
HAL Id: halshs-00120415
https://shs.hal.science/halshs-00120415

Submitted on 20 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A polynomial parsing algorithm for the topological
model - Synchronizing Constituent and Dependency

Grammars - Illustrated by German Word Order
Phenomena

Kim Gerdes, Sylvain Kahane

To cite this version:
Kim Gerdes, Sylvain Kahane. A polynomial parsing algorithm for the topological model - Synchro-
nizing Constituent and Dependency Grammars - Illustrated by German Word Order Phenomena.
Coling-ACL, 2006, Sydney, Australia. pp.8, �10.3115/1220175.1220313�. �halshs-00120415�

https://shs.hal.science/halshs-00120415
https://hal.archives-ouvertes.fr

HAL Id: halshs-00120415
https://halshs.archives-ouvertes.fr/halshs-00120415

Submitted on 20 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A polynomial parsing algorithm for the topological
model - Synchronizing Constituent and Dependency

Grammars - Illustrated by German Word Order
Phenomena

Kim Gerdes, Sylvain Kahane

To cite this version:
Kim Gerdes, Sylvain Kahane. A polynomial parsing algorithm for the topological model - Synchro-
nizing Constituent and Dependency Grammars - Illustrated by German Word Order Phenomena.
Coling-ACL, 2006, Sydney, Australia. pp.8. �halshs-00120415�

https://halshs.archives-ouvertes.fr/halshs-00120415
https://hal.archives-ouvertes.fr

A polynomial parsing algorithm for the topological model
Synchronizing Constituent and Dependency Grammars,

Illustrated by German Word Order Phenomena

Abstract
This paper describes a minimal
topology driven parsing algorithm for
topological grammars that synchro-
nizes a rewriting grammar and a
dependency grammar, obtaining two
linguistically motivated syntactic
structures. The use of non-local slash
and visitor features can be restricted
to obtain a CKY type analysis in
polynomial time. German long
distance phenomena illustrate the
algorithm, bringing to the fore the
procedural needs of the analyses of
syntax-topology mismatches in
constraint based approaches like for
example HPSG.

1 Introduction

In this paper we investigate the computational
problems resulting from the discrepancy
between the surface organization of a sentence
and its syntactic structure expressing functional
relations between words. These syntactic
phenomena are addressed under terms like
unbounded dependencies or scrambling. This
discrepancy is the source of complex
mechanisms such as movement in Chomsyan
model, functional uncertainty in the functional
equations of LFG, or non local features (like
slash) in HPSG. Algorithms for these
mechanisms are NP-complete and it is well
known that we have to introduce upper bounds
on simultaneous mismatches in order to
account for these phenomena in polynomial
time. The resulting complexity is of O(nK+5)

with K being this upper bound1.

We consider the so-called topological
grammars characterized by the synchronization
of two algebraic grammars (equivalent CFG),
one generating the surface structure (the
topological phrase structure), the other
generating the deeper structure (the functional
or dependency structure). The parallel
construction of the surface and the deeper
structure minimally handles the problem of the
discrepancy encountered in all formal
descriptions of non-local word order
phenomena.
The lexicalized version of topological
grammars presented in this paper lends itself
well to be used in a CKY type algorithm. The
description of this algorithm sheds light on the
procedural role of the concept underlying the
slash feature and the dual role of the visitor
feature introduced here (following Hudson
2000).
Formal topological grammars have been
introduced independently by Debusmann &
Duchier 2001 and Gerdes & Kahane 2001.
Reape 1994 and Kathol 1995 have formalized
the classical concept of topology in HPSG
without, however, explicitly considering an
independent topological phrase structure. More
or less complete topological grammars have
been developed for Czech, Dutch, German,
Modern Greek, Korean, Arabic, and French
(Bojar 2004, Yoo & Gerdes 2004, El Kassas
2005, Gerdes & Kahane 2006). Different

1 The linguistic relevance of this upper bound has
been discussed for example in Becker et al. 1991,
arguing that Tree Adjoining Grammar capture the
performance limit on extractions in German.

 Kim Gerdes
Sylvain Kahane

implementations for topological grammars
exist: TDG (Debusmann et al. 2003) uses the
unspecialized Oz constraint based language,
making TDG parsing NP-hard as show Koller
& Striegnitz 2002 (although one obtains
polynomial time in the average case, Duchier
2003); DepLin is a generation system based on
a procedural linearization grammar (Gerdes &
Yoo 2003), and Clément et al. 2002 and Frank
2003 translate topological grammars into the
LFG opposition between c- and f-structures
allowing the use of LFG analyzers (for which
exist NP hardness results). To our knowledge,
the HPSG approach has not been implemented.
None of these approaches has explored the
theoretical algorithmic properties of an exact
topological analysis (leaving aside stochastic
approaches). However, the theoretical problems
of the upper bounds for the number of
extractions have been studied in neighboring
dependency-based formalisms by Kahane et al.
1998 and Bröker 2000.
Our contribution shows how the topology-
syntax discrepancy can minimally be seen as
two grammars that synchronously construct two
independent structures. We believe that the
introduction of the dual slash and visitor
features allows for a better comprehension of
the procedural mechanisms at stake in the
unbounded dependencies handling and the (not
necessarily apparent) similarities between
formalisms such as LFG, HPSG, or dependency
grammars.
Section 2 presents the grammar formalism,
exemplifying it by a German toy grammar and
Section 3 is devoted to the parsing algorithm
we propose.

2 The grammar formalism

Our grammar contains three modules: a
syntactic grammar, a topological grammar, and
the topology-syntax interface. We will present
these three modules, exemplifying each of them
by a toy grammar for German. Although very
simple, this grammar covers a great part of the
verbal syntax of German (Bech 1955),
including the main scrambling phenomena. For
a more complete grammar of German and for
grammars of other languages in the same
theoretical framework, see the references in our
introduction.

It should be noted that the formalism we
propose here differs slightly from the previous
formal presentation of the topological model,
bringing to the fore the synchronization of two
grammars and the interface grammar.

2.1 The syntactic grammar
The syntactic module is a classic dependency
grammar and generates unordered dependency
trees. The parameters to instantiate are the
vocabulary �, the set of (lexical) categories �,
the initial category IC, the set of syntactic roles
�, and the set of lexical rules. A lexical rule
assigns a category and a valence list to a word.
A valence slot is a couple (r,C) where r is a
syntactic role and C a category.2 The initial
category IC give the possible category of the
root of the dependency tree.

Example
� = the German words
� = { Vfin, Vzu, Vinf, Vpp, N}

(Vfin = finite verb, Vzu = infinitive with zu,
Vinf = bare infinitive, Vpp = past participle)3

� = { subj, obj, vcomp }
IC = Vfin
Dependency rules
hat ‘has’:Vfin,val:<(subj,Nnom),(vcomp,Vpp)>
gelesen ‘read’: Vpp, val:<(obj,Nacc)>

The last rule says that gelesen is a past
participle governing a nominal object at the
accusative case. Our grammar generates
dependency tree such as the one of Fig. 1 for
the sentence (1):

(1) Den Roman hat diesem Mann niemand
 the novel has to-this man nobody

zu lesen versprochen
to read promised

2 We do not present the treatment of modifiers when
the governor is selected by the dependent. This does
not pose any technical problems but it necessitates
particular rules that we will not present here (for the
treatment of modifier in a dependency grammar see
for example Nasr 1995; various propositions in
HPSG can also be adapted here). Neither do we
expatiate upon the optionality of some syntactic
arguments.
3 For the sake of simplicity we give a very rough
presentation of the category. For nouns, cases are
added in their names (Nnom, Ngen, Ndat, and Nacc).

 ‘Nobody promised to this man to read
the novel’.

Fig. 1. A dependency tree

2.2 The topological grammar
The topological grammar proper generates the
topological structures, which are ordered
constituent trees. Such a grammar differs
slightly from traditional CFGs by
distinguishing constituents from positions for
constituents, i.e. boxes (= topological
constituent) and fields (= positions in a box). A
grammar rule indicates for each box what its
list of fields is and how many boxes it can
contain for each field. Three values for the
filling parameter of a field are possible: exactly
one element (!), at most one element (?) and
any number of elements (∗). A field is called
obligatory if its filling parameter is !.
The parameters to instantiate are the set of box
names �, the set of field names �, the initial
field (if), and the set of rules.
For the sake of simplicity, in this presentation,
we adopt a flat structure, with exactly one box
headed by each word of the sentence. We lose a
part of the economy of the system (that reuses
the same boxes at different levels) but the
presentation of the parsing algorithm will be
clearer.

Example
� = { md, ed, vc, np }

(md = main domain, ed = embedded domain,
vc = verb cluster, np = nominal phrase)

� = { vf, mf, nf, rb, of, • }
(vf = Vorfeld, mf = Mittelfeld, nf = Nachfeld,
rb = right bracket, of = Oberfeld, • = head field)

ib = md
Topological rules
md → vf! • mf* rb? nf*

ed → mf* of? • nf*

vc → of? •

Our first rule is the classical topological model
of German: a main domain is composed of five
fields and the main verb occupies the second
field, the first field vf containing exactly one
element. In the embedded domain, the head
occupies the right bracket, which is then the
head field. A verb in the right bracket offers a
place to its left called the Oberfeld (of) for a
verbal dependent. Fig. 2 is a graphical
representation of the topological structure of
the non marked sentence (1). Boxes are
represented by circles and fields by squares.

den
Roman

hat diesem
Mann

niemand zu
lesen

versprochen

Fig. 2. The topological structure of (1)

2.3 The topology-syntax interface
The topology-syntax interface synchronizes the
syntactic grammar and the topological
grammar. An interface rule associates the
positioning of a dependency node with the
positioning of the corresponding topological
box.
Each box b∈� is associated to an integer p(b),
called its permeability, controlling which
constituent can emancipate from it.
An interface rule is a 7-tuple (C1,r,C2,b1,f,b2,p),
where C1,C2∈�, r∈�, b1,b2∈�, f∈�, and p is
an integer called the permeability level. The
rule can be read in two equivalent ways: 1) if a
word w2 of category (cat) C2 depends on a word
w1 of cat C1 by a syntactic relation r, then w2
can head a box b2 placed in a field f of a box b1
containing w1 and separated from b1 by boxes
of permeability � p (synthesis reading); 2) if a
word w2 of cat C2 heads a box b2 placed in a
field f of a box b1 containing a word w1 of cat
C1 and separated from b1 by boxes of
permeability � p, then w2 can depend on w1 by

(Vpp) versprochen
 ‘promised’

(Vfin) hat ‘has’

(Nacc) den Roman
 ‘the novel’

(Nnom) niemand
 ‘nobody’

(Ndat) diesem Mann
 ‘to this man’

(Vzu) zu lesen
 ‘to read’

subj vcomp

obj

obj

vcomp

md

vf mf • rb

vc np

of

np

•

vc

np

a syntactic relation r. (analysis reading). The
rule is schematized in the following figure:

Example

Permeability
p(vc)=1, p(ed)=p(xp)=2, p(md)=3.

Interface rules
For a noun we have one basic rule: a noun
depending on a verb can head an NP4 in any
major field (vf/mf/nf) wherever is the verb; it
can cross over vc and ed boxes:
(V, subj/obj, N, md/ed/vc, vf/mf/nf, np, 2)
Note that in German, contrarily to English, the
placement of a NP does not actually depend on
its syntactic role.
For a non-finite verb we have two rules:
-one is similar to the rule for nouns: a verb can
head an embedded domain in any major field:
(V, vcomp, V¬fin, md/ed/vc, vf/mf/nf, ed, 2)
- the other is specific to the German(ic) syntax:
a non-finite verb can be placed in the right
bracket (rb) or at the left of its verbal governor
(in the of field) if this governor is already in the
right bracket:
(V, vcomp, V¬fin, md/ed/vc, of/rb, vc, 0)
This last rule can be applied recursively,
forming a string of verbs called a verb cluster.
The dependents of verbs of a same cluster can
be freely shared out in the major fields of the
same domain. This property produces what is
called scrambling. In our model this requires an
extensive use of emancipation, allowing any
dependent of a verb to be placed in a domain
headed by a verbal ancestor. Emancipation is
also possible outside the embedded domain,
although this would require specific strong
information packaging constraints (not
reflected in this toy grammar).

3. The parsing algorithm

We begin with a presentation of the algorithm
when there is no emancipation. In this case the

4 We do not develop the nominal topology in this
example grammar.

topological structure and the dependency
structure are built in parallel, i.e. each
combination of linear segments corresponds to
a functional combination. When emancipations
are allowed the parsing will be driven by the
topological structure only.

3.1 The algorithm without
emancipation

The philosophy of a CKY algorithm is to begin
parsing one word segments of the sentence, to
store the minimum of information in a parse
matrix, and to parse bigger and bigger segments
by concatenation of segments previously
parsed.
In the algorithm for CFG, if we have two
consecutive segments from i to j and from j+1
to k of cat C1 and C2 and if we have a rule
C→C1C2, then we postulate a segment from i to
k of cat C. The recurrence step is then:

[i,j,cat:C1] ⊕ [j+1,k,cat:C2] ⊗ (C→C1C2)
= [i,k,cat:C]

In our case, the entries of our parse matrix are
of the form [i,j,cat:C,val:X,box:b,fieldsY]
where i and j delimit the segment, C is the
category of the head, X is the list of free
valence slots, b is the topological box name of
the segment, and Y the list of non-saturated
fields of b (including the head field •,
indicating which fields are on the left or on the
right)

Initialization step
If the i-th word of the sentence we want to
parse can have 1) the cat C, 2) the valence X
and 3) a word of cat C can head a box b and if
4) there is a topological rule b→Y, then we
store the segment
[i,i,cat:C,val:X,box:b,fields:Y].

Recurrence step
We combine two consecutive segments by
applying an interface rule. One of the two
segments must be saturated which means: 1) all
the valence slots of the head have been filled
(and thus val is an empty list) ; 2) all the fields
of the box are potentially saturated, that is,
there is no field with the value ! left.
In the following recurrence step, we suppose
that the second segment is saturated and we
note elist the empty valence list and sat the
saturated field list.

b1

f

b2

C1

r

C2

p

[i,j,cat:C1,val:X,box:b1,fields:Y]
⊕ [j+1,k,cat:C2,val:elist,box:b2,fields:sat]
⊗ (C1, r, C2, b1, f, b2, p)

=[i,k,cat:C1,val:X � <(r,C2)>,box:b1,fields:Y � f
]
This step is possible if X contains a valence
slot
(r,C2) and then X � <(r,C2)> is the list X
reduced by (r,C2). In the same way, Y must
contain a field f at the left of the head field; the
fields between • and f must be non obligatory
and are suppressed in Y � f; moreover, the
filling parameter of f is adjusted according to
the fact that f now contains a box.
The parsing succeeds if our parse matrix
contains at least one segment
[1,n,cat:IC,val:elist, box:ib,fields:sat]. If we
keep backpointers at each step in the algorithm,
we have a compact representation of the parse
forest.

3.2 The algorithm with emancipation

An emancipated constituent is not in the
maximal projection of its governor, i.e. it is not
in the box headed by its governor. Let is see
what are the consequences. Consider the basic
example (2):

(2) Den Roman hat Maria gelesen.
 The novel has Maria read
 ‘Maria read the novel’

In (2), den Roman, which depends on the past
participle gelesen, is placed in a field of the
main domain headed by the auxiliary hat, while
the verb cluster headed by gelesen is
unsaturated. Suppose we want to apply our
previous algorithm (the CKY parsing without
emancipation). We can easily parse the
segments den Roman, hat Maria, and gelesen,
but neither den Roman and hat Maria (no
valence for den Roman), nor hat Maria and
gelesen (gelesen not saturated) can be
combined.

Our parsing will be driven by the
topological structure and the condition of the
topological saturation of the dependent is
maintained. Two cases of combination of
segments are possible.
The first case is illustrated by the combination
between hat Maria and gelesen, where gelesen

still expects a dependent. Therefore we do not
require the valence of the topological phrase to
be saturated and we must percolate it in a
special feature similar to the slash feature of
G/HPSG (Gazdar et al. 1985, Pollard & Sag
1994)
The second case is illustrated by the
combination between den Roman and hat
Maria. In this case we do not trigger a
correspondence rule because no dependency
must be built. We must store den Roman in a
special feature we call visitor (see Hudson 2000
for a similar device), which is the converse of
the slash feature. The slash feature allows us to
lift up a need (a valence slot to be filled), while
the visitor feature allows handing down a
resource (that will fill a valence slot). Or more
precisely in our case: The visitor allows a
governor to keep a non-solicited segment while
waiting for an element that can take this
element in its valence.
Note however that, with our conditions on the
saturation of topological constituents, the two
strategies are not interchangeable and they are
both necessary. Let us consider two new
examples.

(3) Maria hat den Roman gelesen.
 Maria has the novel read
 ‘Maria read the novel’

Although the sentence (3) is projective, den
Roman must be analyzed as an emancipated
constituent. Indeed, gelesen is in the right
bracket of the main domain and the maximal
projection of gelesen, the verb cluster, does not
contain its dependent den Roman, which is in
the Mittelfeld of the main domain headed by
hat. From a topological point of view, den
Roman can only combine with hat but it is not
in the valence of hat and it must be considered
a visitor.

(4) Ich glaube, dass Maria den Roman
I think that Maria the novel

gelesen hat.
 read has

 ‘I think that Maria read the novel’

In (4), gelesen hat froms a verb cluster in the
right bracket of a complementizer phrase. The
NP den Roman is still emancipated and, from
the topological viewpoint, it cannot combine
with its governor gelesen. It also cannot

combine with hat because they are separated by
gelesen. The smallest topological phrase
containing den Roman and gelesen also
contains hat. Therefore the slash strategy is
needed and gelesen and hat must combine
before combining with den Roman.

We make two major changes in our
previous algorithm. On the one hand we replace
the val feature by two new features:

• the vis(itor) feature, which stores
triples (C,b,f) indicating that a box b of
head C has been placed in the field f;

• the slash feature, which stores valence
slots of the head as well as the non
saturated slots of its dependents.

On the other hand we proceed in two steps: first
we combine consecutive segments without
triggering interface rules, by storing all
information in our vis and slash features;
second we trigger interface rules to reduce the
contents of vis and slash features.

Initialization step
The segment [i,i,cat:C,val:X,box:b,fields:Y] of
the previous algorithm is replaced by [i,i,cat:C,
vis:elist,slash:X’,box:b,fields:Y] where each
valence slot (r,C’) of X gives a slash slot
(C,r,C’,0), with C the cat of the head and 0
indicating that this slash slot has not
emancipated across any box.

Combination step
The combination is driven by the topological
structure, so one of the two segments combined
must be topologically saturated (fields:sat) but
we no longer require that the valence of this
segment is saturated: its free valence slot will
be slashed.

[i,j,cat:C1,vis:Z,slash:X1,box:b1,fields:Y] ⊕
[j+1,k,cat:C2,vis:elist,slash:X2,box:b2,fields:sat]
= [i,k,cat:C1,vis:Z⊕<(C2,f,b2)>,slash:X1⊕X2’,
box:b1,fields:Y � f], where each 4-tuple (C,r,
C’,p) of X2 gives a 4-tuple (C,r,C’,p’) with p’
the max of p and p(b1), the permeability of b1.
In other words the second segment is placed in
the field f and this is stored in the visitor
feature (cf. (C2,f,b2)). At the same time the
slash content X2 of the second segment is
added to the slash content of the first segment,
but we must indicate that these valence slots
have crossed the box b1 and this is why the
permeability level is adjusted.

Reduction step
[i, j, cat:C, vis:Z⊕<(C2,f,b2)>, slash:X⊕
<(C1,r,C2,p’)>, box:b1, fields:Y]
⊗ (C1, r, C2, b1, f, b2, p)
= [i, j, cat:C, vis:Z, val:X � box:b1, fields:Y]
provided that p’ � p.
A reduction is possible if vis and slash contain
elements referring to the same category C2: the
vis element (C2,f,b2) says that we have
encountered a box b2 of head C2 in the field f ,
while the slash element (C1,r,C2,p’) indicates
that a word of cat C2 is required to fill the r
valence slot of a word of cat C1. If furthermore
the slashed slot has not crossed over boxes of
permeability greater than p (p’ � p), then the
interface rule (C1, r, C2, b1, f, b2, p) can apply
and the segment can be reduced.

The parsing succeeds if the parse matrix
contains a segment
[1,n,cat:IC,vis:elist,slash:elist,
box:ib,fields:sat], where n is the length of the
sentence.

Example: Parsing of Den Roman hat Maria zu
lesen versprochen (cf. (1)). We focus on the
combination of the segment den Roman hat
Maria (where den Roman is a visitor) with the
verb cluster zu lesen versprochen.

den Roman hat Maria: S1 = [1,4, cat:Vfin,
vis:<(Nacc,vf,np)>, slash:<(Vfin,aux,Vpp,0)>,
box:md, fields: •mf*rb?nf*]

zu lesen versprochen: S2 = [5, 7, cat:Vpp,
vis:elist, slash:<(Vzu,dobj,Nacc,1)>, box:vc,
fields:•]

The segment S2 is topologically saturated, so
S1 and S2 can combine.

S= S1⊕S2 = [1,7, cat:Vfin, vis:<(Nacc,vf,np),
(Vpp,rb,vc)>, slash:<(Vfin,aux,Vpp,0),
(Vzu,obj,Nacc,1)>, box:md, fields: •nf*]

S can be reduced twice
- by merging (aux,Vfin,Vpp,0) and

(Vpp,rb,vc) using the interface rule
(V,aux,V¬fin, md, rb, vc, 0)

- and by merging (Vzu,dobj,Nacc,vc) and
(Nacc,vf,np) using the interface rule
(V,dobj,N,md,vf,vc,2).

After reduction, S=[1,7,cat:Vfin, vis:elist,
slash:elist, box:md, fields: •nf*], proving that
(1) is a grammatical sentence of German.

3.3 Complexity

The parse matrix of a CKY algorithm has less
than n2 entries, where n is the length of the
sentence parsed. In the CFG case, the number
of possible segment descriptions is bounded by
the number of categories, which we call C. To
fill a new entry in the parse matrix at least n
combinations of two entries must be considered
and the number of operations is bounded by
GC2n3, where G is the number of rules (each
combination involves a grammar rule).
In the algorithm without emancipation the
number of possible descriptions of segments is
still bounded and the complexity remains O(n3).
However if we want to retrieve the dependency
forest (Nasr 2003) we need to store
backpointers, that is the place of the head in
each segment description; the number of
segment descriptions goes up by a factor n and
the complexity becomes O(n5).
The slash and visitor features are more
expensive: We assume the slash and visitor sets
to be bounded by K, i.e. we suppose that we do
not need to keep more than K entries in the
slash and visitor sets at a time. Consequently
the number of segment descriptions remains
bounded by CVK, where V is the number of
valence slot descriptions, and the algorithm
complexity is still of type O(n3). But if we
introduce backpointers to retrieve the
dependency forest, we need to keep them in
valence slot descriptions in order to remember
which word has a valence slot to fill. The
number of segment descriptions is thus
bounded by CVKnK+1 and the time complexity
of the algorithm is in O(nK+5). We avoid
exponential growth only because we restrict the
number of slash and visitor entries of each
configuration.

4 Conclusion

We have proposed a parsing algorithm for the
topological model that is minimal in the sense
that its additional exponential growth (the
factor K) corresponds exactly to the number of
mismatches between functional dependency
and topological constituency. In different
terms, given we want to construct the
topological and the dependency structures, two
independent and linguistically significant

structures, and given two separate grammars
expressing the constraints on the construction
of these structures, then the cost of adding the
interface constraints is exponential precisely in
the number of memory positions needed in
order to keep track of the differences between
the two structures. Precise parsing of these
three grammars cannot do with less.
We could hypothesize that the need of
differentiating more or less independent levels
of syntactic analysis (e.g. surface vs. deep
structure, …), which is at the origin of
formalisms like LFG or HPSG, algorithmically
boils down to this exponentiality, at least
concerning the syntax/surface expressive needs.
It might be interesting to compare these results
with efficiency considerations for HPSG as in
Nishida et al. 2001 and for restricted graph
grammars for dependency-orientated generation
(Bohnet & Wanner 2001).
Our bottom-up strategy driven by the
topological structure forces us to introduce
tools equivalent to the slash feature of
G/HPSG. We hope that this presentation sheds
light on the procedural role of the slash feature,
and on the complementary possibility of a
linguistic analysis using a visitor feature.
It should be noted that, in spite of its simplicity,
the German topological grammar presented as
an example allows the control of syntactic
constraints on phenomena like scrambling,
partial VP fronting, and auxiliary flip, which
demonstrates the expressivity of the topological
approach. The grammars of languages like
Czech and Modern Greek show that the
topological approach allows for a
straightforward integration of information
structure in the interface constraints.
Work is in progress on experimental
implementations of the presented algorithm and
on choosing useful and linguistically accessible
input and output formats. Real values on
efficiency will not be available as long as the
grammar does not surpass experimental size. A
linguistic study on corpora might determine
what types of elements are actually
emancipated and in particular what types of
elements can be emancipated simultaneously,
i.e. what list of slashed element are possible,
given that this is the main factor of complexity
of the algorithm (see Kiefer et al. 1999 for
similar heuristic considerations for HPSG
parsing).

References
Bech, Gunnar, 1955, Studien über das deutsche

Verbum infinitum, 2nd edition 1983,
Linguistische Arbeiten 139, Niemeyer, Tübingen.

Becker, Tilman, Aravind K. Joshi, Owen Rambow,
1991, “Long-Distance Scrambling and Tree
Adjoining Grammars”. EACL 1991

Bohnet, Bernd and Leo Wanner, 2001, “On Using a
Parallel Graph Rewriting Grammar Formalism in
Generation”. Proceedings of the 8th European
Natural Language Generation Workshop (at
ACL), Toulouse.

Bojar, Ond�ej, 2004, “Problems of Inducing Large
Coverage Constraint-Based Dependency
Grammar for Czech.” International Workshop on
Constraint Solving and Language Processing,
Universitet, Roskilde, pp. 29-42.

Bröker, Norbert, 1998, “Separating Surface Order
and Syntactic Relations in a Dependency
Grammars”, COLING-ACL’98, 174-180.

Debusmann, Ralph, Denys Duchier and Joachim
Niehren, 2004, “The XDG Grammar
Development Kit”, Second International
Mozart/Oz Conference, Charleroi

Drach, Erich, 1937, Grundgedanken der deutschen
Satzlehre, Diesterweg, Frankfurt/M..

Duchier, Denys, Ralph Debusmann, 2001,
“Topological Dependency Trees: A Constraint-
Based Account of Linear Precedence”, ACL 2001,
180-87.

Duchier, Denys, 2003, “Configuration of labelled
trees under lexicalized constraints and principles”,
Journal of Research on Language and
Computation, Sep 2003.

El Kassas, Dina, Sylvain Kahane, 2004,
Modélisation de l’ordre des mots en arabe
standard, JEP-TALN, Workshop on Arabic
Language Processing, Fez, 259-264.

Frank, Anette, 2003, “Projecting LFG F-Structures
from Chunks” LFG 2003, Saratoga Springs, New
York, pp. 217-237.

Gazdar, Gerald, Ewan Klein, Geoffrey Pullum and
Ivan Sag Generalized Phrase structure grammar,
Harvard University Press, Cambridge MA, 1985.

Gerdes, Kim, Sylvain Kahane, 2001, “Word Order in
German: A Formal Dependency Grammar Using a
Topological Hierarchy”, ACL 2001, 220-27.

Gerdes, Kim, Sylvain Kahane, 2006, L’amas verbal
au cœur d’une modélisation topologique,
Linguisticae Investigationes, 29:1, 101-114.

Gerdes, Kim & Hi-Yon Yoo, 2003, La topologie
comme interface entre syntaxe et prosodie, un
système de génération appliqué au grec moderne,
TALN 2003, Batz-sur-Mer, 125-134.

Hudson Richard, 2000, “Discontinuity”, Dependency
Grammars, T.A.L., 41(1): 15-56, Hermès, Paris.

Kahane, Sylvain, Alexis Nasr, Owen Rambow, 1998,
“Pseudo-Projectivity: a Polynomially Parsable
Non-Projective Dependency Grammar”,
COLING-ACL’98, Montreal, 646-52.

Kathol Andreas, 1995, Linearization-based German
Syntax, PhD thesis, Ohio State University.

Kiefer, B., H.-U. Krieger, J. Carroll, and R. Malouf,
1999, “A bag of useful techniques for efficient
and robust parsing”. ACL 1999, 473–480.

Alexander Koller and Kristina Striegnitz. 2002.
“Generation as dependency parsing”. ACL 2002.

Nasr Alexis, 1995, “A formalism and a parser for
Lexicalised Dependency Grammars”. 4th Int.
Workshop on Parsing Technologies, State
University of NY Press.

Nasr, Alexis, 2003, Factoring surface syntactic
structures. In First International Conference on
Meaning-Text Theory, pages 249-258, Paris.

Nishida, Kenji, Kentaro Torisawa and Jun'ichi
Tsujii., 2001, “Compiling an HPSG-based
grammar into more than one CFG”. PACLING
2001. pp. 199--206.

Pollard, C. and I. Sag. (1994) Head-Driven Phrase
Structure Grammar, Chicago: University of
Chicago Press, and Stanford: CSLI Publications.

Yoo, Hiyon & Kim Gerdes, 2004, "A dependency
account of Korean Word Order" Linguistic
Society of Korea 2004, Seoul

