
Joint frailty models for recurring events and death

using maximum penalized likelihood estimation :

application on cancer events

Virginie Rondeau1 , Simone Mathoulin-Pelissier2, Hélène Jacqmin-Gadda1, Véronique
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SUMMARY

The observation of repeated events for subjects in cohort studies could be terminated by

loss to follow-up, end-of-study, or a major failure event such as death. In this context, the

major failure event could be correlated with recurrent events and the usual assumption of

noninformative censoring of the recurrent event process by death, required by most statistical

analyses, can be violated. Recently joint modelling for two survival processes has received

considerable attention because it makes it possible to study the joint evolution over time

of two processes and gives unbiased and efficient parameters. The most commonly used

estimation procedure in the joint models for survival events is the EM algorithm. We show
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how maximum penalized likelihood estimation can be applied to nonparametric estimation

of the continuous hazard functions in a general joint frailty model with right censoring and

delayed entry. The simulation study demonstrates that this semi-parametric approach yields

satisfactory results in this complex setting. As an illustration, such an approach is applied

to a prospective cohort with recurrent events of follicular lymphomas, jointly modelled with

death.

Keywords : joint frailty models, penalized likelihood, cancer, recurrent events

1 Introduction

In many clinical or epidemiological studies, subjects can potentially experience recur-

rent or repeated events. For instance, patients may experience repeated epileptic seizures or

cancer patients may experience recurrent superficial tumors or repeated episodes of hospita-

lization. Statistical models have been proposed to analyze these recurrent event data (Cook

and Lawless, 2002).

Furthermore, the time frame for an individual’s repeated event process may depend on

other ”terminating” events, such as death. Often the recurrence of serious events, such as

tumors and opportunistic infections, is associated with an elevated risk of death. In this

context, the usual assumption of noninformative censoring of the recurrent event process

by death, required by most statistical analyses, can be violated. This dependence should be

accounted for in the joint modelling of recurrent events and deaths.
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The approach we develop in this paper is motivated by a study of patients with follicular

lymphoma (FL) undergoing episodic relapses of FL. Follicular lymphomas (FL) account for

one third of non-Hodgkin lymphomas in adults. The prognosis of FL is heterogenous and

numerous treatments may be proposed (Solal-Céligny et al., 2004). The course of this disease

is usually characterized by a response to initial treatment, followed by relapses, sometimes

associated with high-grade non-Hodgkin lymphomas. After the initial treatment, each patient

was monitored regularly for routine-visits and presence of FL relapses was notified at each

visit. Estimation of the risk of recurrence allows for better planning of follow-up schedules

after diagnosis or first treatment, and permits clinicians to determine therapeutic approaches

based on the patient’s risk of relapse. Furthermore, FL relapses may increase the risk of death.

As a result there is an association between FL relapses process and the survival process,

which precludes the use of standard analyses of recurrent events. Specifically, those subjects

experiencing FL relapses at the highest rate are typically observed for shorter periods of

observation due to mortality. In this work we will thus consider the FL relapses and the

terminal event process jointly, in a joint frailty model setting.

Li and Lagakos (1997) considered the marginal approach of Wei-Lin-Weissfeld (1989).

They assumed the terminating event as a censoring event for each recurrent event, or they

treated the failure time for each recurrence as the first occurrence of the recurring event

or terminating event, whichever came first. However these marginal models do not specify

the dependence between recurrent events and death. Ghosh and Lin (2003) proposed a joint

marginal formulation for the distributions of the recurrent event process and dependent

censoring time.
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Some methods based on counts have been proposed. Lancaster and Intrator (1998) consi-

dered joint parametric modelling of repeated inpatient episodes (via a Poisson model) and

survival time of a panel of patients over 15 months. The model induced a correlation between

hospitalization and death via a person specific, frailty term. Sinha and Maiti (2004) used a

more general joint model for panel-count data and a dependent termination, using a bayesian

approach.

Huang and Wolfe (2002) proposed to take into account the informative censoring in cluste-

red data. Liu et al. (2004) proposed a joint semi-parametric model for the intensity functions

of both recurrent events and death by a shared gamma frailty model. In these models the

frailty effect on recurrent events and death rates is not the same. In those approaches esti-

mation is carried out through a Monte Carlo EM algorithm, which could be time-consuming.

Furthermore, these methods can not be used to correctly estimate hazard functions, which

often have a meaningful interpretation in epidemiological studies. Most of the time, the base-

line intensity estimate is based on Breslow’s estimate leading to a piecewise-constant baseline

hazard function or unspecified baseline hazard function.

In this paper, we propose a non-parametric penalized likelihood method for estimating

hazard functions in a general joint frailty model for recurrent events and terminal events, with

both right censored survival data and delayed entries. This approach is of interest for several

reasons. Firstly, it makes it possible to deal with informative censoring for recurrent event

data, in addition it also allows joint treatment of two processes which evolve with time leading

to more accurate estimates. This work extends previous work by giving smoothed estimates

of the two hazard functions which represent incidence and mortality rates in epidemiology. It
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is natural in epidemiology to impose a continuous hazard function with small local variations.

To analyze recurrent event data, the focus can be placed on time-between-events (ie, gap

times) or time-to-events models (ie, calendar times) (see Duchateau et al., 2003). These two

timescales which are two important aspects of the data can be linked to the semi-Markov

models in which the transition probability between two states depends only on the waiting

times whereas in the non-homogenous Markov models this transition depends only on the

time since inclusion in the study. The proposed approach can deal with both situations and

is illustrated in the article.

The paper is organized as follows. In section 2 we describe the joint frailty model. The

construction of the full penalized log-likelihood is explained in section 3. Results from a

detailed simulation study are reported in section 4. The model is applied to the analysis of

episodic relapses of follicular lymphoma and death in sections 5. Finally, section 6 presents

a concluding discussion.

2 Joint Model for recurrent events and a terminating

event

2.1 The model

We denote for subject i (i = 1, ..., N), Xij the jth recurrent times (j = 1, ..., ni), Ci the

censoring times (not by death) and Di the death times. We first consider Xij as a time to

event. Tij = min(Xij, Ci, Di) corresponds to each follow-up time and δij is a binary indicator
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for recurrent events which is 0 if the observation is censored or if the subject died, and

1 if Xij is observed (δij = I(Tij=Xij) where I() denotes indicator function). Similarly, we

note T ∗
i the last follow-up time for subject i, which is either a time of censoring or a time

of death (T ∗
i = min(Ci, Di)) and δ∗i = I(T ∗

i =Di). What we actually observe is (Tij, δij, δ
∗
i ).

We also use the theory of multivariate counting processes (Andersen et al., 1993 ; Liu and

Wolfe, 2004). Let NR∗

i (t) define the actual number of recurrent events in (0, t] for the ith

individual. Because of censoring, it is impossible to observe NR∗

i (.). Rather we observe the

process NR
i (t) = NR∗

i (min(T ∗
i , t)) which counts the observed number of recurrent events,

which may be less than NR∗

i (t). Similarly, denote by ND
i (t) = I(T ∗

i ≤ t, δ∗i = 1) the observed

death indicator, and ND∗

i (t) = I(Di ≤ t) the actual death indicator. Furthermore, define

Yi(t) = I(T ∗
i ≥ t), the “at-risk” process which indicates whether the subject is still under

observation at time t or not. The number of recurrent events that occurs for subject i

over the small interval [t, t + dt) is dNR∗

i (t) = NR∗

i ((t + dt)−) − NR∗

i (t−) and we have

dNR
i (t) = Yi(t)dNR∗

i (t).

We consider Ft the σ−algebra generated by the whole observed data and the unobserved

frailty ω (defined later), Ft = σ{Yi(u), NR
i (u), ND

i (u), Zi(u), 0 ≤ u ≤ t, ωi, i = 1, ..., n} which

represents process history of subject i up to time t, the filtration is the family (Ft)t≥0 and

with Zi(t) the covariate process.

The following assumptions are made :

1. We assume continuous recurrent, terminating and censoring processes, so that recurrent

events and death cannot happen at the same time. We adopt the convention that death

happens first in the small interval [t, t+dt) . For two subjects in the application study
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who died on the same day as their follicular lymphoma relapse, they only count for

terminal events, not as a recurrent event.

2. NR∗

i (t) is constant after time Di but can increase after Ci. That means death precludes

the observation of new follicular lymphoma relapses but on the contrary censoring (as

lost of follow-up) does not interrupt the occurrence of new relapses, they are simply

not observed.

3. We define Yi(t)ri(t) the intensity of the recurrent events process at time t in the filtra-

tion (Ft)t≥0, given the covariate process, the frailty and the condition Di ≥ t (being

alive just before time t) using

ri(t)dt = dRi(t) = P (dNR∗

i (t) = 1|Zi(t), ωi, Di ≥ t)

We then wish to describe the FL relapse rate among patients currently alive. We

assume as a characterization of the independent censoring : P (dNR
i (t) = 1|Ft−) =

Yi(t)dRi(t) = Yi(t)ri(t)dt.

4. Similarly we define the death intensity process Yi(t)λi(t) at time t, given the covariates,

the frailty using

λi(t)dt = dΛi(t) = P (dND∗

i (t) = 1|Zi(t), ωi, Di ≥ t)

Independent censoring for death then requires : P (dND
i (t) = 1|Ft−) = Yi(t)dΛi(t) =

Yi(t)λi(t)dt.

Following the model of Liu and Wolfe (2004), the joint model for the hazard functions
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for recurrent event (ri(.)) and death (λi(.)) is :





ri(t|ωi) = ωir0(t)exp(β′
1Zi(t)) = ωiri(t)

λi(t|ωi) = ωα
i λ0(t)exp(β′

2Zi(t)) = ωα
i λi(t)

(1)

The effect of the explanatory variables is assumed to be different for recurrent and for

death times. The parameters β1 and β2 are interpretable in terms of the instantaneous proba-

bility of occurrence of the recurrent events and the terminal event, respectively, conditional

on the subject’s past event history and on being alive. The model and the estimation can

deal with external time-dependent covariates in the sense of Kalbfleisch and Prentice (2002,

page 197). The previous number of recurrent events can also be considered as an internal

time-dependent covariate, that requires the survival of the individual for its existence, and

its path thus carries direct information on the time to failure.

The random effects ωi (frailties) are assumed independent. The gamma frailty density is

adopted here with unit mean and variance θ. The dependence between T ∗
i and Tij conditional

on Zi(t) is solely due to the fact that the unobserved ωi affects both the recurrent times and

the death times. The common frailty parameter ωi will take into account the heterogeneity

in the data, associated with unobserved covariates.

In the traditional model, the assumption is that α = 0 in (1), that is λi(t) does not

depend on ωi and thus death (or the terminal event process) is not informative for the

recurrent event rate ri(t), ie, the two rates λi(t) and ri(t) are not associated, conditional on

covariates. When α = 1, the effect of the frailty is identical for the recurrent events and for

the terminating event. When α > 1, the recurrent rate and the death rate are positively

associated ; higher frailty will result in higher risk of recurrence and higher risk of death.
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In the gap timescale formulation, Tij is replaced by Sij = Tij − Tij−1 with Ti0 = 0 for the

recurrent hazard functions and the corresponding joint model is :




ri(s|ωi) = ωir0(s)exp(β′
1Zi(t)) = ωiri(s)

λi(t|ωi) = ωα
i λ0(t)exp(β′

2Zi(t)) = ωα
i λi(t)

2.2 Inference in the joint frailty model

We show the expression of the full log-likelihood for calendar times (or time-to-events)

and explain how to deduce it for gap times (or time-between-events). Using the time-to-

events timescale, it is easy to incorporate time-varying covariates and the likelihood must

incorporate delayed entries. The length of the time-at-risk period is the same for the two

timescales, however, in the calendar time formulation, the start of the at-risk period is not

reset to 0 but to the actual time since entry to the study.

Contrary to the shared gamma-frailty models (Rondeau et al., 2003), the full log-likelihood

of the joint frailty model does not take a simple form because the integrals do not have a

close form. Thus using other distributions for the frailty, such as log-normal or positive stable

will not induce more difficulties. Moreover, Pickles and Crouchley’s (Pickles and Crouchley,

1995) suggest that results should not be sensitive to the choice of the frailty distribution.

We denote φ = (r0(.), λ0(.), β, α, θ). The construction of the log-likelihood is detailed in

appendix 1. We obtain the following expression of the full marginal log-likelihood in the

calendar timescale :

l(φ) =
∑

i

{∑

j

δij log ri(Tij) + δ∗i log λi(T
∗
i ) − log Γ(1/θ) −

1

θ
log θ (2)

+ log

∫ ∞

0

ω(NR
i (T ∗

i )+αδ∗i +1/θ−1) exp

(
−ω

∫ T ∗

i

0

dRi(t) − ωα

∫ T ∗

i

0

dΛi(t) −
ω

θ

)
dω

}
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with Ti0 = 0 and Tini
= T ∗

i (for each subject we assume that the last observation time is a

censoring time or a death time, and not a relapse time), Λi(t) =
∫ t

0
λi(u)∂du the cumulative

hazard function for death, with Λi(.|ω) = ωαΛi(.), Ri(t) =
∫ t

0
ri(u)du the cumulative hazard

function for recurrent events, with Ri(.|ω) = ωRi(.).

In the gap timescale formulation, the likelihood expression is the same except that Tij is

replaced by Sij = Tij − Tij−1 giving the expression :

l(φ) =
∑

i

{∑

j

δij log ri(Sij) + δ∗i log λi(T
∗
i ) − log Γ(1/θ) −

1

θ
log θ

+ log

∫ ∞

0

ω(NR
i (T ∗

i )+αδ∗i +1/θ−1) exp

(
−ω

ni∑

i=1

∫ Sij

0

dRi(s) − ωα

∫ T ∗

i

0

dΛi(t) −
ω

θ

)
dω

}

3 The semi-parametric penalized likelihood approach

We introduced a semi-parametric penalized likelihood approach to estimate the different

parameters β, α, θ and the baseline hazard function r0(t) for recurrent events or λ0(t) for

death times.

In most situations it is reasonable to expect smooth baseline hazard functions, piecewise

constant modelling for the hazard functions being often unrealistic. To introduce such a

priori knowledge, we penalize the likelihood by a term which has large values for rough

functions (O’sullivan, 1988 ; Joly et al., 1998). The roughness penalty function is represented

by the sum of two squared norms of the second derivative of the hazard functions (O’sullivan,

1988). The penalized log-likelihood is thus defined as
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pl(r0(.), λ0(.), β, α, θ) = l(φ) − κ1

∫ ∞

0

r
′′2
0 (t)dt − κ2

∫ ∞

0

λ
′′2
0 (t)dt (3)

where l(λ0(.), β, α, η) is the full log-likelihood defined in (2), and κ ≥ 0, is a positive smoo-

thing parameter which controls the trade-off between the data fit and the smoothness of

the functions. Maximization of (3) defines the maximum penalized likelihood estimators

(MPnLE) r̂0(t), λ̂0(t), β̂, α̂ and θ̂. We directly use Ĥ−1 as a variance estimator, where H

is minus the converged hessian of the penalized log-likelihood. Furthermore, to deal with

the constraint on the variance component (θ > 0) we used a squared transformation and

standard error of θ was computed by the ∆−method (Knight, 2000).

The estimators r̂0(t), λ̂0(.) cannot be calculated explicitly but can be approximated on

a basis of splines. Splines are piecewise polynomial functions that are combined linearly

to approximate a function on an interval. We use cubic M-splines, which are a variant of

cubic B-splines (for more details see Ramsay, 1988). M-splines are nonnegative and easy to

integrate or differentiate. As we use cubic spline (or of order 4), the second derivative of

r or λ is approximated by a linear combination of piecewise polynomial of order 2. This

approximation allows flexible shapes of the hazard functions while reducing the number

of parameters. If we denote r̃(.) an approximation to the MPnLE r̂(.), the approximation

error can be made as small as desired by increasing the number of knots. In our approach,

although there are two different hazard functions (for recurrent events and for death), we

use the same basis of splines for each function but the spline coefficients are different for the

distinct functions.

We have previously shown that to obtain a good estimation of the theoretical hazard
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function, the more knots we used, the closer the MPnLE was to the true hazard function

(Rondeau et al., 2003). The smoothing parameters can be chosen by maximizing a likelihood

cross-validation criterion as in Joly et al. (Joly et al., 1998). Another approach consists in

fixing the number of degrees of freedom to estimate the hazard function, as has been pre-

viously described (Rondeau et al., 2003 ; Gray, 1992). We thus use the relation linking the

model degrees of freedom (mdf) and the smoothing parameter κ to evaluate the smoothing

parameter : mdf = trace

([
Ĥ

]−1

Î

)
(with I the hessian matrix of the log-likelihood compu-

ted at the MPnLE). Indeed, it is easier to specify a number of degrees of freedom to estimate

a given curve, rather than specify a smoothing parameter.

We proposed to directly maximize the observed log-likelihood (3) using a modified robust

Marquardt optimization algorithm (Marquardt, 1963) which is a combination between a

Newton-Raphson algorithm and steepest descent algorithm. This algorithm is more stable

than the Newton-Raphson algorithm (Fletcher, 2000) but preserves its fast convergence

property near the maximum. The integrations in the full log-likelihood expression in (2)

were evaluated using Gaussian quadrature. Laguerre polynomials with 20 points were used

to treat the integration [0,∞).

4 Simulations

A simulation study of the joint frailty model was performed to evaluate the performance

of the estimators and to compare a joint frailty model with a single/reduced frailty model.

In order to investigate the effect of increased sample size on estimator performance, we
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considered two sample sizes with a variable number of subjects and a variable number of

recurrent events by subject. There were 200 or 500 subjects and 1000 simulated dataset for

each case. For each simulation run, the joint frailty model (1) was used. We treated the

right-censored case only and used a calendar timescale representation.

For each subject i :

– we generated the random variables : ωi, i = 1, ..., N, i.i.d. Γ(1/θ; 1/θ) with θ=0.5, the

variance of the random effect.

– a fixed right-censoring variable was used Ci = 0.8 (i=1,...,N).

– we generated an exponential death time Di using λi(t|ωi) = ωα
i λ0(t) exp(β∗

1Z1i) with

λ0(t) = 2.0, δ∗i = 1 if Di < Ci.

– we generated the gap times Xik using ri(t|ωi) = ωir0(t) exp(β1Z1ij + β2Z2ij) with

an exponential r0(t) = 1.0 ; the corresponding observed calendar times are Tij =

min(Ci, Di,
∑j

k=1 Xik), δi = 1 if Tij =
∑j

k=1 Xik with Ti0 = 0. This simulation scheme

is valid since r0(t) is constant.

To summarize, if the observed time is a recurrent event time Tij =
∑j

k=1 Xik and δij = 1

the data generation continues ; if the observed time is a censoring time Tij = Ci, δij = 0 and

T ∗
i = Ci, δ∗i = 0 or if the observed time is a death time Tij = Di, δij = 0 and T ∗

i = Di, δ∗i = 1

the data generation stops.

Death times and recurrent event times have in common only one explanatory variable Z1ij.

The binary explanatory variables Z1ij and Z2ij were generated from a Bernouilli distribution

with P(Z=1)=0.5. We set β1 = 1.0, β2 = −0.5 and β∗
1 = 0.7 . We consider three settings for

α, setting I corresponds to α = 0.5, setting II α = −0.5 and setting III α = 0.
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We used cubic splines to approximate each hazard function. The number of equidistant

knots was 5 for all simulations. For the first replicate of each simulation (i.e., for a given θ and

sample size) we estimated κ using the cross-validation method, the same κ was used for the

other 999 generated datasets. We eliminated the rare cases (less than 5%) when convergence

or numerical problems occurred in the estimation of the parameters.

4.1 Results

The death rate ranges from 27.1% to 49.4%. The average number of observed recurrent

events by subject ranges from 0.60 to 1.52 in the conducted simulation studies with a maxi-

mum fixed of 24. Between 40.5% and 70.0% of the subjects did not have a recurrent event.

The results of simulation studies using a penalized likelihood estimation are summarized in

Tables 1 to 5 of the supplementary material (http ://www.biostatistics.oxfordjournals.org).

The regression coefficients from the joint model were very well estimated in the three settings.

We observe in the first setting (α = 0.5) a bias on the regression coefficients using the simple

shared frailty model instead of the joint model. The bias on the estimates of the variance of

the random effects (θ) was very small in the joint model. In setting II (α = −0.5), i.e. with

a negative association between recurrent events and death, we observed a significant bias

using the simple frailty model (θ̂ = 0.365 with N=500, and θ̂ = 0.359 with N=200). This

demonstrates that ignoring the dependence between the terminal and the recurrent events

can lead to erroneous results. It can be seen that in the three settings for the joint model

α̂ were unbiased. As expected, in all simulations the estimates for the standard errors were

smaller for N=500 than for N=200. In setting III (α = 0) the two models (joint and reduced)
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are valid and give similar results.

We also increased the degree of dependency between the recurrent events and death with

α = 1.0 (results not shown). We observed larger differences between the joint and the reduced

models. The results increasing the number of recurrent events by subject are summarized in

the supplementary material. We obtained a clear improvement in the estimations.

We evaluated the estimation of the survival functions and the hazard functions for the

recurrent events using the Mean Integrated Squared Error (MISE) (Hardle, 1990). More

details and results are described in Table 5 of the supplementary material. We observed

that our penalized likelihood estimation gives good estimates for the survival and hazard

functions. This also illustrates that better estimations are obtained using the joint model

instead of the reduced model.

5 Follicular lymphoma, relapses and death

The scope of our investigation was to estimate a joint model to describe the risk

factors associated with recurrences of follicular lymphomas and death, taking into account the

informative censoring by death. If the death times depend on the recurrent event times it is

necessary to use a joint model to make valid inferences. Another important point was to study

whether the subjects who are at higher risk of FL recurrences tend to be at an elevated risk of

death or inversely at a lower risk of death. This approach allows us to quantify the association

between the recurrent events of FL and death. From 1965 to 2000, 409 patients with follicular

lymphoma (190 males, 46.5%) were monitored at Institut Bergonié, a regional comprehensive

cancer center in South-West France. All the patients were prospectively included by one
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research assistant in a clinical, histological and biologic database. A FL recurrence was

defined as the first clinical sign of FL. Patients came to the hospital for a routine-visit every

4 months for 3 years, every 6 months for 2 years, once a year for 5 years, then every 2 to 3

years. Some other spontaneous inter-visits could take place. The FL recurrence was or was

not detected at each visit.

Information on patient gender, age and number of recurrent events or deaths is given

in Table 1. 249 (60.9%) patients died during the follow-up and 49.1% of subjects did not

have a recurrent event. For two subjects who died on the same day as their recurrence, they

only count for terminal events, not as a recurrent event. The follow-up period thus varied

between 11 days and 30 years. The median follow-up of surviving patients was 9.8 years.

Table 1 shows us that the older subjects (≥ 60 y) have fewer recurrences but more deaths.

This would suggest that older subjects could die before developing a recurrence.

Table 1 around here

The number of recurrences ranges from 0 to 4, averaging 0.71 per patient. Episodes were

categorized into 1, 2, 3, 4 or 5 corresponding to the number of observation times for each

subject. The 5th episode number corresponds to a censoring time or death.

Figure 1 presents the survival functions following successive recurrences of follicular lym-

phoma. This figure does not illustrate clear trends in the evolution of the risk of recurrence.

Figure 1 around here

We modelled the joint distribution of the inpatient recurrences and the survival times

(model (1)) using the fact that we wished to describe the relapses rate among patients

currently alive. The person-specific frailty term represents the effect of unmeasured factors
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on the chances both of recurrence and of death. The time variable (=”gap time”) was the time

since the latest episode. We expected that the hazard rate would not change substantially over

time but as a function of the time since the last event. The covariates included in the analyses

were : the number of prior episodes (as an internal time-dependent covariate), gender, age at

diagnosis (60 years or older vs younger than 60), the tumor burden with the Ann Arbor Stage

(III-IV vs I-II), the number of nodal areas involved (≥ 4 vs < 4) and the initial treatment

at diagnosis classified as ’any type of radiotherapy’ versus ’chemotherapy alone, another

treatment or no treatment’. We did not adjust for the serum lactate dehydrogenase levels

(for tumor aggressiveness) or for the hemoglobin levels (consequences of the lymphoma on

the host) even if they are also involved in the Follicular Lymphoma International Prognostic

Index (Solal-Céligny et al., 2004), because there were too many missing data.

The statistical software used was R and the library frailtypack (version 2.0-0) with the

function frailtyPenal for the shared frailty models (Rondeau et al., 2005), and a fortran pro-

gram was developed for the joint modelling and will be inserted in the frailtypack. Penalized

likelihood maximization was used. In the reduced models κ1 and κ2 were evaluated using the

cross-validation method, thereafter this value was used in the joint model.

Table 2 presents the results using adjusted joint models and reduced shared frailty models.

The rate of recurrence increased with age (age ≥ 60, RR=1.93, 95% CI (1.39-2.67)), was

higher for women and was associated with the stage of the tumor. These three effects were

underestimated using the reduced shared frailty model instead of the joint modelling. It is

clear that ignoring the dependence between the terminal event and recurrent events resulted

in significant biases in the independent shared frailty model compared to the joint model.
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For instance the effect of gender was greater using the joint frailty model compared to the

reduced shared frailty model (1.53 vs 1.16). As a result some covariates can be incorrectly

observed as non significant variables using a simple reduced shared frailty model which does

not take into account the informative censoring by death. Age, gender and the stage of the

tumor were also identified as significant prognostic factors.

The positive value of α = 2.17 in the joint model indicates that the incidence of recur-

rences is positively associated with death after controlling for the number of past events.

Patients with a large frailty value tend to have a high rate of recurrence after any epi-

sode, whatever the number of past relapses. The same positive association was also obtained

without the adjustment for the number of past relapses (α = 1.63).

The number of previous episodes influenced the risk of recurrence or death given the

frailty, however it was significantly associated with a decreased risk of recurrence (RR=

0.60, 95% CI (0.49-0.73)) and a decreased risk of death (RR= 0.22, 95% CI (0.15-0.31)).

This protective effect of the number of recurrences on the risk of death (RR=0.22) could be

explained by the probable existence of at least two different types of follicular lymphoma

based on clinical observation : FL with large tumor mass and FL with several small and

disseminated nodes. Patients of the first group often behave more aggressively with higher

risk of treatment failure and death in the short term while the others generally have a

slow progression, a good response to treatment and are more often in remission (partial or

complete). These last patients will correspond to patients with a higher risk of recurrences

but with a longer survival. However, this assumption remain to be formerly validated.

These models attempt to capture the effect of process history through a single covariate,
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which indicates the number of previous recurrences of FL occurred by time t. An alternative

would be to consider a model without this variable but with r0(t) replaced by r0j(t). This

stratified analysis can be easily conducted with j = 2 or 3 using the maximum penalized

likelihood estimation but can become less tractable with more recurrences by subject simply

because the number of parameters to estimate will increase with the number of different

baseline hazard functions. We did not perform a stratified analysis. Models including the

number of prior episodes as category variables (3 binary variables for 5 classes) confirmed

the above estimations.

The variance of the frailties is a measure of the heterogeneity of the observations. The

recurrence rate varied greatly among patients (θ̂ = 1.19 in the joint model), even after

adjustment for the individual variables. We observed a greater heterogeneity using the joint

frailty model.

Table 2 around here

Figure 2 illustrates the hazard of recurrence using the joint or the shared frailty model.

We did not present the hazard function after 15 years because of the lack of information

in the data set after this period. We observe that the hazard function was underestimated

when using the shared frailty model, because this model does not correctly model death.

Indeed, when α > 0, the frail subjects with higher failure risk are also frail subjects for

death and are more likely to die before we observe their failures. The recurrence risk is then

underestimated. In contrast, when α < 0 the recurrence risk is overestimated.

Figure 2 around here

The analyses were solely based on the gap timescales and we studied how the hazard rate
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evolves after an event has taken place ; time is reset to zero after a recurrence. Hence one

neglects the recurrence history when describing the inter-recurrences time. If it is expected

that the recurrence rate changes as a function of time since inclusion in the cohort, the ana-

lysis can be based on the calendar timescales, ie the time since inclusion in the cohort. As the

model can be set up in a counting process framework, it is easy to incorporate time-varying

covariates and delayed entry. The joint model using the calendar timescale led to equivalent

results but slightly smaller gender effect (RR = 1.34, 95% CI (0.98-1.84)) or stage effect (RR

= 1.37, 95% CI (0.99-1.90)), and these covariates were no longer significant.

6 Conclusion

This paper proposed a method of estimation in joint modelling for two survival pro-

cesses which enables us to study the joint evolution over time of recurrent events and death

and gives unbiased and efficient parameters. The most commonly used estimation procedure

in the joint models for survival events is the EM algorithm. The strength of this article

is that it shows how maximum penalized likelihood estimation can be applied to nonpara-

metric estimation of the continuous baseline hazard functions in a joint frailty model with

right censored data and delayed entry. The method of estimation proposed and the program

used also have the advantage of not being time-consuming even for large applications. For

instance the joint model presented in Table (2) used 50 seconds of CPU time. Valid and

rapid inferences under minor assumptions are then obtained.

A major advantage of joint frailty models is their ability to analyze simultaneously recur-
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rent events data and a terminating event that can be associated and to assess their degree

of dependence. We have shown by simulation that using a reduced shared frailty model

instead of a joint frailty model when there is a significant dependence between the two pro-

cesses leads to unreliable estimates, with regression factors falsely non-significant or with

an underestimation of the recurrence risk. This implies that the noninformative censoring of

the recurrent event process by death needs to be taken into account in survival analysis to

obtain accurate inferences. In general, omission of important features of dependence in the

data from the models we estimate results in biased and inefficient estimates. On the other

hand, if no association exists between the two processes, a more restricted model might be

acceptable, such as a reduced shared frailty model.

The marginal model has already been proposed and compared to the frailty model to

deal with the dependence between recurring events and death (Schaubel and Cai, 2005). This

joint frailty approach compared to the marginal approach has the advantage to quantify this

dependence. The frailty model is implicitly conditional on the previously described filtration

(Ft)t≥0 and the frailty term, marginal models are in this sense marginal as opposed to

conditional, and can be seen as having averaged over all possible filtrations. Furthermore the

regression coefficients of the frailty model, is interpreted conditionally, given the unobserved

frailty and does not have a clear interpretation marginally, since the marginal RR does not

equal exp(β).

We applied our approach to the joint modelling of follicular lymphoma recurrences and

death and we found a positive association between those two processes. The censoring by

death was informative for the risk of recurrences, and this was taken into account in the
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joint modelling. There are cases when a history of higher rates of recurrent events implies an

expected delay in the favorable termination event such as cure or discharge from hospital.

The flexible model that we used, introduced by Liu et al. (2004) can accommodate this kind

of negative (α < 0) relationship between recurrent event history and risk of termination.

Other approaches allowing for additional correlation structures on the random effects

may provide valuable insight for future research.
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Appendix 1

Construction of the full log-likelihood for the joint frailty model (1) with

calendar timescale.

We denote Tij the jth follow-up time for subject i and δij is the failure indicator for the

recurrent events. Similarly, we define T ∗
i = min(Di, Ci) the last follow-up time for subject i

and the death indicator δ∗ij = I(Di < Ci).

The marginal contribution to the likelihood Li(r0(.), λ0(.), β, α, θ) = Li(φ) for subject i

and for j = 1, ..., ni is : Li(φ) =
∫

ω
Li(φ|ω)f(ω)dω

– The conditional distribution of the survival times given ωi is the product of the indi-

vidual contributions :

Li(φ|ωi) =

ni∏

j=1

[
dRi(Tij|ωi)

δij × exp

(
−ω

ni∑

j=1

∫ Tij

Tij−1

dRi(t)

)]
×

dΛi(T
∗
i |ωi)

δ∗i × exp(−ωα

∫ ∞

0

Yi(t)dΛi(t))

– The density probability function for the random effects ω is :

f(ω) = ω(1/θ−1) exp(−ω/θ)

Γ(1/θ)θ1/θ .

– Using the previous expressions, the ith marginal contribution to the likelihood is ob-

tained by integrating out the random effects :

Li(φ) =
∏ni

j=1 dRi(Tij)
δij×dΛi(T

∗

i )δ∗i

Γ(1/θ)θ1/θ

×
∫ ∞

0
ω(NR

i (T ∗

i )+αδ∗i + 1
θ
−1) exp

(
−ω

∑ni

j=1

∫ Tij

Tij−1
dRi(t) − ωα

∫ ∞

0
Yi(t)dΛi(t) −

ω
θ

)
dω

We then obtain the expression (2) of the full log-likelihood by using :

l(φ) = log
N∏

i=1

Li(φ)
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TABLE LEGENDS

Table 1 : Number of follicular lymphoma recurrences and death according to age and

gender.

Table 2 : Analysis of the recurrences and death for follicular lymphomas using gap times.
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Tab. 1 – Number of follicular lymphoma recurrences and death according to age and gender.
No. No. No. of recurrences since diagnosis

patients deaths 0 1 2 3 4

Male 190 116 94 76 14 5 1
(%) 100 61.1 49.5 40.0 7.4 2.6 0.5

Female 219 133 104 74 30 6 5
(%) 100 60.7 47.5 33.8 13.7 2.7 2.2

Diagnosis Age <60 y 208 96 96 79 25 6 2
(%) 100 46.2 46.2 37.9 12.0 2.9 0.9

Diagnosis Age ≥60 y 201 153 102 71 19 5 4
(%) 100 76.1 50.7 35.3 9.5 2.5 2.0

Total 409 249 198 150 44 11 6
100 60.8 48.4 36.7 10.8 2.7 1.5
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Tab. 2 – Analysis of the recurrences and death for follicular lymphomas using gap times.
Covariate Joint model Reduced model

RR 95%CI RR 95%CI

For Recurrences
SEXE

Men 1 1
Women 1.53 (1.13-2.06) 1.16 (0.89-1.50)

AGE
Younger than 60 y 1 1
60 y or older 1.93 (1.39-2.67) 1.45 (1.09-1.94)

ORIGINAL ANN ARBOR STAGE
I-II 1 1
III-IV 1.43 (1.05-1.97) 1.22 (0.93-1.61)

NUMBER of PRIOR EPISODES
0.60 (0.49-0.73) 0.78 (0.55-1.09)

For Survival
SEXE

Men 1 -
Women 2.92 (1.69-5.02)

AGE
Younger than 60 y 1 -
60 y or older 8.79 (4.85-15.94)

ORIGINAL ANN ARBOR STAGE
I-II 1 -
III-IV 3.68 (2.12-6.41)

NUMBER of PRIOR EPISODES
0.22 (0.15-0.31) -

θ (SE) 1.19 (0.09) 0.41 (0.34)
α (SE) 2.17 (0.22)
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FIGURES

Figure 1 : Survival functions for successive follicular lymphoma recurrences.

Figure 2 : Joint modelling and reduced shared frailty modelling for follicular lymphoma

recurrence hazards.
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Fig. 1 – Survival functions for successive follicular lymphoma recurrences.
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Fig. 2 – Joint modelling and reduced shared frailty modelling for follicular lymphoma
recurrences hazards.
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We computed for each simulation study, the mean value of the estimators of the para-

meters, the empirical standard errors (SE of the estimates), i.e. the SE of estimates and the

mean of the estimated standard errors. We also gave the coverage rate of the confidence

intervals for β̂1, β̂2, β̂∗
1 , θ̂ and α̂. We stopped the iterations when the difference between two

consecutive log-likelihoods was small (< ǫl), the coefficients were stable (< ǫa) and the gra-

dient was small enough (< ǫd). The default values were ǫl = 10−4, ǫa = 10−4 and ǫd = 10−6.

When increasing the degree of dependency between the recurrent events and death (α =

1.0, results not shown), we observed larger differences between the joint and the reduced

models (for instance with N=200, β̂1 = 1.003 in the joint model vs β̂1 = 0.931 in the reduced

model). This illustrates the necessity of using joint modelling when the censoring is highly

informative.

When simulating datasets (for N=200) with more recurrent events by subject with a

fixed censoring time at 1.5 and death times generated with λ0(t) = 0.5. The average number

of observed recurrent events by subject ranges from 1.96 to 3.08 in the conducted simu-

lation studies (compared to 0.60-1.52 previously) with a maximum of 24. The results are

summarized in Table 4. We obtained a clear improvement in the estimations : the bias of

the estimates were smaller, with better coverage rates and smaller standard errors.

We evaluated (for the three initial settings α = 0.5,−0.5 or 0, Ci = 0.8, λ0(t) = 2

and with N=200 and 1000 simulated datasets) the estimation of the survival functions and

the hazard functions for the recurrent events using the Mean Integrated Squared Error

(MISE) (Hardle, 1990). We used MISE = E[
∫ zn

z1
(Ŝ(u)− S(u))2∂u] for survival functions or

E[
∫ zn

z1
(λ̂(u) − λ(u))2∂u] for hazard functions with z1 and zn the first and last knots for the
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spline functions. Integrations were evaluated using Gaussian-Legendre polynomials with 10

points. Results are described in Table 5. We observed that our penalized likelihood estimation

gives good estimates for the survival and hazard functions. This also illustrates that better

estimations are obtained using the joint model instead of the reduced model.
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TABLE LEGENDS

Table 1 : Estimates and standard errors using penalized likelihood maximization for a

joint frailty model (for M=1000 simulated samples) for setting I (α = 0.5).

Table 2 : Estimates and standard errors using penalized likelihood maximization for a

joint frailty model (for M=1000 simulated samples) for setting II (α = −0.5).

Table 3 : Estimates and standard errors using penalized likelihood maximization for a

joint frailty model (for M=1000 simulated samples) for setting III (α = 0).

Table 4 : Estimates and standard errors using penalized likelihood maximization for a

joint frailty model (for M=1000 simulated samples and N=200) for α = 0.5,−0.5, or 0, with

more recurrent events by subject (mean= 2.51).

Table 5 : Mean Integrated Squared Errors for the estimation of the hazard functions and

the survival functions for recurrent events.
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Tab. 3 – Estimates and standard errors using penalized likelihood maximization for a joint
frailty model (for M=1000 simulated samples) for setting I (α = 0.5).

Joint frailty model Reduced frailty model
Mean empirical Mean S.E. CP Mean empirical Mean S.E. CP

S.E. (
√

Ĥ−1) S.E. (
√

Ĥ−1)

N = 200
Recurrent Events

β1 = 1 0.993 0.181 0.164 92.4 0.950 0.180 0.162 90.6
β2 = -0.5 -0.497 0.174 0.166 94.1 -0.506 0.177 0.169 93.5

For death
β∗

1 = 0.7 0.724 0.206 0.164 89.3 - - -

θ = 0.5 0.517 0.152 0.101 68.7 0.526 0.194 0.102 64.9
α = 0.5 0.485 0.349 0.259 88.6 - - -

N = 500
Recurrent Events

β1 = 1 0.999 0.118 0.109 93.9 0.959 0.117 0.109 91.0
β2 = -0.5 -0.497 0.112 0.108 94.5 -0.507 0.114 0.111 95.1

For death
β∗

1 = 0.7 0.705 0.119 0.110 93.2 - - -

θ = 0.5 0.531 0.110 0.067 66.0 0.569 0.119 0.070 55.6
α = 0.5 0.468 0.178 0.161 89.7 - - -
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Tab. 4 – Estimates and standard errors using penalized likelihood maximization for a joint
frailty model (for M=1000 simulated samples) for setting II (α = −0.5).

Joint frailty model Reduced frailty model
Mean empirical Mean S.E. CP Mean empirical Mean S.E. CP

S.E. (
√

Ĥ−1) S.E. (
√

Ĥ−1)

N = 200
Recurrent Events

β1 = 1 1.007 0.172 0.153 91.3 1.042 0.172 0.146 89.7
β2 = -0.5 -0.496 0.166 0.157 92.5 -0.491 0.168 0.153 92.6

For death
β∗

1 = 0.7 0.716 0.202 0.156 88.1 - - -

θ = 0.5 0.543 0.170 0.094 52.3 0.359 0.197 0.090 53.4
α = -0.5 -0.491 0.314 0.234 75.3 - - -

N = 500
Recurrent Events

β1 = 1 1.001 0.110 0.103 93.0 1.040 0.108 0.098 89.8
β2 = -0.5 -0.501 0.109 0.103 93.5 -0.492 0.108 0.099 92.6

For death
β∗

1 = 0.7 0.706 0.119 0.104 90.8 - - -

θ = 0.5 0.557 0.130 0.072 50.3 0.365 0.173 0.063 49.2
α = -0.5 -0.479 0.224 0.150 83.4 - - -
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Tab. 5 – Estimates and standard errors using penalized likelihood maximization for a joint
frailty model (for M=1000 simulated samples) for setting III (α = 0.).

Joint frailty model Reduced frailty model
Mean empirical Mean S.E. CP Mean empirical Mean S.E. CP

S.E. (
√

Ĥ−1) S.E. (
√

Ĥ−1)

N = 200
Recurrent Events

β1 = 1 0.996 0.175 0.159 92.2 1.000 0.184 0.157 89.7
β2 = -0.5 -0.504 0.181 0.165 91.7 -0.500 0.175 0.164 93.4

For death
β∗

1 = 0.7 0.724 0.180 0.151 89.8 - - -

θ = 0.5 0.532 0.166 0.099 61.3 0.489 0.197 0.099 64.3
α = 0. -0.033 0.380 0.197 87.6 - - -

N = 500
Recurrent Events

β1 = 1 1.000 0.115 0.107 92.9 1.002 0.109 0.106 94.6
β2 = -0.5 -0.503 0.109 0.108 94.3 -0.505 0.108 0.108 94.5

For death
β∗

1 = 0.7 0.700 0.112 0.099 91.7 - - -

θ = 0.5 0.545 0.119 0.072 59.3 0.535 0.125 0.071 62.4
α = 0. -0.012 0.138 0.127 92.5 - - -
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Tab. 6 – Estimates and standard errors using penalized likelihood maximization for a joint
frailty model (for M=1000 simulated samples and N=200) for α = 0.5,−0.5, or 0, with more
recurrent events by subject (mean= 2.51).

Joint frailty model Reduced frailty model
Mean empirical Mean S.E. CP Mean empirical Mean S.E. CP

S.E. (
√

Ĥ−1) S.E. (
√

Ĥ−1)

α = 0.5
Recurrent Events

β1 = 1 1.003 0.153 0.149 94.0 0.975 0.153 0.150 94.3
β2 = -0.5 -0.501 0.146 0.145 94.5 -0.509 0.150 0.150 94.6

For death
β∗

1 = 0.7 0.716 0.201 0.188 92.7 - - -

θ = 0.5 0.500 0.111 0.073 76.7 0.523 0.121 0.077 74.7
α = 0.5 0.508 0.253 0.225 92.3 - - -

α = −0.5
Recurrent Events

β1 = 1 0.999 0.151 0.145 94.1 1.026 0.146 0.137 93.6
β2 = -0.5 -0.497 0.150 0.141 93.1 -0.488 0.150 0.136 92.4

For death
β∗

1 = 0.7 0.710 0.190 0.178 93.2 - - -

θ = 0.5 0.503 0.138 0.088 69.8 0.389 0.143 0.073 61.1
α = -0.5 -0.507 0.241 0.227 93.2 - - -

α = 0
Recurrent Events

β1 = 1 1.007 0.151 0.147 94.2 1.006 0.151 0.146 94.2
β2 = -0.5 -0.503 0.146 0.146 95.0 -0.503 0.146 0.146 95.2

For death
β∗

1 = 0.7 0.714 0.184 0.172 92.8 - - -

θ = 0.5 0.506 0.122 0.079 74.4 0.498 0.126 0.077 75.3
α = 0.0 0.050 0.196 0.191 96.2 - - -
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Tab. 7 – Mean Integrated Squared Errors for the estimation of the hazard functions and the
survival functions for recurrent events (for N=200 and 1000 simulated datasets).

JOINT MODEL REDUCED MODEL

α = 0.5
Survival function 1.81.10−3 2.14.10−3

Hazard function 9.21.10−2 10.4.10−2

α = −0.5
Survival function 1.72.10−3 1.92.10−3

Hazard function 8.93.10−2 15.0.10−2

α = 0
Survival function 1.77.10−3 1.98.10−3

Hazard function 8.98.10−2 9.42.10−2

41


