liés : il est clair que le choix d'un mode de représentation du sens des expressions conditionne grandement le choix du type de calcul que l'on peut effectuer pour les combiner, et inversement. Ainsi, dans l'approche des grammaires formelles classiques, il y a un lien évident entre le choix de représentation du sens par des entités logiques (prédicats, opérateurs, formules), et le principe dit de compositionnalité qui régit le calcul du sens, et qui revient à ramener ce calcul, de manière plus ou moins directe, aux règles de composition algébrique entre ces entités logiques. A l'opposé de ces formalismes, on trouve dans les modèles morphodynamiques, inspirés des travaux de René Thom, et qui connaissent aujourd'hui une popularité croissante, une même cohérence entre un cadre de représentation du sens fondé sur la théorie des systèmes dynamiques, et un calcul du sens, qui refuse la compositionnalité classique et s'appuie plutôt sur une interaction dynamique complexe entre tout et parties, souvent directement inspirée de la théorie gestaltiste. C'est sur ce dernier point que notre équipe de recherche travaille depuis plusieurs années, et nous voudrions essayer de montrer ici qu'une certaine conception de ce que l'on appelle le "sens" conduit tout naturellement à une approche gestaltiste et "constructiviste" du calcul du sens d'un énoncé.

1. Sens des mots et sens des énoncés

Toute théorie sémantique se heurte à la difficulté de définir le sens des mots. Comme le disait Benveniste dans un entretien où il cherchait justement à définir la place de la sémantique dans les sciences du langage : « Qu'est-ce que c'est que le sens ? Si on regarde de près, on s'aperçoit que les dictionnaires juxtaposent quantité de choses très disparates. Si nous cherchons à soleil nous trouvons une définition plus ou moins développée de l'astre que l'on appelle ainsi. Si nous cherchons à faire, nous trouverons un douzaine ou une quinzaine de rubriques. Chez Littre, avec les subdivisions il y en a 80. Est-ce que c'est le même sens ? Est-ce que c'est beaucoup de sens ? On ne sait pas. (...) Alors, en général, on dit : l'usage de la langue règle tout ça. Mais nous butons alors sur des questions fondamentales : comment la langue admet-elle cette "polysemie" ? Comment le sens s'organise-t-il ? » (Benveniste E., 1974, p. 20). Le phénomène de la polysémie pose en effet un problème redoutable, parce qu'il est omniprésent dans les langues et que c'est l'un des mécanismes fondamentaux qui donne sa

1. Nous regroupons sous cette appellation des théories aussi diverses que les grammaires syntagmatiques (Gazdar G. et al., 1985 ; Pollard C., Sag I., 1987), les grammaires lexicales fonctionnelles (Kaplan R., Bresnan J., 1982), la grammaire universelle de Montague (Montague R., 1970), ou encore la théorie de la représentation du discours de Kamp (Kamp H., 1984), etc.


spécificité au langage en tant que tel et qui permet en particulier l'évolution créatrice des langues. Il est clair que toute tentative de modélisation doit d'abord répondre à la première question de Benveniste : faut-il associer à une expression polysémique un seul et même sens, ou une liste de sens ? avant de pouvoir répondre à la seconde : comment le sens s'organise-t-il ?

L'unicité du sens est défendue par un certain nombre de linguistes, qui rejettent alors dans le domaine de la référence la diversité des "effets de sens". Ainsi Michel Launay, comparant les deux phrases suivantes (Launay M., 1986):

(a) *L'homme n'est qu'un roseau pensant.*
(b) *L'homme arriva exténué.*

soutient que le jugement de sens commun, qui attribue au segment *l'homme* des sens différents dans les deux phrases ("l'être humain en général" dans (a), et "l'individu x de sexe masculin" dans (b)), est un leurre. De fait, il peut paraître curieux d'attribuer au seul segment invariant de ces deux énoncés des différences de sens qui sont dues de toute évidence aux différences des co-textes, et plus généralement des contextes, dans lesquels ce segment est inséré. D'où l'idée d'attribuer à *l'homme* dans (a) et (b) un même sens (une même "signification", dans la terminologie de l'auteur) et des références différentes, ces références étant le résultat d'un calcul portant sur l'ensemble de l'énoncé. Dans le même esprit, quand Michel Launay compare :

(a) *L'homme n'est qu'un roseau pensant.*
(b) *Un homme n'est qu'un roseau pensant.*

il attribue à *l'homme* de (a) et à *un homme* de (c) des significations différentes et une même référence ; ces deux énoncés, bien qu'affirmant la même assertion, ne l'expriment pas de la même manière, et cette différence d'expression est significative.

A l'opposé, les approches logistiques du sens n'auront aucun scrupule à déclarer que les phrases (a) et (c) sont parfaitement synonymes, le sens des deux articles *le* et *un* étant dans ce cas représenté par le même quantificateur universel, tandis que dans (b), le sens de *le* sera cette fois représenté par le quantificateur existentiel. De même, le sens de *homme* sera dans (a) et (c) représenté par un prédicat du type HUMAIN(x), alors que dans (b), il le sera par la conjonction de deux prédicats HUMAIN(x) et MASCULIN(x), si l'on adopte le formalisme le plus répandu, à savoir une description des éléments lexicaux en termes de combinaison de traits sémantiques (sèmes). Ainsi à chaque mot de la langue est associée une liste de sens possibles parmi lesquels on doit choisir celui qui convient dans un emploi contextuel donné.

A vrai dire, aucune de ces deux réponses à la question de Benveniste n'est complètement satisfaisante. La seconde, d'une certaine manière, fait fi de la langue : pour rester dans notre exemple, les articles *le* et *un* pouvant l'un comme l'autre être employés comme déterminants génériques ou spécifiques, vont se voir associer la même liste de sens, en l'occurrence les deux quantificateurs de la logique classique4, ce qui ne correspond évidemment pas à la réalité linguistique de ces deux articles qui s'opposent dans le système de la langue, même si cette opposition ne se laisse pas décrire en termes de logique formelle5. Quant à la première réponse, elle semble repousser le problème plutôt que de le résoudre : en effet, s'il est vrai que seul un calcul global (tenant compte de l'ensemble de l'énoncé) permet de différencier les deux emplois de *l'homme* dans les exemples (a) et (b), on ne voit pas pourquoi ce calcul devrait être référentiel : il s'agit bien du sens de l'expression, et non pas de sa référence. Dans le processus d'interprétation de l'exemple (b) en particulier, on peut clairement distinguer deux

---

4. Remplacer la logique classique par des variantes plus "modernes", comme les logiques non monotones (avec règles de défaut) ou les logiques flous, ne change rien d'essentiel à l'argument présenté ici, même si cela améliore sensiblement par ailleurs la représentation des valeurs génériques des articles en question.

opérations de nature différente : l'une qui consiste à déterminer qu'il s'agit de l'acception spécifique de l'article *le*, et l'autre qui consiste à identifier de quel individu du sexe masculin il s'agit. Autant la deuxième de ces opérations réclame un calcul référentiel, autant la première semble plutôt rester dans le domaine du sens et non de la référence.

Il faut donc prendre en compte à la fois le fait que chaque forme linguistique possède une unicité et une spécificité - une individualité, serait-on tenté de dire - qui imposent leur marque dans tout énoncé qui contient cette forme, et le fait que la plupart des formes (les cas de monosémie pure existent, mais ne sont pas fréquents) possèdent aussi une capacité, un potentiel d'exprimer une pluralité de sens, suivant les énoncés dans lesquels elles se trouvent.

On est donc naturellement amené à abandonner toute réponse simpliste à la question de Benveniste pour privilégier une conception dynamique du sens, en associant à chaque unité linguistique un noyau de sens unique, attaché à la forme lexicale (le "signifié de puissance" des guillaumiens), capable de prendre, en fonction des éléments co-textuels qui l'entourent et de leur agencement, des valeurs plus ou moins éloignées les unes des autres, suivant le degré de polysémie de l'unité linguistique en question.

Dans cette conception, la définition même du sens est donc étroitement liée à la manière dont les unités linguistiques interagissent dans un énoncé, autrement dit, à la façon dont le sens s'organise, pour reprendre l'expression de Benveniste. L'image qui se dégage (Victorri B., Fuchs C., 1992) est celle d'un double mouvement entre l'énoncé, considéré comme un tout, et chacun de ses constituants. En effet, on peut définir le noyau de sens d'un constituant comme étant l'apport de ce constituant à tout énoncé qui le contient et, en retour, considérer que le sens de ce constituant va être en partie déterminé par l'énoncé dans lequel il se trouve. En résumé, le sens d'une expression linguistique est le résultat de l'interaction d'une qualité propre de cette expression, son noyau de sens, que l'on peut aussi appeler son "potentiel sémantique", avec les expressions co-textuelles. C'est le mécanisme de cette interaction que nous appelons le "sémantisme" de l'expression, et c'est la mise en œuvre de ce mécanisme dans un énoncé donné qui constitue la construction dynamique du sens de l'expression. Ainsi, dans cette conception, le sens d'une expression, dans un énoncé donné, apparaît comme le résultat d'un processus : il n'est pas sélectionné, filtré dans une liste de sens donnée à priori, mais il est au contraire construit, créé, dans une interaction spécifique à chaque nouvel énoncé.

Comme nous l'avons déjà signalé plus haut, il faut distinguer soigneusement ce processus d'un autre, que l'on peut appeler processus d'interprétation, et qui consiste à découvrir la fonction qu'exerce un énoncé donné dans une situation d'énonciation donnée : c'est au cours de ce deuxième processus que se déterminent les valeurs référentielles des différents constituants de l'énoncé. Ce deuxième processus dépend donc à la fois du sens de l'expression et des conditions d'énonciation, c'est-à-dire de l'occurrence précise de l'énoncé en question : il est donc lié à l'énoncé en tant que signe-occurrence (le *sinsigne* ou signe-token de Peirce), alors que le sens de l'expression dépend de l'énoncé en tant que signe-type (le *legisigne* de Peirce). Ainsi, de la même manière que le noyau de sens de l'expression peut être défini comme un potentiel de sens, capable d'interagir dans un énoncé-type avec le co-texte pour construire un sens, ce sens peut à son tour être vu comme un potentiel de références, capable d'interagir dans un énoncé-occurrence donné avec le contexte énonciatif pour construire une référence.

---

6. Il faut noter d'abord que Launay est amené, à partir de considérations de ce type, à distinguer "rèférence conceptuel" et "rèférence expérènciel", et à indiquer la parenté de cette distinction avec celle que fait Milner entre "rèférence virtuelle" et "rèférence actuelle" ; ce dernier (Milner J.-C., 1982, p. 10, note 1) rapproche à son tour cette distinction de l'opposition *Sinn*/*Bedeutung* de Frege. Or c'est bien une distinction de ce genre que nous voulons marquer entre ce que nous appelons sens et référence.

7. En fait, il ne serait pas absurde de l'appeler tout simplement le signifié de cette expression ; en effet, il est, par définition même, attaché au signe de manière indissociable, au même titre que son signifiant, ce qui correspond bien à la notion saussurienne de signifié.
En somme, nous plaçons le sens linguistique du côté des invariants de l'énoncé en tant que structure linguistique indépendante de l'hic et nunc de la parole, et nous plaçons la référence du côté de la fonction qu'une occurrence donnée d'un énoncé joue dans une situation où cet énoncé est procléré, situation qui est toujours nouvelle et différente des précédentes occasions où le même énoncé a pu être exprimé.

2. Une analogie : la conformation des protéines

Il existe dans les sciences dites "dures" un phénomène qui présente de nombreuses similitudes avec ce processus de construction du sens, et qui va nous servir de support analogique pour présenter le type de modélisation que nous proposons. Il s'agit de la conformation des protéines. On sait qu'une protéine est une longue chaîne linéaire d'acides aminés, formant ce que l'on appelle sa structure primaire, mais que le ou les rôles fonctionnels qu'elle peut jouer sont déterminés par la manière dont cette chaîne se replie dans l'espace, lui donnant une forme tridimensionnelle, sa structure tertiaire, qui conditionne les réactions chimiques dans lesquelles elle est impliquée. L'extraordinaire diversité de ces protéines, qui fonde toute la complexité du métabolisme des organismes vivants, ne provient pas de la variété de leurs composants (il n'y a que vingt acides aminés qui entrent dans leur composition), mais de la variété de leurs combinaisons : des séquences d'acides aminés forment localement des structures dites secondaires (en hélices, en feuillets, etc.) et interagissent à plus longue distance sur la chaîne de diverses manières (liaisons hydrogène, ponts disulfures, etc.) pour donner à la protéine sa conformation active. Ainsi, de la même manière que le sens linguistique d'un énoncé-type se construit dans les interactions syntaxico-sémantiques locales ou distantes entre les éléments de la chaîne qui le constitue, la structure tertiaire de la protéine est le résultat d'un processus dynamique, régi cette fois par des lois physico-chimiques. Et de même qu'à un même énoncé-type correspondent des énoncés-token qui jouent des rôles différents dans différentes conditions d'énonciation, "l'expression" (c'est le terme utilisé par les biologistes) d'une même protéine dans des environnements différents peut produire des effets différents, parfois même opposés : ainsi une même protéine peut-elle catalyser deux réactions chimiques inverses selon les métabolites en présence, un peu comme un énoncé tel que C'est fou ce que vous êtes aimable peut, suivant le contexte, être interprété comme un compliment ou une raillerie. Cette analogie peut être poursuivie dans plusieurs directions : on peut par exemple mettre en parallèle l'évolution biologique des espèces, dont on peut suivre la trace dans la parenté des protéines d'espèces voisines, et l'évolution des langues, perceptibles dans les similitudes des productions de langues de même famille.

Mais ce qui va nous intéresser ici, c'est d'utiliser cette analogie pour concevoir notre modèle de construction dynamique du sens. En effet, dans le cas des protéines, les lois physico-chimiques permettent de modéliser le processus de construction de la structure tertiaire à partir de la donnée de la séquence des acides aminés. Si la chaîne polypeptidique qui forme l'ossature de la protéine peut se replier en tous sens dans l'espace, c'est parce que sa structure chimique lui permet de tourner sur elle-même localement, en chaque point de rattachement.


9. Cette analogie, comme toute analogie, a aussi ses limites : ainsi, il n'existe rien de semblable dans l'organisation structurale des protéines à ce que l'on désigne par la "double articulation" du langage, qui correspond au fait que les unités significatives (monèmes) sont à leur tour segmentables sur la chaîne parée en unités de plus bas niveau, les phonèmes. À ce sujet, il ne faut pas confondre l'analogue développée ici avec celle, plus classique, qui compare au langage le code génétique lui-même, pour lequel on a pu parler de double articulation : en fait, du point de vue qui nous intéresse ici, cette comparaison semble moins pertinente, le code génétique étant avant tout un système de transcription, permettant de passer d'une structure de chaîne (l'ADN et l'ARN, composés de nucléotides) à une autre structure de chaîne (les protéines).
d'un acide aminé. Ainsi, si une protéine possède \( n \) acides aminés, elle possède \( n \) degrés de liberté correspondant à ces \( n \) rotations locales, et toute valeur des \( n \) angles de rotation détermine une forme particulière de la protéine. Bien entendu toutes ces formes ne sont pas stables ni même spatialement possibles : à cause des forces d'interaction et des contraintes de non recouvrement entre acides aminés, seules quelques-unes de ces formes vont constituer des "bonnes formes", au sens où elles minimisent l'énergie globale définie par l'ensemble de ces interactions. Pour modéliser le processus de conformation des protéines, il faut donc considérer la variété à \( n \) dimensions représentant les \( n \) degrés de liberté du système : chaque forme de la protéine est représentée sur cette variété par un point auquel est associée une valeur de l'énergie globale, et le repliement de la protéine correspond au parcours d'une trajectoire de la dynamique créée sur cette variété par la fonction énergie\(^{10}\), la bonne forme de la protéine correspondant à un attracteur de cette dynamique.

De fait, ce modèle reste avant tout théorique : la moindre des protéines comportant plusieurs centaines, voire plusieurs milliers d'acides aminés, il est hors de question de calculer la fonction énergie correspondante. Dans la pratique, les biologistes ne sont pas plus avancés que les linguistes : pour étudier le rôle de telle séquence d'acides aminés dans la forme globale de telle protéine, ils doivent, comme les linguistes, procéder par substitutions, insertions, suppressions de segments et observer les modifications correspondantes de la molécule et de ses fonctions. Mais il n'en reste pas moins que l'existence de cette fonction énergie, et la connaissance de la nature des interactions entre séquences donnent un cadre solide dans lequel peuvent être interprétés les résultats de leurs observations.

### 3. Un modèle de construction du sens

Si l'on veut se doter d'un cadre analogue en linguistique, on est amené à concevoir un modèle dans lequel on associe à tout élément polysémique des degrés de liberté qui correspondent à la diversité des sens qu'il peut prendre, et à représenter le processus de construction du sens de l'énoncé par une dynamique sur l'espace constitué à partir de l'ensemble des degrés de liberté des éléments polysémiques qu'il contient. Plus précisément, il s'agit d'associer à toute unité linguistique une variété, que l'on appelle son "espace sémantique", dont chaque point représente un sens possible de l'élément. Si l'unité est monosémique, l'espace sémantique associé se réduit donc lui-même à un point. On considère alors pour un énoncé donné la variété obtenue en faisant le produit cartésien des espaces sémantiques des unités qui le composent, et l'on définit sur cette variété produit une dynamique globale, qui est la résultante des interactions entre les unités présentes dans l'énoncé. Le sens de l'énoncé est alors un attracteur de cette dynamique, dont les projections sur les espaces sémantiques des unités définissent le sens précis de chaque unité dans cet énoncé.

Ainsi peut-on trouver dans ce modèle la relation gestaltiste entre tout et parties : chaque unité contribue, par son noyau de sens et sa position sur la chaîne, à la dynamique globale, et en retour le sens de chaque expression polysémique est déterminé par cette dynamique globale. Le modèle traduit donc fidèlement l'image que nous évoquions plus haut d'un double mouvement entre le sens de l'énoncé et le sens de chacun de ses constituants. Il permet aussi de rendre compte du "couplage" que l'on observe souvent entre les valeurs de plusieurs unités polysémiques dans un même énoncé. Pour reprendre l'un des exemples présentés plus haut,

---

10. En fait, ce modèle simplifie considérablement la réalité : le repliement des protéines in vivo est un processus complexe encore mal éclairé, comportant plusieurs étapes (en particulier la "maturation" des protéines dans l'appareil de Golgi, qui "guide" l'obtention de la forme active). Notons par ailleurs qu'une protéine à l'état "natif" peut avoir plusieurs "bonnes formes" (minima locaux de la fonction énergie), ce que l'on peut mettre en parallèle avec ces énoncés globalement ambigus qui constituent des exemples classiques en traitement automatique : Il a aperçu le voleur avec des jumelles, L'école de commerce de jeunes filles, etc.
dans l'énoncé :
(a) *L'homme n'est qu'un roseau pensant.*

il y a une relation étroite entre la valeur de générlicité du déterminant *le* et la valeur de "présent de propriété" (temporel) du temps verbal, comme le montre l'opposition avec :
(b) *L'homme arrive exténué.*

ou le déterminant est cette fois-ci spécifique, en même temps que le temps verbal prend la valeur d'un présent de situation. Visiblement il y a co-détermination des sens du déterminant et du temps verbal, sans que l'on puisse faire dériver l'un de l'autre en toutes circonstances. Ce type d'affinité "transcatégorielles", qu'il est difficile de prendre en compte dans les approches compositionnelles, apparaissent ici comme parfaitement justifiables : il est normal en effet que l'on observe au sein de la dynamique globale des couplages dus à des interactions fortes entre certains éléments, qui peuvent provenir soit de contiguités sur la chaîne (syntagmes isolables du reste de l'énoncé), soit de proximités sémantiques relativement indépendantes de la position.

Si ce modèle donne donc à la polysémie la place centrale qu'elle mérite, il réclame, pour être d'une quelconque utilité, que l'on soit capable de construire effectivement ces variétés associées aux unités. En effet, même si l'on renonce, comme dans l'étude des protéines, à une calculabilité complète des dynamiques globales associées aux énoncés, il faut au moins maîtriser la structure locale des données pour pouvoir étudier l'effet des interactions entre ces données dans le cadre du modèle.

Nous avons donc tenté de définir une méthodologie de construction de l'espace sémantique associé à une expression polysémique (Victorri B., Fuchs C., 1992). Sans entrer dans les détails ici, disons qu'il s'agit de systématiser le travail de comparaison et de classification qu'opère le linguiste quand il étudie les divers emplois d'une même expression. Nous émettons l'hypothèse que ce traitement minutieux qui consiste à rapprocher des exemples issus de corpus, à les ordonner et à les regrouper (en accordant une importance particulière aux exemples intermédiaires, difficilement classables) est regi par trois types de jugements : jugements de proximité, de repérage et de recouplement. Ces jugements sont relatifs : on les obtient en comparant le sens de l'expression étudiée dans plusieurs énoncés. Les jugements de proximité consistent à estimer que le sens de l'expression dans un énoncé E1 est plus proche de celui qu'on observe dans un autre énoncé E2 que celui qu'on lui attribue dans un troisième énoncé E3. Les jugements de repérage consistent à évaluer que le sens de l'expression dans un énoncé E1 est intermédiaire entre ceux que l'on observe dans les énoncés E2 et E3. Quant aux jugements de recouplement, ils consistent à reconnaître que les sens de l'expression dans deux énoncés différents sont en partie identiques, même s'ils ne sont pas complètement équivalents.

Nous montrons alors qu'à ces trois types de jugement correspondent des caractérisations topologiques et géométriques de régions d'un espace qui permettent effectivement de déduire la structure de cet espace. Les jugements de proximité confèrent en effet une structure topologique à cet espace, les jugements de repérage conduisent à dégager des structures linéaires dans cet espace, caractérisées par les variations de paramètres indépendants (ce qui permet d'en déduire la dimension de l'espace), et enfin les jugements de recouplement montrent que chaque sens doit être représenté comme une région de l'espace, plutôt que comme un point.

En appliquant cette méthode à titre d'illustration à l'adverbe *encore*, nous obtenons un espace sémantique à trois dimensions, chaque dimension correspondant à un paramètre qui s'instancie lors de tout emploi de *encore* en fonction du co-texte. Ces trois paramètres caractérisent, d'une certaine manière, la partie variable du sens de *encore*, qui complète obligatoirement la partie fixe, toujours présente, qui n'est autre que le noyau de sens de cette unité. On trouvera dans Victorri B., Fuchs C., 1992, une caractérisation précise de ce noyau de sens, ainsi qu'une description précise des trois paramètres et donc de la structure mathématique de l'espace.
sémantique associé.
On peut ainsi représenter les différents sens de encore par des régions dans cet espace, la taille et la forme des régions caractérisant les différents cas de figure possibles :
- valeurs typiques (petites régions centrées sur des points privilégiés de l'espace) : 'duratif (Le soleil brille encore à l'horizon), 'répétitif (Il a encore fait une bêtise), 'notionnel' (Un pingouin, c'est encore un oiseau), 'supplément quantitatif (Encore un peu de café ?), 'renchérissement (Elle est encore plus grande que sa soeur), 'modal (encore que..., et encore, C'est encore elle la plus grande des deux, etc.)
- valeurs intermédiaires ou indéterminations (régions plus vastes pouvant englober plusieurs valeurs typiques) : mixte entre 'duratif et 'quantitatif (Il a encore du chemin à parcourir), entre 'notionnel', 'répétitif et 'quantitatif (C'est encore de la bouillie pour les chats!), etc.
- enfin, ambiguïtés-alternatives (régions constituées d'au moins deux composantes connexes) : entre 'duratif et 'répétitif (Il est encore assoupi), entre 'renchérissement et 'modal (Il lui préfère encore sa soeur), etc.
Dans chacun de ces cas, on peut définir des intervalles de variation des trois paramètres qui caractérisent la région de l'espace sémantique occupée par le sens de encore. On a donc bien obtenu une représentation dans laquelle toutes les interactions d'une unité polysémique avec son co-texte peuvent effectivement être ramenées à l'évolution d'un petit nombre de paramètres, ces degrés de liberté à partir desquels pourrait être conçue la dynamique globale déterminant le sens d'un énoncé.

4. Un modèle partiel opératoire
Si l'on admet que l'on puisse ainsi construire les espaces sémantiques des unités linguistiques, il reste à savoir si l'on peut rendre ce modèle opératoire, c'est-à-dire si l'on peut effectivement calculer le sens que prendra telle expression dans tel énoncé. Cette préoccupation, qui a été la nôtre depuis le début de nos travaux, puisque nous avions en tête la réalisation d'outils informatiques utilisables en traitement automatique de la langue, nous a conduit (Victorri B., 1988) à proposer un modèle partiel, qui conserve l'esprit du modèle général présenté ici, tout en le simplifiant suffisamment pour le rendre implémentable. L'idée était de nous focaliser sur une unité polysémique, et de considérer que les interactions avec le reste de l'énoncé induisaient une dynamique restreinte à l'espace sémantique de cette unité. Plus précisément, ce modèle repose sur les éléments suivants :
- A toute expression polysémique, on associe deux espaces, munis d'une structure de variété différentielle¹¹ : l'espace I des indices co-textuels et l'espace sémantique S.
- On appelle modèle sémantique de l'expression considérée la donnée de ces deux espaces I et S, et d'une application F, suffisamment régulière¹², de I dans l'espace des champs de vecteurs sur S : tout point p de I définit une dynamique F(p) sur S.
- On appelle cas de figure interprétatif une forme de dynamique sur S, caractérisée par le nombre et l'agencement de ses bassins d'attracteurs. Dire que l'expression est polysémique, c'est dire qu'il existe plusieurs cas de figure distincts suivant la région de I dans laquelle se

¹¹. Pour une justification du choix d'une structure de variété différentielle, en particulier la discussion discrét/continu, voir Victorri B., 1988. En particulier, il peut paraître curieux de représenter les indices co-textuels, qui sont des marques linguistiques par nature discrète (à l'exception notable de l'intonation) par des variables continues. En fait, plonger ces phénomènes discrets dans un espace continu permet d'une part de rendre compte aisément des notions intuitives de proximité et de changements graduels du sens qui sont le plus souvent la conséquence de légères modifications d'indices, et constitue d'autre part le seul moyen de différencier qualitativement ces glissements progressifs des véritables discontinuités de sens qui apparaissent parfois, lorsque ces légères modifications provoquent un changement de forme de la dynamique (passage d'un cas de figure interprétatif à un autre, cf. infra).
¹². On trouvera dans Victorri B., 1988, les conditions précises de régularité qu'il faut imposer à F pour que les attracteurs de la dynamique induite soient "structurellement stables" (au sens de R. Thom).
situe le point $p$ caractérisant l'énoncé.
- Étudier le comportement sémantique de l'expression revient alors à caractériser ces différentes régions de $I$ qui conduisent à des cas de figure différents : autrement dit, étudier la correspondance entre les différentes configurations d'indices co-textuels et les différents sens possibles de l'expression.

Nous avons choisi pour implémenter ce modèle mathématique une technique informatique appropriée à la représentation d'un système dynamique : il s'agit des réseaux connexionnistes récurrents. On trouvera le détail de ces travaux informatiques dans Victorri B., Raysz J. P., Konfè A., 1988, ainsi que dans Raysz J. P., 1991, et Konfè A., 1991. En gros, le principe de fonctionnement d'un tel réseau peut se résumer de la manière suivante : on présente en entrée un énoncé contenant l'expression polysémique étudiée ; le système détermine alors la valeur des indices co-textuels présents dans l'énoncé (c'est-à-dire le point $p$ de l'espace $I$ correspondant à l'énoncé) ; ces valeurs d'indices servent à initialiser certaines unités du réseau (les unités d'entrée) ; le jeu des interactions entre toutes les unités du réseau constitue alors une dynamique dont on peut étudier la forme (nombre et agencement des actuateurs) et donc obtenir le cas de figure représentant la signification de l'expression dans l'énoncé donné en entrée.

Un des intérêts majeurs de l'utilisation des réseaux connexionnistes réside dans leur capacité d'apprentissage : concrètement, cela signifie que l'on n'est pas obligé de spécifier a priori la force des interactions entre les unités du réseau (ce que l'on appelle les "poids" des liens entre unités). En effet, ces poids peuvent s'ajuster au cours d'un processus d'apprentissage qui consiste à présenter au réseau des exemples constitués chacun d'un énoncé et de la réponse que l'on veut obtenir : un calcul automatique permet alors de modifier progressivement les poids de façon à ce que la dynamique du réseau fournisse une sortie qui soit la plus proche possible du résultat désiré pour tous les exemples de l'échantillon d'apprentissage. En d'autres termes, le modélisateur n'a pas besoin de donner une formulation explicite de l'application $F$ : il lui suffit de donner, pour un nombre fini de points $p$ convenablement choisis, la forme correspondante de la dynamique $F(p)$. Si le phénomène est suffisamment régulier, le processus d'apprentissage aboutira à la mise en place d'une approximation correcte de cette application $F$. Il faut cependant noter un inconvénient majeur de cette implémentation connexionniste : c'est l'aspect "boîte noire" de ce type de réseaux, qui a été abondamment discuté dans les milieux de l'intelligence artificielle. En effet, même quand l'apprentissage réussit, nous n'avons pas directement accès à une description mathématique (symbolique) de la fonction $F$, ce qui interdit une maîtrise complète du système.

Nous avons appliqué ce système à l'étude de l'adverbe encore, et les résultats globalement satisfaisants obtenus nous ont permis de valider le modèle, et surtout d'en découvrir les limites. En effet, ainsi que nous l'avons vu, dans ce modèle, le co-texte est assimilé à un ensemble d'indices qui paramètrent la dynamique sur l'espace sémantique de l'unité étudiée.

Or, pouvoir considérer les autres unités comme des indices implique que la polysémie qui leur est propre a été d'une certaine manière évacuée, soit que l'expérimentateur ait lui-même désambiguisé ces termes dans un traitement préalable, soit que l'on ait considéré que l'influence de ces unités ne variait pas, quelle que soit la valeur que prennent ces unités dans les énoncés. Aucune de ces deux solutions n'est bien entendu satisfaisante, puisqu'elles ne prennent pas en compte le mécanisme de couplage entre unités dont nous avons souligné plus haut l'importance. En d'autres termes, l'influence des autres unités doit pouvoir évoluer au cours du processus, dans la mesure où ce processus ne consiste pas seulement à déterminer le

13. Nous avons fait quelques efforts pour essayer de caractériser grossièrement cette fonction $F$ (cf. Konfè A., 1988), mais ce problème difficile, que l'on appelle l'extraction de règles dans un système connexionniste, est encore loin d'être résolu de manière satisfaisante.
sens de l'expression étudiée, mais aussi celui des autres unités. Cet obstacle auquel nous nous sommes heurtés lors de nos expérimentations relève en fait d'un phénomène profond. D'une certaine manière, on essaie de "projeter" le processus global de construction du sens sur le sous-espace réduit correspondant à une seule unité. Mais comme on le sait, il n'existe pas en général de moyen canonique d'obtenir une dynamique projetée sur un sous-espace qui respecte les propriétés de la dynamique sur l'espace entier (en particulier, tel que les attracteurs de la dynamique restreinte soient les projections des attracteurs de la dynamique globale). Aussi ce modèle restreint ne pouvait qu'aboutir à la constatation qu'un traitement automatique de la polysémie ne peut faire l'impasse d'une prise en compte, d'une manière ou d'une autre, de la complexité des interactions entre unités polysémiques. C'est dans cette direction que nous poursuivons aujourd'hui nos recherches.

Bibliographie

KLEIBER G., LAZZARO H., 1987, Qu'est-ce qu'un SN générique, ou Les carottes qui poussent ici sont plus grosses que les autres, Recherches Linguistiques, 12.
KONFÉ A., 1991, Extraction de règles dans un réseau connexionniste, application à l'interprétation d'adverbes aspectuels du français, thèse de doctorat, Université de Caen.
LAKOF G., 1987, Women, fine and dangerous things: what categories reveal about the mind, University of Chicago Press.
POLLARD C., SAG I., 1987, Information-based syntax and semantics, Stanford, CSLI.
VICTORRI B., 1988, Modéliser la polysémie, T. A. Informations, 29.