
HAL Id: halshs-00112129
https://shs.hal.science/halshs-00112129v1

Preprint submitted on 7 Nov 2006 (v1), last revised 19 May 2008 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fusion of experts’ opinions on climate sensitivity with
the Transferable Belief Model

Minh Ha-Duong

To cite this version:
Minh Ha-Duong. Fusion of experts’ opinions on climate sensitivity with the Transferable Belief Model.
2006. �halshs-00112129v1�

https://shs.hal.science/halshs-00112129v1
https://hal.archives-ouvertes.fr
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Minh Ha-Duong∗
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Abstract

This paper aggregates experts’ opinion on the climate sensitivity pa-
rameter from Morgan and Keith [1995] using the Transferable Belief Model.
The non-independence of experts issue is dealt with by organizing experts
into schools of thought, requiring non-interactivity only across but not
within groups. The issue of dissonance, that is wide qualitative differences
in beliefs, is dealt with by using a disjunctive rather than conjunctive rule
to combine the groups. We find the fusion do not support the idea that
climate sensitivity must necessarily be within the IPCC range at any level,
that the plausibility of the [4.5, 12] range is about 0.62, and for [6.0, 12]
it is 0.31.

1 Introduction

This paper aggregates experts’ opinions on the climate sensitivity parameter
from Morgan and Keith [1995] using the Transferable Belief Model.

Data come from structured interviews using “expert elicitation” methods
drawn from decision analysis with 16 leading U.S. climate scientists. The study
obtained quantitative, probabilistic judgments about a number of key climate
variables. One of them is the climate sensitivity parameter, which can be defined
as how much global warming there would be in the long term, if atmospheric
CO2 concentration was doubled relative to its pre-industrial levels.

Reichert and Keith [2001] noted that two aspects of this dataset are critical
if one tries to combine them into a single judgment on climate sensitivity. First,
the 16 experts are not independent, they are part of a research community
regularly sharing data, models and ideas. Second, opinions on climate sensitivity
are widely different in qualitative terms: in terms of Evidence Theory, there is
a high degree of dissonance in beliefs.

∗Chargé de recherche au CIRED-CNRS. Mail to haduong@centre-cired.fr. This research
was supported by the Centre National de la Recherche Scientifique, France and by the Center
for Integrated Assessment of Human Dimensions of Global Change, Pittsburgh PA (created
through a cooperative agreement between the National Science Foundation (SBR-9521914)
and Carnegie Mellon University

1



To deal with this dissonance, this paper groups experts’ probability distribu-
tions in four classes, with a low dissonance within each group. Classes are based
on the elicited range of possible values for the climate sensitivity parameter (see
Figure 2). Distributions from experts 2, 3 and 6 are the widest, they allow
both a positive probability to cooling and to climate sensitivity well above 6◦C.
Distributions from experts 4, 7, 8, 9 do not give weight to cooling, but have an
upper bound above 8◦C. Probability distributions of experts numbered 1 and
10 to 16 are formulated on a range with width between 4.2 and 5.5◦C. Expert’s
5 probability distribution lie in the narrowest range [0◦C, 1◦C].

Section 2 immediately below reviews prior works on combining experts opin-
ion on climate sensitivity. In section 3, some acquaintance with the Dempster-
Shafer theory of evidence Shafer [1976] is assumed, as the text briefly reminds
the mathematical notations for the elements of the Transferable Belief Model
used in this paper. in that paper, only three different combination rules will be
used. They differ as follows:

• The fusion of independent experts is computed using operators appro-
priate for “non-interactive” information sources. When there is no in-
dependence, the fusion of interactive sources is computed using different
operators, called “cautious” combination rules below.

• In the same way that logical propositions can be connected by conjunc-
tion (AND) or disjunction (OR), fusion operators can be conjunctive or
disjunction. The former are used to combine information sources when
assuming that they are all correct. The later are used when assuming
that at least one source is right, but one does not know which one.

The three combination rules used below are a noninteractive conjunction, a
noninteractive disjunction and a cautious combination operator, the later intro-
duced by Denoeux [2006].

Section 4 aggregates the experts’ opinion using these rules. It uses a two-
stages procedure, based on idea that each of the four experts groups distin-
guished above is a “school of thought”. The first stage is to combine within
groups beliefs using a cautious combination operator. The second stage is to
combine the four groups together using a non-interactive disjunction operator.
Section 5 discusses, 6 concludes.

2 Literature

IPCC [2001b, Technical Summary F.3] states that “climate sensitivity is likely
to be in the range of 1.5 to 4.5◦C”.

This parameter is critical for climate policy. According to current trends,
humankind is well on track to double the CO2 concentration in the Earth’s
atmosphere. According to IPCC [2001a] assessment, 2◦C of global warming al-
ready raises several serious reasons for concern such as the risks to many unique
and threatened ecosystems, or a large increase in the risk from extreme climate
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T2x ∈ [0◦C, 1.5◦C] [1.5◦C, 4.5◦C] [4.5◦C, 10◦C]
Prior [0, 0.07] [0.31, 0.98] [0.02, 0.62]
Posterior [0, 0.00] [0.53, 0.99] [0.01, 0.47]

Table 1: Imprecise probability results from Kriegler (2005) on the climate sen-
sitivity parameter T2x. The prior summarizes PDFs from the literature, the
posterior is updated with Dempster’s rule.

events. Thus, if climate sensitivity was at the lower end of the uncertainty
range, 1.5K, one could argue that doubling the CO2 concentration would be
somewhat consistent with UNFCCC ultimate objective. But if climate sensi-
tivity was at the upper end, 4.5K, then doubling the CO2 concentration would
almost certainly be a dangerous interference with the climate system. This is
why over the last two decades, climate sensitivity has become one of the main
communication anchors between the scientists and policymakers to quantify the
seriousness of the climate change issue, as discussed by van der Sluijs [1997].

The mainstream way to represent the uncertainty about climate sensitivity
is to give a probability density function (PDF). Such PDFs are discussed for
example in Hegerl et al. [2006, Figure 3], where the authors estimate that the
5-95 per cent confidence range of climate sensitivity is 1.5 - 6.2◦C, and argue
that the previous literature overestimated that range’s upper bound.

A more sophisticated way represent to uncertainty about climate sensitivity
is to use imprecise probabilities. This approach implies that probability ranges
rather than point values are reported. In Kriegler [2005] the author first esti-
mates a prior imprecise distribution based on the literature, and then updates
it using a climate model and observational data for 1870–2002. Updating was
done by both Dempster’s rule and the Generalized Bayes Rule, but only Demp-
ster’s rule produced meaningful results. Table 4.3 in the reference summarizes
those results as follows:

For example, the posterior results suggest that the probability of climate
sensitivity being less than 1.5◦C is very small (0.00 meaning less than 1 per
thousand). In the posterior, the probability that climate sensitivity falls IPCC
range is between 0.53 and 0.99. This interval is consistent, if somewhat wider,
with IPCC’s qualification that the range is “likely”, meaning with a probability
between 66 and 90 percent.

[Reichert and Keith, 2001] previously looked at the question of how to com-
bine the experts judgments on climate sensitivity from Morgan and Keith [1995].
The 5-95 percent fractile shall not be reported here, since the authors make it
clear that they do not draw conclusion about future temperature change. Their
point is rather that it is necessary to use imprecise probabilities. Based on this,
they offer a bayesian aggregation technique where the combined probability dis-
tribution do not necessarily narrows as the number of experts is increased, and
that is more robust with respect to extreme experts judgments than previously
published techniques.

This paper deals very much with the same subject matter as [Reichert and
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Keith, 2001], and Kriegler [2005], but using a different flavor of imprecise prob-
abilities: the Transferable Belief Model.

3 Elements of the Transferable Belief Model

3.1 Cautious and noninteractive combination rules

The Transferable Belief Model represents uncertainty by allocating the unit
mass of belief among subsets of a given frame of reference Ω. It allows a non-
zero mass to the empty subset ⊘. Formally, a basic belief assignment (BBA) is
a function m : 2Ω → [0, 1] such that:

∑

A⊂Ω

m(A) = 1 (1)

For any two real-valued subset functions µ1 and µ2, we denote µ1∩2 the
product of the ∩ combination rule defined by:

µ1∩2(A) =
∑

B∩C=A

µ1(B)µ2(C) (2)

When µ1 and µ2 are BBAs, this is the TBM noninteractive conjunction. For
any subset A ⊂ Ω and real number w, we denote Aw the function µ : 2Ω → ℜ
such that:

µ(A) = 1 − e−w

µ(Ω) = e−w

µ(B) = 0 otherwise
(3)

When w ≥ 0, the function Aw is a BBA. A BBA m is said to be:

simple if there is a subset A ⊂ Ω and a weight w ≥ 0 such that m = Aw. It
represents reason to belief that the state of the world is in A to an extend
w.

non-dogmatic if m(Ω) > 0. Here all simple BBAs are non-dogmatic.

vacuous if m(Ω) = 1, and m(A) = 0 if A 6= Ω. This is also A0 for any A.

separable if there is a weight function w(.) : 2Ω → [0,+∞) such that:

m(A) = ∩A⊂Ω,A 6=ΩAw(A) (4)

Note that the value of w(Ω) is irrelevant, since the vacuous BBA is the
identity element for ∩.

The negation m of a BBA m is defined by m(A) = m(A), where A denotes
A’s complement in Ω. For any two subset functions m1 and m2, the TBM
noninteractive disjunction m1∪2 is defined by:

m1∪2(A) = m1 ∩ m2 =
∑

B∪C=A

m1(B)m2(C) (5)
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For any non-dogmatic BBA m, there is a weight function w(.) in ℜ (it may
take negative values) such that equation 4 holds. The weights can be computed
using a function q called the commonality function associated with BBA m (in
what follows |A| denotes the number of elements of subset A):

q(A) =
∑

B⊇A

m(A) (6)

w(A) =
∑

B⊇A

(−1)|B|−|A| ln(q(B)) (7)

For any two non-dogmatic BBA m1 and m2, with corresponding weight
functions w1 and w2, the non-interactive conjunction can be computed by adding
the weight functions:

m1∩2(A) = ∩A⊂Ω,A 6=ΩAw1(A)+w2(A) (8)

Denoeux [2006] defines the cautious combination m1 ∧m2 denoted m1∧2 by
taking the maximum of the weight functions1:

m1∧2(A) = ∩A⊂Ω,A 6=ΩAmax(w1(A) , w2(A)) (9)

All three combination rules are commutative and associative, ensuring that
experts are treated symmetrically when combined with them. The cautious
rule combination is idempotent, i.e. m ∧ m = m for all m. This ensures that
an expert’s opinion cannot be double-counted. Moreover, the cautious rule
distributes over the noninteractive rule:

(m1 ∩ m2) ∧ (m1 ∩ m3) = m1 ∩ (m2 ∧ m3) (10)

This implies that when expert A’s belief result from the noninteractive con-
junction of two pieces of evidence represented by m1∩m2, and expert B’s belief
result from mB = m1∩m3, in the fusion of A’s and B’s belief the shared evidence
m1 is not counted twice.

3.2 Relations between BBAs, probabilities and possibili-

ties

Any probability function p : Ω → [0, 1] immediately defines a BBA m by:

m({ω}) = p(ω) for any element ω ∈ Ω
m(A) = 0 if |A| > 2 or |A| = 0

(11)

Any BBA m such m(⊘) 6= 1 that defines a probability function p, called the
pignistic probability function of m, by:

1In this paper, w is the opposite of the log of what Denoeux [2006] denotes with w
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p(ω) =
1

1 − m(⊘)

∑

ω∈A

m(A)

|A|
(12)

Any possibility function π : Ω → [0, 1] immediately defines a BBA m which
can be computed via its commonality function as follows2:

q(A) = min
ω∈A

π(ω) (13)

m(A) =
∑

B⊇A

(−1)|B|−|A|q(B) (14)

For any BBA m, one can consider the commonality of singletons :

π(ω) = q({ω}) =
∑

ω∈A

m(A) (15)

This function π in [0,1] is not always a possibility distribution, its maximum
may be less than 1. For example, if we start from a probability function p, using
equation 11 then equation 15 gives back p itself.

Smets [2000] defines the following transformation between a probability p

and a possibility π. Order the probability levels such that pn1
> . . . > pn|Ω|

,
consider the sets Ak = {ωn1

, . . . , ωnk
} and assign to Ak the belief mass:

m(Ak) = |A| × (pnk
− pnk+1

) (16)

with the convention that p|Ω|+1 = 0. The procedure is illustrated Figure 1,
which makes it is apparent that equation 1 is verified and m is indeed a belief
mass assignment: instead of cutting the unit belief mass distribution in vertical
slices, one is cutting it in horizontal slices. It is obvious that q(ωn1

) = 1, thus
equation 15 defines a possibility distribution.

The pignistic probability of the m obtained with this procedure is p itself.
Smets [2000] justifies the probability-possibility transformation used here by a
principle similar to maximum entropy: among all belief assignments admitting
pignistic probability distribution p (this set is never empty as it contains at
least the BBA immediately defined by p itself), choose the one that is the most
uncertain (i.e. that maximizes q pointwise).

4 The aggregation

4.1 Implementation

The equations above were implemented in Mathematica, using matrix calcu-
lus for belief functions described in Smets [2001]. For the sake of numerical
tractability, the climate sensitivity range [-6◦C, 12◦C] was subdivided in seven
of mutually exclusive and collectively exhaustive ranges:

2Equation 14 is the converse of equation 6 and parallels equation 7.
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Figure 1: Top, probability distribution from expert 1. The width of each rect-
angle is 1, and its height is proportional to the probability. Bottom, the corre-
sponding belief function. The outline remains the same, but the slices are cut
horizontally.
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Ω = {ω1, . . . , ω7}

= {[−6, 0], [0, 1.5], [1.5, 2.5], [2.5, 3.5], [3.5, 4.5], [4.5, 6], [6, 12]}

Each expert’s probability distribution on Ω were computed from the elicited
PDFs Pi:

pi{ω1} = Pi

(

−6 ≤ ∆T2×CO2
< 0

)

pi{ω2} = Pi

(

0 ≤ ∆T2×CO2
< 1.5

)

. . .

Then the procedure described above equation 16 was used to compute the
implicit BBA mi and the corresponding possibility distribution πi associated
with each expert’s probability distribution pi. Figure 2 represent pi and πi for
the 16 experts. Four qualitatively different groups of distributions can be seen:
Experts {2,3,6} allow cooling. Experts {4,7,8,9} allow high outcomes but no
cooling. Experts {1,10-16} disallow extreme cases, and expert {5} distribution
is concentrated on [0◦C,1◦C].

The implicit BBAs mi are dogmatic except for experts {2,3,6}. This is
technically a problem, as weights are defined for non dogmatic BBAs. It was
fixed by discounting experts beliefs by 0.01. Denoting m0 the vacuous BBA, we
replaced mi by m′

i defined as:

m′
i = 0.99mi + 0.01m0 (17)

This can be justified by three reasons. One, no expert is 100% reliable.
Two, the elicitation of expert’s probability distributions was necessarily coarse,
so experts who allocated no significant probability weight to extreme outcomes
might have agreed that there was a very small possibility. Third, the theoretical
literature suggests that the fusion operators can be extended by continuity to
dogmatic BBAs.

4.2 Result

The fusion uses a two-stages procedure, based on idea that each of the four
experts groups distinguished above is a “school of thought”. The first stage
assumes that within a school of though, all experts are right, but they are not
independent. Thus, their beliefs are combined using a cautious combination
operator:

mA = m′
2 ∧ m′

3 ∧ m′
6 (18)

mB = m′
4 ∧ m′

7 ∧ m′
8 ∧ m′

9 (19)

mC = m′
1 ∧ m′

10 ∧ · · · ∧ m′
16 (20)

mD = m′
5 (21)
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Figure 2: The probability (grey histograms) and implicit possibility (dotted
lines) for the 16 experts in [Morgan and Keith, 1995]. The vertical axis goes
from 0 to 1. The horizontal axis discretizes the [-6◦C, 12◦C] climate sensitivity
range into seven intervals using a non-uniform subdivision at -6, 0, 1.5, 2.5, 3.5,
4.5, 6 and 12◦C. Four qualitatively different groups of distributions can be seen:
Experts 2,3,6 allow cooling, 4,7,8,9 allow high outcomes but no cooling, 1,10-16
disallow extreme cases, and 5 is concentrated on [0◦C,1◦C].
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Figure 3: Result of the fusion’s first stage, within-group.

To give an idea of the resulting BBAs, figure 3 represents the commonality
of singletons. Note that these BBA do not derive from a possibility function
in the meaning of equation 14, but it is not convenient to display the full set
functions mA, mB , mC , and mD.

Within each group, the qualitative divergence is mostly eliminated, so that
the fusion do not lead to a collapse of beliefs. This can be quantified as the
Transferable Belief Model takes the belief mass associated with the empty set
as a measure of dissonance. The worst group is C, with mC(⊘) = 0.13. This
compares very well to the outcome of the cautious combination of all 16 experts
together, where the disagreement index is 0.94.

The second stage is to combine the four groups together using a non-interactive
disjunction operator. When several scientific theories compete to explain the
same observations, it should not be assumed that both are true at the same
time (conjunction), but that at least one will remain (disjunction).

m∗ = mA ∪ mB ∪ mC ∪ mD (22)

Figure 4 and the first two lines of table 2 display the pignistic probability
and the commonality on singletons associated with the fusion m∗. The complete
m∗ is tabulated in Annex A.

In order to compare with table 1, we computed the imprecise probability
ranges defined by m∗ for the outcomes “climate sensitivity is below, within and
above the IPCC range”. The lower bounds are zero. In particular, the fusion
do not support the idea that climate sensitivity must necessarily lie within the
IPCC range at any level. This differs from Kriegler’s results, which found the
degree of belief in the IPCC range to be .31 in the prior and .53 in the posterior.
This difference can be attributed in part to the effect of expert 5, as removing
mD from the fusion yields a belief level for the IPCC range of 0.13.

Regarding the most worrysome outcomes, that climate sensitivity is above
4.5◦C, the fusion’s result is [0, 0.62]. This matches table 1 perfectly, although
it is based on different data.

10



Outcome ω [-6,0] [0,1.5] [1.5,2.5] [2.5,3.5] [3.5,4.5] [4.5,6.0] [6.0,12]
q({ω}) 0.48 1. 1. 0.99 0.74 0.59 0.31
Pignistic probability 0.08 0.21 0.21 0.21 0.14 0.10 0.05

Sensitivity analysis, q({ω}) for different fusion rules
A: Discount 0.001 0.47 1. 1. 0.99 0.73 0.58 0.30
B: ∩(0.5mi + 0.5m0) 0 0.05 0.35 0.22 0.03 0 0
C: ∧(0.5mi + 0.5m0) 0.03 0.34 0.45 0.37 0.18 0.08 0.03
D: ∧(m′

i) 0 0.05 0.01 0.01 0 0 0
E: ∪(pi) 0.32 1 1 0.99 0.91 0.74 0.42

Table 2: The fusion of experts opinion on climate sensitivity. Top two lines,
commonality of singletons q({ω}) and pignistic probability associated with m∗,
the result of the staged fusion procedure. Case A to E below, commonality of
singletons for various alternative fusion rules considered less justified for this
dataset. The commonality of singletons is identical to the level of plausibility
of singletons, it can be seen as an upper bound of admissible probability.

Figure 4: Result of the fusion, using the non interactive disjunction across
groups.
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5 Discussion

5.1 Alternative combination rules

Table 2 bottom half presents the results of alternative fusion rules, numbered
from A to E.

Case A is obtained by replacing the discount weight .01 by .001 in the staged
fusion procedure. This is to check that results are not significantly affected by
the technical discounting coefficient introduced equation 17. Indeed, this did
not change the results’ belief masses by more than 0.01.

Case B display the result of the procedure that discount experts heavily, then
fusion all experts using the non interactive conjunction: ∩(0.5mi +0.5m0). This
procedure was not chosen for m∗ since the choice of the reliability factor 0.5 is
hard to justify and experts do interact. Because there is a lot of dissonance, the
empty subset receives a large belief mass. Dempster rule of combination would
multiply the resulting BBA by 1

1−m(⊘) to renormalize it, but this add another

step that we find hard to justify.
Case C improves the previous procedure by using a cautious rather than

noninteractive combination rule: ∧(0.5mi + 0.5m0). The arbitrariness of the
0.5 factor remains. We did not study procedures that gave different discounting
weights to experts, as there is no clear guidelines on how to do that. It may
well be that in practice, people tend to give more attention to experts that have
a small range of uncertainty. That would be problematic from a mathematical
point of view for the fusion, as this would increase rather than decrease the issue
of dissonance.

Case D illustrates several issues with conjunctive rules. It displays ∧m′
i,

differing from C by changing the discount factor back to 0.01. Outcomes 1, 6
and 7 have zero possibility, and outcomes 3 and 4 have possibility 0.01. This
illustrates the “veto” problem: as soon as one expert gives probability zero
to an outcome, it can’t appear in the conjunction at a level higher than the
discount rate. Since that one is not elicited from the experts, it is a serious
issue. The remaining belief mass concentrates on outcome 2. Renormalizing
the distribution to cancel the contradiction would lead to a misleading result
suggesting that outcome 2 is a concensus view, while in fact it is only the
outcome present with a nonnegative but small probability for all experts. This
is a well known paradox that justifies why in the Transferable Belief Model
m(⊘) > 0 is allowed.

Finally, case E shows ∪(pi) the fusion is done using the BBAs immediately
defined by expert’s probabilities. This is a noninteractive disjunction, since the
noninteractive conjunction has the same issues with dissonance as the previous
case D. This fusion operator is interesting, as it does not require to apply the
probability-possibility transformation first, without discounting or renormaliza-
tion. However, experts in this dataset do interact. For the record, the pignistic
probability function in this case E is (0.05, 0.19, 0.19, 0.19, 0.17, 0.17, 0.07).

Cautious disjunction was not used in this paper mainly because we did not
find it properly analyzed in the theoretical literature. The literature offers are
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many more rules to combine beliefs, there is no space to discuss them all, see
Smets [2005] for a survey and Dezert [2002] for interesting developments.

5.2 Alternatives to combination rules

This paper uses a mathematical procedure to aggregate experts opinion. In this
kind of procedure, assumptions about the independence and the reliability of
the information sources have to be made. These assumptions are personal to
the entity performing the fusion. As we have seen, they largely determine the
ultimate result, especially when information sources are in conflict. This needs
discussion, since ideally the results should depends mostly on what the experts
said, rather than on the author’s choices. The combination of experts’ opinion
do not has to be done by the middlemen, it can also be left to the decision-maker
or to the experts themselves.

One way to avoid the use of mathematical procedures altogether is to rely
on behavioral approaches where experts directly interact with each other. To
facilitate the interactions and ensure the rationality of the outcome a variety of
tools can be used such as the well-known DELPHI method; the IPCC writing
process; or having the experts trade contingent assets on prediction markets
Wolfers and Zitzewitz [2004]. Another method based on imprecise probabilities
was proposed by Nau [2001]. Advantages of behavioral approaches is that col-
lective deliberation is a natural social process, and that the group judgment is
more legitimate since it comes from the experts themselves. Drawbacks is that
experts interaction are time consuming, and these approaches cannot be used
in automated information processing to model learning.

Expert aggregation can only lead to a loss of information, so it may be
sometimes better to leave with the decision-maker the task of the combining
the judgment of all experts. This is the position explicit in Morgan and Keith
[1995]. Keith [1996] argue in more details why that combining experts is rarely
appropriate, and suggests instead to use alternative analysis framework such as
seeking robust adaptative strategies or using scenarios analysis to bound the
problem.

I concur that if the goal is to obtain a single precise probability distribution
from which expected utility maximization can provide an optimal answer to all
policy issues, then combining experts is a gross oversimplification of reality. But
when decisions involve different parties, each will tend to break the symmetry
of the elicitation process by myopically focusing on the results best supporting
their interest. Another risk is that organizations seeking a balanced point of
view would overemphasize the most extreme positions in the group, even when
they are actually a minority not representative of the expert’s general opinion.

Moreover, if the goal is to obtain an imprecise probability distributions,
then it do not necessarily follows that one is laying ground for an exercise in
expected utility-maximization. Less single-minded rules for decision making
under uncertainty are discussed in [Bewley, 2002, Walley, 1991]. Combining
experts judgement can be used to quantify the parameters in the alternative
robust analysis frameworks. For example, this paper’s possibility distribution
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was actually computed as part of a larger exercise to build global warming
scenarios.

6 Conclusion

An original information fusion method has been applied to combine expert’s
opinion on climate sensitivity. It is based on a simple model of experts’ social
relations: they are divided in schools of thought. This method requires to
formalize in logical terms the meta-information about the experts, but avoids
the problem with discounting and/or renormalization of beliefs.

Within each school experts opinions are aggregated using the cautious combi-
nation operator of the Transferable Belief Model. This operator do not assume
independence, which is a preferable assumption since in this dataset experts
were obviously highly interactive sources of information.

Then the groups beliefs were aggregated using the noninteractive disjunction.
This do not assume that all competing theories are right, but that at least one
is. When several scientific theories compete to explain the same observations, it
should not be assumed that both are true at the same time (conjunction), but
that at least one will remain (disjunction).

As in the previous literature, the fusion allows a high (0.62) plausibility that
climate sensitivity is actually above 4.5◦C. The policy-relevance of this result is
mitigated by the fact that the data is outdated compared to the future IPCC
Assessment Report 4. However, there is no evidence that experts beliefs on
climate sensitivity have evolved downwards since 1995. Evidence theory could
also be used to represent learning in a dynamic context, when information on a
changing world is collected sequentially, but this requires more research.

In the context of this special issue, this paper shows how learning can proceed
from conflicting sources of information. It reminds that learning is not simply
an accumulation of observational data over time towards smaller uncertainty
ranges. While evidence from repeated controlled experiments should indeed
be fusioned with conjunctive rules, when a new scientific theory or explana-
tion emerges it should be treated as disjunctive learning, increasing uncertainty
ranges.
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Annex A: The full m
∗ result of the fusion

subset A m∗(A)
{2} 0.0001
{3, 2} 0.0074
{4, 2} 0.0033
{4, 3, 2} 0.1587
{4, 3, 2, 1} 0.0064
{5, 4, 2} 0.0011
{5, 4, 3, 2} 0.1321
{5, 4, 3, 2, 1} 0.0709
{6, 4, 3, 2} 0.0267
{6, 4, 3, 2, 1} 0.0129
{6, 5, 4, 3, 2} 0.0888
{6, 5, 4, 3, 2, 1} 0.1811
{7, 4, 3, 2} 0.0211
{7, 5, 4, 3, 2} 0.0063
{7, 6, 4, 3, 2} 0.0135
{7, 6, 4, 3, 2, 1} 0.0105
{7, 6, 5, 4, 3, 2} 0.0632
{7, 6, 5, 4, 3, 2, 1} 0.1956
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