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Optimal Matching and Social Sciences

Laurent Lesnard

This working paper is a reflection on the conditiorequired to use optimal
matching (OM) in social sciences. Despite its gtdksuccess in biology, optimal
matching was not invented to solve biological geestbut computer science ones:
OM is a family of distance concepts originatingirnformation and coding theory
were it is known under various names among whiciidang, and Levenshtein
distance. As a consequence, the success of thithet biology has nothing to do
with the alleged similarity of the way it operateih biological processes but with
choices of parameters in accordance with the kihianaterialsand questions
biologists are facing. As materials and questiafferdin social sciences, it is not
possible to import OM directly from biology. Theryebasic fact that sequences of
social events are not made of biological matterdfi@vents and time is crucial for
the adaptation of OM: insertion and deletion operet warp time and are to be
avoided if information regarding the social regigiatof the timing of event is to be
fully recovered. A formulation of substitution ceseking advantage of the social
structuration of time is proposed for sequencesirsfpghe same calendar: dynamic
substitution costs can be derived from the serfasansition matrices describing
social sub-rhythms. An application to the questidrthe scheduling of work is
proposed: using data from the 1985-86 and 19984@hdh time-use surveys,
twelve types of workdays are uncovered. Their priiability and quality,
assessed visually through aggregate and indivitkrapograms, and box plots,
seem satisfactory.

Ce document de travail se veut une réflexion surcteslitions d’utilisation des
méthodes d’appariement optimal en sciences socilesdépit de ses succes
retentissant en biologie, I'appariement optimal pas été inventé pour résoudre
des problémes en biologie mais en informatiquenethéorie du codage ou il est
connu notamment sous les noms de distance de Hanehide Levenshtein. Par
conséquent, le succes de cette méthode en biolamigen a voir avec la possible
ressemblance de son mode opératoire avec des gusdaslogiques mais provient
de choix de parameétres cohérents avec le type t&igl@t de questions auxquels
les biologistes font face. Parce qu'en sciencesalesc les séquences sont
composées d'événements et de temps, les succéwskda biologie ne peuvent
étre importés directement. En particulier, les apéns d'insertion et de
suppression distordent I'échelle temporelle et eoivétre évitées dés lors que
I'objectif de l'analyse est de repérer la régulatisociale du timing des
événements. Une formulation des colts de substittitiant profit de la structure
sociale du temps est proposée pour les séquendegagiagent le méme
calendrier : des colts de substitution dynamiqeesent étre dérivés de la série de
matrices de transitions qui décrit les sous rythrib® application a la question
des rythmes de travail est proposée : douze tygegournées de travail sont
identifiés dans les enquétes sur I'emploi du terdpsisées par I'Insee en 1985-86
et 1998-99. Leurs interprétabilité et qualité, eieement évaluées au travers de
chronogrammes agrégés et individuels et de diagemmén surfaces, apparait
satisfaisante.

! Observatoire sociologique du changement (Sciepoe&- CNRS) and Laboratoire de sociologie quantitative
(Crest — Insee). Please address correspondenmerémt.lesnard@sciences-po.fr.



Introduction

Dynamic statistical models appeared in social sgerat the dawn of the 1980s: in the first review
dedicated to dynamic models, Nancy Tuma, Michaehrtaa and Lyle Groeneveld (1979) were
enjoining social scientists to incorporate thesev rieols made available by the development of
personal computers. This “dynamic turning points lhe@en successful in view of the widespread use of
dynamic regressions and other duration models disaweheir growing sophistication. According to
Andrew Abbott (1998), this success can be attrithtitea large extent to the first generation of siser
who was also successful in turning this methodalignovelty into academic power, but also to the
“causal devolution” in social sciences and the obstantial devaluation of description in favor of
modeling.

However, rather than being used in a true hypathtesiting perspective, statistical models are
generally used as descriptive tools (Abbott, 1998)is is not completely absurd since statistical
models and descriptive tools both aim at represgrdata in the best possible way. Both stegistical
abstraction$, but with different degrees in abstraction: modate more abstract as a result of
additional assumptions madeHowever, this greater simplification power isdila for it relies
completely on those assumptions, sometimes untestal often untested.

Consequently, the problem of modeling is not veiffecent from the more general issue of
articulating statistical abstractions with the realorder to be faithful to facts, simplificatianust be
progressivé In this respect, statistical abstractions devedofor the analysis of sequences are limited
to models resting on hypotheses which are all tlweenstrong that no basic descriptive methods
adapted to this kind of data are equally availaBleew tool, Optimal Matching (called OM in the res
of this paper), introduced in social sciences by Abbott and other authors (Abbott, 1984; Abbott
and Forest, 1986; Abbott and Hrycak, 1990) is adgoandidate to describing sequences of social
events. However, this new descriptive method hayetcbeen adopted by social scientists.

In OM, the degree of dissimilarity between two sges is determined by the least number of edit
operations that are necessary to turn one sequattcéhe other (i.e. to match the two sequences).
Three kinds of edit operations are generally usesertion, deletion, and substitution. OM will be
introduced in more details later, at present ibbidy necessary to understand that sequences are
manipulated, transformed, altered, with the hel@afertain number of basic operations, in order to
assess their degree of similarity.

In the ancestor of OM, the Levenshtein distancev€bshtein, 1966 [1965]), the three basic
operations are given equal weights: each operatists one unit. In theory, the choice of a costesys
determines the matching procedure and to a ceztdent the results obtained. In social sciencestmo
OM users claim that results are little affecteddhanges in the relative weights of the three basic
operations (for a review see Abbott and Tsay, 2000) detractors have been interpreting this as a

2 This expression is used by Francois Simiand irséisinal book on the use of statistics in socirames (1922).

% The affinity between regression analysis and spwadence analysis is better seen when the geometri
dimension of regression is taken into account.rore details about this subject, see Rouahat. (2002) and Le
Roux and Rouanet (2004).

“ “Ne nous lassons donc pas de répéter que, poirrehance de ne pas se prendre a des représestatemctes
et par suite a des coincidences fortuites ou trosg® notre expérimentation statistique doit tagjstappliquer a
saisir, d’abord, dans son allure propre le faitdé&ua le saisir dans lauccession de ses phasésns la
décomposition de ses partigisc’est le cas ; et si elle en simplifie ensliggpression, comme il est peut-étre utile
ou nécessaire pour la recherche méme, si elleisseléomber telles ou telles particularités po@nr’etenir que
certaines autres, elle doit savoir qu’elle faiteetlimination et pourquoi et avec quelles consigee possibles
sur les résultats ultérieurs. ” (Simiand, 19224§).



sign, not of robustness, but, often mistaking O damodel, of weakness (Levine, 2000). There has
also been concern about the sociological meanirtgeothree basic operations of OM (Levine, 2000;
Wu, 2000; Elzinga, 2003): it has been argued tatdgitimacy of OM in biology was stemming from
the theoretical relevance of the three edit openatiln sociology, these operations seem looseketl

to theory and the choice of a particular cost systpears arbitrary. As a set of descriptive tools,
however, it seems natural that the optimal matchinglysis of sequences with different cost settings
yields roughly the same results (Abbott, 2000). &tbeless, if OM is not to be limited to exploratory
analysis, then attention should be paid to theferdnces, hence to the empirical and sociological
consequences of cost settings, or in other wordheosociological meaning and consequences of
sequence transformations in OM.

This working paper tries to address this issue mndrganized as such. It is meant to be a
methodological as well as a theoretical reflectionthe use of OM in social sciences but neither an
exhaustive review of the different use of OM iniabsciences nor an in-depth technical presentation
of OM°. However, OM is first presented in a non-technigay but with sufficient details to grasp its
functioning. As biology is often referred to whdmetuse of OM in social sciences is assessed the
specificity of the use of OM in this scientific dipline is emphasized. In order to understand the
specificity of sequences in social sciences, tlworsd part of this paper focuses on time and on the
epistemological consequences of OM in this resp®ehethod is proposed taking into account these
specificities. Finally, an application of this methto work schedules is presented.

Optimal Matching and its use in biology

A short history and non-technical presentation of @timal Matching

Optimal Matching is a family of dissimilarity meass between sequences derived from the
distance originally proposed in the field of infation theory and computer science by Vladimir
Levenshtein (1966 [1965]). What is known in biolpgyd now in social sciences, under the name of
sequence analysis in fact coming from research ending theoryandstring editing Coding theory
refers to the body of research dealing with thepéon of coded information through noisy channels
such as radio or telegraph. Strings are basic casme of computer science and the indispensable
‘find’ or ‘replace’ functions of text processingfaware are probably the most obvious implementation
of such algorithms.

The Levenshtein or edit distance between two sempgerfor string in the computer science
vocabulary) is given by the smallest number of afilens needed to turn one sequence into the other
(i.e. to match them). The different edit operati@®wed, insertion, deletion, or substitution, are
penalized by a cost, which is equal to one in thgirmal version of OM6. Levenshtein also suggested
using only insertion and deletion operations to amattrings. These two Levenshtein distances are
usually considered as an improvement of the distgmroposed by Richard Hamming (1950). The
Hamming distance between two sequences is the nuofbsubstitutions required to change one
sequence into the other. As a result, and contatile Levenshtein distance, the Hamming distance
can only be applied to sequences of equal length.ihteresting to note that the Hamming distaisce
related to the Manhattan distance, or L1 distanmh as a consequence, is not a Euclidean metric.

5 A review of recent applications of sequence anglyssocial sciences can be found in Abbott aralyT2000).
The standard text on sequence analysis in compuaiences and computational biology is Sankoff andskal
(1983). A more recent reference is Durbtral. (1998).

5 Kruskal suggests a substitution penalty at legaakto 2, arguing that if the substitution cosgisater than 2
than “it is always shorter for a listing to useaeation-insertion pair in place of a substitutiand if [it is equal to
2] itis as short” (1983, p. 18).



Consequently, OM refers to the more general solupmposed by Levenshtein to the problem of
sequence comparison and encompasses two part@agas: when comparison is restricted to either
substitution or insertion-deletion operations (¥able 1)

Operations used

Substitution Insertion and deletion
Hamming Yes (cost=1) No
Levenshtein | (OM) Yes (cost=1) Yes (cost=1)
Levenshtein Il No Yes (cost=1)

Table 1 — OM and the Hamming and Levenshtein distaces

For example, the Levenshtein | distance betweersélggenceS$S1andS2 (see Table 2) is 2. The
matching process can be represented in a matrixenh@rizontal, vertical, and diagonal movements
correspond to the three edit operations (respdgtiae insertion, a deletion and a substitution) and
each cell contains the cumulated minimum cost tacheit (see Figure 1). The optimal path is
represented by connected circles. The Hammingriisthetweei®1andS2is simpler to calculate: as
there is noepisodé common to the two sequences, the distance isa4,ighto say the length of the
sequences.

Episodes
0 1 2 3

S1 A B C
S2 D A B C

1| c 1-@

Figure 1 — Matrix representation of the Levenshteirdistance calculation betweersl and S2

The matrix representation of the matching procedpshto understand how the algorithm works.
OM is by definition an optimization problem: alletipossible combinations of edit operations to match
two sequences must be considered in order to fgeeh# most efficient solution. This problem can be
solved recursively by dynamic programming and iselgaon the fact that there are only three
possibilities to attain a cell: from the left, thep or the diagonal. Each of these three directions
corresponds to an edit operation: if the sequemaratch is in the columns of the matrix (as in Fégu

" Thei™ episode is understood here asitheomponent of a sequence. Therefore, an episodthéasme location
in all the sequences.



1), then a horizontal movement represents thetinseof the corresponding column element after the
corresponding row element, a vertical movemerntésdeletion of the corresponding row element and
a diagonal movement is either a cost free movernidhie elements of the corresponding row and
column are identical or a substitution if not. Eaeffl contains the minimum cumulative cost to reiéch
from one of these three possibilities: the top tefll contains 0 and is the starting point whertsas
bottom right cell contains the dissimilarity measof the two sequences.

The correspondence of the horizontal and vertiGatements with insertion and deletion operation
is reversed when the target sequence is not lodatibe first row of the matrix but in the firstlconn:
insertion and deletion operations are symmetrica this is why their costs are always identical in
OM. This symmetry can also be seen when the tagmience is still located in the first row but this
time is notS1but S2 (see Figure 2): the matching matrix is in thisect®e transposed version of the
previous matrix. Insertion and deletions are synnicedt operations and are often jointly referred as
indef or asgapsin biology.

2 c 1

3 D O

Figure 2 — Matrix representation of the Levenshteirdistance calculation betweers2 and S1

In theory, the choice of a cost system determimeg $equences are matched and to a certain extent
the dissimilarities obtained. When substitutionragiens are not allowed, or, this is exactly thmea
when their cost is strictly greater than the cdsamw insertion and a deletion, then the Levenshtein
distance between two sequences is equivalent dinfintheir longest common subsequence, whatever
their location in the two sequences (Kruskal, 198330). On the contrary, using only substitution
operations will focus the analysis on finding conp@raneous similarities. OM is a quite flexible
family of methods that have been used in numer@mldst computer science, coding theory, speech
recognition, bird songs studies, gas chromatogragbglogy, human depth perception, biology, etc.
And of course now social sciences. There is no rbera to present, even broadly, what is the meaning
of the edit operations and how costs are chosell ithese fields We preferred to focus on biology
given the role this discipline is playing in thesessment of the relevance of OM in social sci¢fices

Before focusing on how weights are determined aldgjy, it is worth noting that as OM is a kind
of correlation coefficient for sequences, the otitipua gigantic dissimilarity matrix between all
sequences (individuals, and not variables): OM mbst combined with cluster analysis,
multidimensional scaling, or any other data reductprocedure handling dissimilarity objects. As a

8 Indel is an acronym formed by the beginningsinsiertion anddeletion and is therefore designating jointly
insertion and deletion operations.

® For an overview, see Sankoff and Kruskal (1983).
10 Speech recognition will be also roughly presemtetthe beginning of the section on OM and socirses.



consequence, OM’s output is always accessed inlyirenost of the time in social sciences through
the former technique. This issue will be addresgeatie end of this paper.

Optimal Matching and biology

OM techniques were born in computer sciences antk vgebsequently imported into other
scientific fields, among which biology. As OM wasported into social sciences through biology, this
scientific field is thede factoreference in terms of its integration into preséixig theories. Indeed,
Levine (2000), Wu (2000), and Elzinga (2003) referbiology to assess the use of OM in social
sciences and claim that in biology the edit operetiused in OM are linked to chemical properties an
transformations of sequences of DNA, RNA and prstelt can be said here and now that if it were so,
several of the fundamental biological operation®ived in these transformations, such as swaps and
larger transpositions, would be missing (Abbott@00

Sequence analysis is used in biology as an appabiim to avoid costly and lengthy
experimentations. This is not to say that sequescalysis is a computational reproduction of
biological experimentations but it is precisely tbpposite, a way to solve the question of the
identification of the structure and/or functions@RNA or proteins without what is considered as the
most reliable way to do so: experimentation (seebibiet al. 1998). To achieve this, the key process is
homology information about structure and/or function ofjsenceslready known by experimentation
is transferred to sequences with which significaimilarities are found. Consequently, biological
theories are not central in the use of sequencéysisan this field: “most of the problems in
computational sequence analysis are essentiatigtgtal” (Durbinet al. 1998, p. 1).

OM is one of the tools that have been used andlale®@ in biology to identify these similarities: it
is basically an adaptation of the Levenshtein distato these problems. Therefore, the three edit
operations, insertion, deletion and substituticayehnothing to do with biology but, once their tiela
costs were given some thoughts, were consideratbiasompletely absurd and above all produced
results. What separate the Levenshtein | distarmoa ©OM, a family of dissimilarities, are the relai
costs of the edit operations, calebring modein biology. Consequently, the essence of OM isimot
the three edit operations but in the way they aeduand combined through cost settings to analyze
biological sequences.

The theoretical congruence of OM with biologicaddhy is therefore not as advanced as some have
claimed. However, as Elzinga (2003) suggests, fuiftges, there is a plausible theory or credible
hypothesis about the probability that such a sebprations really took place or could have taken
place in the course of evolution”. As the goal loé analysis is to identify similarities between new
sequences and experimentally known sequences, #ie difficulty computational biologists are
facing is to discern “significant similarities beten anciently divergent sequences amidst a chaos of
random mutation, natural selection, and genetiét"d¢(Durbin et al, 1998, p. 1). Consequently,
substitution costs must reflect evolutionary preferes for certain evolutions over others. A low
substitution cost between two states in an alignmerans that under some phylogenetic assumptions
the two sequences are probably related. As a resuistitution matrices are above all a question of
probability estimation: the main task of computasib biologists is to constitute a good sample of
confirmed alignments but also of alignments whicte glausible under certain phylogenetic
assumptions in order to estimate these probabkilitie

This is a quite complex operation in practice gitlesit protein sequences come in family and other
problems of the same sort. Constituting these oedrrequires considerable work and is an essential
step in using sequence analysis. The PAM matriteggloped in 1978 by Dayhoét al. are derived
from alignments between proteins experimentallyhgpothetically related, especially regarding the
percentage of accepted mutations (PAM is the acnonj Point Accepted Mutation). Matrices for
greater evolutionary distances are extrapolatea tios matrix by simply raising it to the powertbg
evolutionary distance researched. The BLOSUM sarfanatrices (Henikoff and Henikoff 1992) has



been developed according to the same principlesviotit a more elaborated treatment of the
differences between short time and longer termwgigoiary distance.

Computational biologists believe that indel costswdd reflect the probability of inserting a gap in
a sequence, possibly depending on the kind of duesi (event) inserted. Insertion and deletion
operations are mainly used in biology to take @toount possible evolutionary process involving the
introduction of some unimportant residues betwesdated alignments. However, although it is also
possible to turn the question of the determinatdninsertion and deletion costs into probability
estimation, these costs are often disregarded (Detlal, 1998, pp. 16-17 and 44-45).

Elzinga is therefore right when she claims thatt emperations are linked to evolutionary
hypotheses. However, only substitution cost madriaee given some theoretical attention whereas
indel costs are almost always chosen on a comptafgrical basis. Furthermore, substitution matrices
are not the exact product of chemical or phylogenatodels: theory intervenes mainly in the
constitution of the samples of alignments, confidnmeg hypothetical, which are used to estimate
substitution probabilities. Hence substitution scate not theoretically determined one by one:rtheo
is just used to provide guidelines to estimate pbiliiies. The way theory is used is quite intaregt
the exact nature of the relations between sequenrasheir phylogenetically plausible mutationssloe
not need to be perfectly known. These relations wmeovered during the stage of probability
estimation and used as a yardstick to distinguishwéen insignificant (gaps) and significant
evolutionary changes in other samples. Contrarstachastic modeling, the interest is not in a gngl
evolutionary scenario, true on average: all the gerity of the evolutionary change is taken into
account and summarized in substitution matricesthier words, the parameters used by computational
biologists are derived from descriptive statistamfscourse judiciously chosen.

Elzinga’s claim that specifying a cost functiortasuse a model (2003) is consequently not true, at
least in biology: substitution matrices are notegatedex nihilo from a pure chemical model but are
based on frequencies observed in a particular sanfpbequences. The theory intervenes only in the
constitution of that sample in a very minimal wiyit was possible to build the substitution matoivit
of the chemical and evolutionary properties of tjgital sequences, OM would simply not be
necessary. It is because biological theory is hat tadvanced that the only solution is to gather
hypothetically related sequences and infer prohiesilabout how they are related. OM is not used in
traditional way in biology since these descriptatatistics are used to detect new similaritiesémw n
samples: this is not to say that this is modelmg,a more complex and unusual way to describe data
given the particularity of the questions asked araterial used in this discipline: in biology, OM is
parameterized with descriptive statistics to prednew descriptive statistics.

Consequently, OM in biology is neither a reproduttof the bio-chemical phenomena of interest
nor are its parameters derived from standard mogletrategies: OM is used in biology as a
descriptive tool. Of course OM is somewhat mordelated than an arithmetical mean and requires
more care to simplify with sufficient accuracy thielogical materials. OM was not invented to answer
biological questions but to address issues integstoding theory and computer science. Biologists
successfully used this statistical abstraction beedhey managed to parameterize it to fit the kihd
data and problems they were facing. Social scieebase with other sciences, among which biology
and other “hard” sciences, the fact that they tesmrabstractions to simplify with accuracy an
otherwise too complex material (Simiand 1922, @32 in particular). As Simiand remarks, the
problem is not the abstractions, but to use theadiguacy to the material analyzed: the use of OM i
social sciences should be evaluated accordingetsame principle.



Optimal Matching and social sciences

The role and consequences of edit operations in sacsciences

This brief outline of the conditions under which O8/used in biology is emphasizing the key role
played by the costs of the three edit operatiomss & through the relative penalties associateti wi
these operations that a method elaborated in dlytatdferent scientific field, namely computer
science, was adapted to the requirements of biol@d¥ will only go beyond the marginality of an
exotic exploratory technique by clarifying the me@nthese operations and costs have for social
sciences. As sequences in social sciences areau# of amino acids but express successions oflsocia
events, it means that the coding of events, and &re central in this process, and that the questio
the relevance of OM in social sciences should barmaulated as whether or not OM represents with a
sufficient degree of faithfulness sequences ofa@sients.

Indeed, events are the fabric of sequences inlssgiiences but are not given, as amino acids are,
but constructed and coded by social scientistsaAesult, the meaning of the three edit operations
depends primarily on the way sequences are comsthuleence on the indispensable preliminary work
of constituting the object of the analysis. Therelbviously no unique answer to this questionhaset
are different substitution matrices in biology attiog to the kind of sequence analyzed and of
guestions asked. Only scientific debates can darigito the establishment of guidelines relevant fo
certain kinds of analysis, career analysis or time-analysis for instance. This calls for the highe
scientific standards in terms of argumentation eladfication of all the details of the analysisidaof
sharing algorithms and other data management puoegsdan especially crucial point given that this
family of methods is not yet widely available imstlard statistical packagés

Insertion-Deletion Substitution
Preserved Events Time
Altered Time Events

Table 3 — Edit operations and sequences of socialemts

Second, the matter of sequences in social sciga@sotime. As a consequence, the very fact of
manipulating sequences to assess their similaridans for social sciences that OM is based on
manipulations of timeinserting or deleting an event is also warping thming of the processes
analyzed in order to identify sub-sequences oftidelty coded events. On the contrary, substituting
event by another means that the timing is presebugdhat an event is approximated by another. In
summary, insertion and deletion operations presémeeevents but distort time while substitution
operations just do the opposite, i.e. they consénve but alter events. As a result, OM with seaqusn
of social events is a combination of acceleratidesélerations to match identical subsequences of
events and of events approximations when the flbwinoe is normal (see Table 3). Note that the
expression of “normal flow of time” has been usedeh once time has been warped, co-occurrences of
events do not mean that these events are necgssaniemporaneous, unless time was accelerated
then decelerated to that the calendars of bothesegs coincide again.

The warping of time by indel operations has alserbstudied in the speech recognition field,
which shares with social sciences some of theiceonwith time. In this field, OM is used to: 1.
measure the variability of compression-expansiamwéen two sequences 2. determine the degree of
resemblance of two sequences independently of rdiftes in compression-expansion 3. build

1 The program designed by Andrew Abb@ptimize is no longer maintained but is still availablethe author’s
web page at the University of Chicago. A sequenceluteois available in théfDA package, a freeware
developped by Goetz Rohwer and Ulrich Poetter ofihiwersity of Bochum to apply event history models.



‘average’ sequences (Kruskal and Liberman, 1988}his context, indel operations can be used to
compress and expand time so that different delisgrgeds of the same words can be taken into
account’ (see Table 4). Warping time is in this field albgely necessary and can be seen as multiple
re-synchronizations of the time scales of two sagas. Time is freely warped here because it is used
only as an ordering support, and is in this resgaite similar to residues in biological sequences.

Compression-expansion Deletion-insertion
Compress 2 units into 1 Delete 1 unit
Expand 1 unit into 2 Insert 1 unit

Table 4 — Correspondence between time warping anddel operations (reproduced from Kruskal
and Liberman, 1983)

The question of the use of indel operations to yaalsequences of social events can be
reformulated as whether or not it is legitimatedistort time. Warping time means here that events
coded identically but occurring at different monwseiatre considered as almost perfectly equivalent
except for the weighted number of episodes thaarse@ them. In the Levenshtein distance, indel
weights are all equals to 1: time is considered ksear dimension and neither the nature of threntsy
suppressed nor their location in the sequencearsidered as relevant. This would be a rather gtron
assumption, quite contrary to the shift from causesvents that characterizes OM as “a particular
value of [a variable] may have no absolute meammtgpendent of time [...] A given value may
acquire significance because it is the first realeof a long, steady fall, or because it initiatebong
steady state. In either case, it is the genergb¢eah context, not the immediate change, that msmtte
(Abbott, 1990).

Of course when the sequences studied do not ¢aaime time scale, warping time is not really a
problent®. But when they do, warping time destroys the temptinks between sequences, their
contemporaneitylnserting time so that unemployment spells ofrapimately equal length can be
identified means that the events are of importanaewhen they occur: events lose their indexigélit
Consequently, the use of indel operations with eages of social events can have undesirable
consequences and should be avoided whenever timgtorhevents is crucial.

In social sciences, sequence analysis is usedshiri§ for patterns” (Abbott, 2000), to take into
account the complexity of sequences and as suthkgarof the break with causes to focus on events.
As a descriptive technique, OM should be able serithinate between events pertaining to different
rhythms and events whose cadence is close: theof@ill in social sciences is ultimately to identify
sub-rhythms of social proces$edn career analysis, OM has indeed been usedeiutifgl different
trajectory patterns (see for instance Halpin andnzA998) and in time-use analysis, to locate wffe
daily routines (see for instance Lesnard, 2004 @intSPol, 2005). Given that indel operations are

12 |n fact both indel and compression-expansion djmers are used in speech recognition. The formeuaed in
order to recover interpolated or deleted sounds ‘f@gbably” may be pronounced “prob’ly”, etc.) wieas the
latter are used to synchronize identical sub-sexpgerThe difference between these two very sirojarations,
both implemented by indel operations, lies in thespective costs (more details can be found irskaliand
Liberman, 1983, especially in the sections 6 andige again, it is through costs that OM can he-funed in
order to suit the requirements of the analysis.

13 Analyzing sequences with different calendars iskiog for unvarying patterns, rules which are vaft
different historical periods. In other words, theogerty of indexicality of time is disregarded tocfis on
transhistorical properties.

14 On indexicality, see Abbott (1999). Being unemplbya a time of mass unemployment is likely to be a
different experience than in a time of full emplamh

15 Consequently, OM is compatible with the theory imhet sketched out by Abbott (1999): when mainly
substitution operations are used, OM respects indkty and enables “multiple times” to be idergdi This
theme is developped in the next section.



warping time and also in that case are blurringtémeporal links between individual sequences, indel
operations make the identification of sub-rhythrasder and should thence be seldom and carefully
used.

Consequently, the question of the legitimacy of @Mocial sciences can be reformulated as: what
is the meaning of substitution operations in sos@nces and above all how to use theehow to
choose their costs, in order to identify patterh€hmin of social events? Substituting one event fo
another can be seen as altering one element i@ cfi social events: for instance replacing an
unemployment spell by a part-time work event. Whh exception of preserving the respective time
scales of sequences, such operation has no partimgéaning in social sciences: it is an abstract
operation, in this respect not very different froatculating the arithmetic mean of a series of nersp
used only in order to assess the degree of sityilafisequences. In such a perspective, it does not
matter if substitution operations can be or notaterl to specific social processes: substitution
operations are just some of the building blocksthef abstract process of assessing the degree of
similarity between sequences.

This is also true in biology: as Abbott made cléadel and substitution operations have nothing to
do with actual biological processes. In the matghinocess of two biological sequences, completely
evolutionary unrelated elements can be substitutitl one another, but with a high penalty if the
substitution matrix is well definéd As a result, substitution operations are not Lisdniology as an
equivalent to evolutionary transformations of pihoaéeor DNA but arenterpretedas such only when
their costs are low. Substitution operatiges seare not used as functional equivalent of evolatign
processes. Substitution costs are.

Whereas indel costs should be defined as a funofidgine temporal proximity of identically coded
events, substitution costs should represent theenkss of two different events at a particulartjposi
in their respective sequences. As biologists use Mnfer biological properties from known
sequences, they want this closeness to be relateddiutionary processes, and they interpret and
estimate substitution costs accordingly by usingl@ionary evidence and hypotheses. In social
sciences, the aim is to identify diverse groupsefuencesi.e. multiple sub-rhythms: substitution
costs should be interpreted in terms of sub-rhythnt estimated accordingly. As a sub-rhythm is an
ideal-typical sequence of social events, the chamdehaving a group of identical sequences are
infinitesimal. Consequently, substitution costsidtde low when two events belong to the same sub-
rhythm and high when they do not.

Furthermore, substitution costs should depend omw,ti.e. on the location of events in the
sequences compared. Fixed substitution costs nfestnthe differences between sub-rhythms are
constant and expressed once and for all by oppositbetween certain events. Unless this fixity is
pursued, a variable and time dependent definitibthe closeness of sub-rhythm seems preferable.
Time-dependent substitution costs mean a consilterabrease in the number of parameters to be
determined.

Having defined the general properties substitutbmsts should fulfill, their exact formulation
remains to be specified. Since biology went quide in the explicitation of the probabilistic
foundations of OM, it can be useful to have a labkhem at this point of the discussion. We use her
the general probabilistic model proposed by Dusddiral. (1998). If we consider two evengsandb
occurring in two sequences at the same tintleen the substitution cost function at that tisheuld be
of the fornt’

18 |n that case it might be preferable to suppressetrent or to insert another one: the exact outasithelepend
on the relative cost structure.

17 See Durbiret al, 1998, pp. 14-15 for more mathematical details.hatee just added a temporal reference to the
probabilistic framework they proposed.
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Wherep,y, is the probability of observing jointly the eveatandb att andg,; is the probability of
observinga att. In other word, substitution costs should reflget likelihood, or proximity, of two
events occurring at the same time. In biology jtive probability ofa andb, pap, is interpreted as the
evolutionary plausibility of their relationshipsnd is accordingly estimated using a sample of
hypothetically and/or confirmed alignments. Thislmbility is divided by the product of the indivialu
probabilities of occurrence of the two events sefgdy in order to take into account the possibitify
observing the same pair by accident even though dhne in fact independent. The ratio used as the
substitution cost is therefore the net probabiityhe hypothetical evolutionary association betwae
andb.

Substitution costs based on transition matrices

A complete and detailed theory is not necessatyeratise anad hoc full-blown mathematical
model could be developed, in biology as well asanial sciences. What is needed is a principle to
generate those values, a generative principle stmdi with social theory. Biology uses chemical
properties as well as evolutionary theory. Sodi#rsces need a social theory of time to interpnet a
determine substitution costs.

The fact that time is social is almost a truism lgatt 1999). Emile Durkheim was the first social
scientist to throw light on the links between tiared society. In the book he wrote on religion (912
Durkheim demonstrated how the calendar of undifféated societies was structured by collective life
and religion: the crucial days of the calendarha& Aborigines were also celebrations, i.e. intemsiv
collective moments. On the contrary, profane daysewundifferentiated and solitary moments.
Calendars reveal the rhythm(s) of collective lite &t the same time help individuals to anticipptan
and orient themselves daily in society. This doutlimension of time has been condensed by
Durkheim in the formul®: “The calendar expresses the rhythm of collectizévities, while at the
same time its function is to assure their regu&sit(Durkheim, 1912).

As a consequence, “quantitatively equal periodsnoé are rendered socially unequal and unequal
periods are socially equalized” (Sorokin and Mertd®37). In other words, time is not purely
guantitative because it is socially differentiatéioe different social symbols used to represenetim
(calendars and clocks) should not be confused tivith itself (Elias, 1992). The main channel of this
socially differentiation is collective rhythms: i¢ what the entire society do that differentiate th
continuous flow of eventd

The statistical translation of “collective rhythmg& “transition matrices”. Indeed, a transition
matrix describes trajectories between all the diif states between two dates. A transition magra
synthetic representation of individual sequences@rtain moment. Transition matrices are the macr
representations of micro phenomenon: distances degtwstates are social but trajectories are
individual. The strength of the flows between stat@easured by transitions, is an indication of the
different sub-rhythms that punctuate social liféow transition rate between two states mean thegd
two states are at that particular moment not conicating hence that they are socially distinct sub-

18 The translation has been taken from the firstishdtanslation of the book: Emile DurkheiElgmentary forms
of religious life New York and London, 1926.

19 Although they constitute an interesting contribatito the growing academic debate about sequeralgsis)
the pure axiomatic approach proposed by Elzing@32@nd Dijkstra and Taris (1995) is of little ned@ce for
social scientists. Indeed, one of their premisaesyaly that the goal is “to find a representationth&f sequences
and their similarities that is free of sociologicalhistorical theory — one that just relies onblasic properties of a
sequence” (Elzinga, 2003: 7) clearly reveals tiseatinection of this kind of purely theoretical smn with what
sequence analysis is, in biology as well as insdagiences.
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rhythms; on the contrary, when there are many itiansbetween two states, it means that a change in
a social sub-rhythm has been spotted and that thesstates belong to it.

Consequently, substitution costs should be invergmloportional to transition rates. This
sociological interpretation helps to understand wing quite common empirical practice of setting
substitution costs using information about transsi yields good results and is “wise” according to
Abbott (2000: 4). This strategy has indeed alreagign used successfully (see for instance Abbott and
Forrest, 1986) and is one of the cost strategiepgsed by TDA, one of the few statistical packages
with OM capabilities available to date. Howeverbstitution costs were temporally fixede. they
were derived from a global transition matrix betwedl states built by merging the different episbde
to build a global transition matrix disregardinge tlintra-sequences variability. This Markovian
approach that only takes into account transitiom$ @ot their dates is very different from what we
suggest here.

When the sequences have all the same length anth#éyashare the same calendar, for instance in
a career analysis all the individuals belong tosame cohort, we propose to estimate pyg, by the

series of conditional probabilities describing tihensitions between thstatesa and b considered
between the datdsl andt, andt andt+1: p(xt =h X = a)zo, p()(Hl =hX, = a), p(xI =d X = b),
p(xt+l = dxt = b), whereX, is a random variable describing the occurrencer(@wf thet™ episode of

a sequence. In other words, we propose to sulestitudiachronic for a synchronic distance. From a
probabilistic point of view the higher the probdtyilof transition between the twstatesbefore and
aftert, the closer the twevents One possible way to do this is simply to defihe substitution cost
function a8

s(ab)= { ~[p(x =dx=b)* p(x. = dxl-a)+p(>q+l dX =b)+ p(X..=bX =a)] ifazb

otherwise

The higher the transitions between the statasdb and betweeft+r1 andt, and betweemh andt+1
(with an upper bound of 4), the lower the substitucost between the two evemtandb att (with a
lower bound of 0). Indeed, high transitions meaat thlot of changes between these two states have
just occurred and/or are about to occur, in otherd® that these states are statistically closeth®n
contrary, low transitions mean that these two state from a probabilistic viewpoint very dissimila
Thus, substitution costs depend on time and arwetefrom the transitions observed in the sample
studied. It is possible to use only substitutiormpions with such costs when sequences have equal
length. In that case, there is no more ‘optimalitythe sense that the path followed to match pafirs
sequences is simply the diagonal: it is an extensiothe Hamming distance with substitution costs
derived from the series of transition matrices dbsty the sequences.

Contrary to biology, it is not possible to condtitua sample of sequences to estimate these
probabilities: the interdependence relationshipsveen sequences of social events are not fixed and
the goal of the analysis is not to identify plalsitmutations but simply to describe these relatips
for the sample analyzed. Of course, the generalizabf such a parameterized OM depends on the
representativeness of samples analyzed: with reptative samples, results can be generalized to the

2t is formally the probability of reaching the & at timet conditionally to being in the staseat timet-1.
2! The above formula is valid on the inter\]grr[, wherd is the length of the sequences. The bounding farmu
are in this case simply:

If t =1, thent s(ab)= {4 2[p(X =alx = b)+ p(X =hX = a)] ifazb
otherwise
If t=T, then s (ab)= {4 2[|0(Xr X, =b)+ p(X; = HXT_lo;hae)JwT; Z:ﬁ b
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entire sampled population for they depend on prilibabstimates. In this regard, weights can beduse
to estimate the transitions matrices so that theegudesign can be to a certain extent integrated i
OM?,

As in biology, the exact nature of the relationsaeen sequences does not need to be known but is
uncovered during the calculation of substitutiostsoThe fact that substitution costs are derivethf
transitions between states and used to comparetsewenild appear in this regard as a kind of
circularity. In fact, there is indeed some circitiahere but this is not a problem since descripi®
the only goal of the analysis: the output of OMjistance matrix between sequences, is indeed just a
new way of presenting the underlying series of dittoon matrices. However, whereas a series of
transition matrices represent jus@cro relationships without connection with one anotitbg OM
presentation proposed here ifgdividual and is a synthetic measure of those relationshijés
sequence comparison method indeed is basicallyinmrtransition matrices into inter-individual
differences. The price of this individualization afllective rhythms is that the sequential differes
between individuals are collapsed into a highlytegtic figure, the dissimilarity measure.

This is the reason why additional methods are reduf some of this information is to be partially
recovered. In this respect, cluster analysis saaore adapted than multidimensional scaling. Indeed,
the goal of this second stage of the analysis revteal the underlying temporal regularities thawen
generated the distance matrix: the goal of cluateysis is precisely to reveal the different goup
hiding behind distances. Consequently, homogengougps identified with cluster analysis are also
the temporal patterns social scientists are lookarg Classically, one of the issues of using dust
analysis to identify groups, what is called hermgeral patterns, is the homogeneity of clusters:
homogeneity measures should always accompany Hedslaised to describe classes. But the main
issue is certainly which clustering method showdibed?

Cluster analysis is not a particularly well knowatistical discipline and though its principles are
ancient, is not well implemented in standard diatib packages. Of course they all contain the
historical methods such as single, complete, aeemgWard algorithm. The Ward method is often
considered as the best method available certamdalise of its proximity with mainstream statistics:
the Ward clustering method is indeed based on megianaximization/minimization. However, this
method is far from being the best clustering athomni Although the Ward criterion perform well with
well structured data sets it tends to join clusteith a small number of observations, is stronghsbd
toward producing equal size clusters, and is adsg sensitive to noise and outliers (Milligan 138®
1981). The Ward agglomeration strategy is adamdeliclidean distancek4) and when the clusters to
be recovered have been generated from multivaniatenal mixture, have equal spherical covariance
matrices and sampling probabilities. These asswmptare very strong in the case of OM, and in
particular with the method proposed, given that Hemming distance is closely related to the
Manhattan distance.().

The flexible beta method, also known as flexible ®WPA (Weighted Pair Group using arithMetic
Averages), proposed by Lance and Williams (196Wush better to use with empirical data (Milligan,
1989): when noise and outliers are present, flextPGMA outperforms all the other algorithms,
including Ward'’s. Flexible UPGMA (Unweighted PairdBip using arithMetic Averages), proposed by
Belbin, Faith and Milligan (1992) is even bettelexible WPGMA is available in SAS at least since
the version 6 but not flexible UPGMA Stata 9 and SPSS 14 do not feature either, whetkestan
Graphics, a statistical package specialized intetusnalysis, is in this respect no better than SE®

22 Weights should only be used to calculate tramsitimatrices, and consequently substitution costteat of
counting the number of transitions, it is simpl tiveighted number of transitions which should Besainto
account. The matching procedure in itself, the comparison of pair of sequences does notmequy weights: it
is by defintion a one to one procedure. Howeveights should be used to interpret results, forainsg, if cluster
analysis is used, the size of the clusters obtaimest be weighted.

2 Flexible WPGMA is called “Flexible-Beta Method” $AS and in ClustanGraphics.
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SAS implementation of flexible WPGMA will be usadthe second part of this paper in the absence of
more efficient algorithms available in standardistaal package.

Sequences with different length and/or disconnectethlendars

The question of the length and of the calendarseqgfiences is a major scientific question. What is
at stake here is the scientific legitimacy of commmasequences with unequal length and/or completel
unrelated calendars. Let us consider a hypothegitation where retrospectively collected life rs®s
are submitted to OM. Since the sample is not a mpliee age of respondents, and, as a result,
sequences’ length, vary gredfly

Convincing sociological arguments are required ustify such a comparison. If transition to
adulthood is of interest, then it seems bold to gama trajectories so varied in their completenbss.
other words it seems crucial to work on sequendés noughly, if not exactly, the same length. If a
generational sample, in other words if sequences blide same calendar, is chosen, then it would be
even possible to see how those transitions relatsotio-historical changes (unemployment rate,
female labor participation rate, economic growtighkr education prevalence, etc.). If the sample is
constituted on a retrospective basis, then diffemorts can be compared and trans-generational
similarities and dissimilarities appear.

In both cases, sequences have the same calendeedirnthe definition of a period of observation
and the coding of events create in that case a @ontalendar that is precisely the subject of the
analysis: the transition to adulthood calendars k& calendar in its own right because previouskwor
emphasized how socially regulated is the timinghef entry into adulthood. It is however different
from the calendar we use dalily life as it doesenast in a symbolic form. In other words it is adiof
hidden social calendar that exists objectively legs subjectively (in comparison with the clock for
instance) that sequence analysis can uncover.

However, the cohort sample presents another adyanthe transition to adulthood calendar is in
that case also synchronized with what is happemrnge rest of society. Transition to adulthoodiis
process involving three major social fields: schamonomics, and family. When a cohort sample is
considered then it becomes possible to establistea link between the process studied and the
characteristics of these social fields. To see Hwmvchanges occurring within these fields inteteela
with transition to adulthood it would be necessarynix together a finite number of cohort samplés o
sufficient size. With a sample mixing too many diffint cohorts, the relations between the calendar
and social structure is blurred and only strongcstrral regularities can appear.

This example helps to clarify further the use ofisnce analysis in social sciences. The goal
pursued is to throw light on temporal patternsotimer words to identify social calendars of some, so
in all their complexity and their variations. Ascansequence the structure of the sample must be in
accordance with this goal. Events should also liedso as to facilitate the uncovering of the lahd
temporal patterns researched. Ultimately, the jmétation of results should take into account these
two crucial parameters.

When all sequences have the same length, andhihaample and the coding are defined so as to
uncover a certain calendar then it is possiblesmanly substitution operations with costs derifrech
transitions. Temporal distortions of the processesavoided since indel operations are not useid. Th

24\We discovered since then that the statisticallagg R features both methods.

% Quite paradoxically, the example first proposedDijkstra and Taris (1995) and reused by Elzing20@ is
finally quite close to such a situation despite fhet that they used a survey where a cohort ivied
longitudinally but decided to represent only tréinsis between different states so that the lenfith@sequences
is the number of transitions (see Dijkstra and §ati995: 223), and are not identical and propoatida the
number of waves of the survey. The authors ackmiyeehis high variation in the sequence lengthtaeg even
draw the attention of readers on this aspect df theta, considering it as a particularly challemgtest of the
methods they propose (Elzinga, 2003: 17).
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method is no longer based on optimality principlpsecisely because it is the research of logic
optimality that causes temporal warping. Eventsirpddentically but occurring at different moment
are considered not as identical events that afeedhiut as different events because they areeshift
This solution satisfies the principle of sociausturation of time, the kind of questions askedsbgial
scientists and the nature of the data at theirodisp

When sequences have unequal lengths and the pefididne considered is not too wide in
comparison with the unit of analysis, some inddiigaubsists but the different sequences are not
perfectly synchronous. As a consequence, it ispossible to use time-varying substitution costs
derived from transitions matrices as it was profosgove and thus the only solution is to calcutate
single transition matrix which will retain some the social structuration of the underlying timeleca
Indel operations are particularly useful here — absblutely necessary when sequences do not Have al
the same length — as they can help to re-synchedh& different sequences. But they can also iserea
their desynchronization.

The question of the costs of indel operations ishis case quite difficult to solve. If indel
operations are used together with transition-basidtitution costs it seems wise to set indel ciosts
the middle of the distribution of substitution costo that a time shift is privileged to a substitut
when transitions are low. Another solution wouldtbeise once again information from the sample on
the relative weight of the states where an evettt i inserted or deleted. It seems that thistoures
as problematic in social sciences as it is in lgplavhere most of the time indel costs are chosea on
complete empirical basis. Even more, perhaps, dilranhthere are some theoretical justificationh® t
insertion and deletion of residues in biology wlaarthe necessity of warping time seems less assured

An application to the daily scheduling of paid work

Contrary to the order required by communicatioris ithrough the question of the scheduling of
paid work within the day that the theoretical cdesations that have been proposed first were in fac
elaborated. Work time is indeed difficult to sumimarand is usually reduced either to durations (the
number of hours worked) or to indicatoesd. night work). In order to distinguish night workofn
work schedules shifted in the afternoon/eveningnahe morning, precise criteria are required. Ehes
criteria are based ampriori knowledge but also on arbitrariness. As a retiudt scheduling of work is
most of the time reduced to the dichotomy day ightrwork.

The lack of adequate tools to describe the scheglali work time is becoming critical with the rise
of dual-earner couples in most developed counttiedeed, if individual work schedules cannot be
described, so are the “family work days” and thebfgm of desynchronization some spouses face
(Nock and Kingston, 1984). The consequences fdy tife, and in particular for childcare, of a majo
social change remain unknown because tools to ibessequences of daily events are missing.

The number of hours worked as well as their schiegw@re crucial economic parameters for firms
in societies with economic organizations basedhmndivision of labor (Moore, 1967). It has been
demonstrated that the number of work hours ardeel® social position, this relation evolving with
economic changes (Gershuny, 2000). Work time ida#ipcstructured and its rhythms can be
legitimately studied and uncovered with the modifitamming method proposed in this paper.

Data and coding

Information on work time can be collected usingimas methodologies, but it has been proven that
the time diary approach produces far better estisnitan any other method (Robinson, 1985). Indeed,
contrary to “stylized questions” on time askingedity to respondents to give average estimateef th
time they are spending doing some pre-defined iieBy information on time is collected in time dia
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surveys through respondents’ description with tbh&n words of the sequence of activities they did a
specific day. Unfortunately, this sequential infation on daily life is usually reduced to aggregate
durations (time budgets) despite the wealth ofdogical information they contain, in particular on
the sequencing of daily life (Gershuny and Sullive®98).

The two last French time use surveys (1985-86 &¥8-D9) used here were done in person by the
French Institute of Statistics (INSEE) over a y2and had high response rates (64.7% and 80%). The
modified Hamming distance has been applied onvleesemples merged so that the evolution between
1986 and 1998 can be easily taken into accountid3iaf both surveys cover 24 hours (1 am to
midnight), with minor differences in precisidhand as a result all sequences have the samé lendt
are perfectly synchronizé&t

We have implemented ourselves the modified Hamrdistance we proposed in SAS as a macro
and in Stata as a plug-in. Both are available ftoenauthor.

Taxonomy of work days

There is no absolute and rigid rule to decide hamyrclusters are necessary to give a synthetic but
faithful representation of the data analyzed. Havewonsidering the flexible WPGMA height for the
last steps in the grouping process can give sonanguelements as a jump reveals that two dissimila
clusters have just been joined. Figure 1 suggésisédn eight-class scheme is the most acceptable
synthetic representation of the structure of th&a.d®ther jumps are occurring when the number of
classes is reduced from eleven to ten, and froteefif to fourteen. The right number of classes is
therefore between thirteen and eleven. We adoptelse-class classification after a close insjetcti
of the shape and relevance of clusters for vanmumsbers of classes between fifteen and eight.
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Figure 3 — Number of classes and flexible WPGMA hght

% Wwith the exception of summer and Christmas hokddyyear is a small observation window with respiethe
pace of changes in the use of time (on changédwminge of time since the 1960s, see Gershuny, 2000)

2 The 1985-86 and 1998-99 surveys have respectireiind 10-minute time slots: comparability can bdssue
but unpublished methodological studies (Alain Chgrarsonal communication) suggest that problemdilaely

to be minor and limited to very specific sequencgsctivities (clearing the table vanishes in hgvineal for
instance). Work time should not be too affectedHiy methodological difference.

28 They are synchronized with regard to the calendir‘day”.
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In this particular example, work schedules candsedbed roughly by two simple indicators:

e the number of work hours;

* The time of the day corresponding to the middlevofkday (mid-workday), which gives a
very rudimentary indication on the scheduling ofrkvaithin the day.

With the help of Table 5 and of visual representai of clusters that will be presented later,
clusters can be easily labeled and interpreted fif$iethree clusters consist of the 9 to 5 work dad
of two variants, one slightly shifted to the leftthe morning, the other slightly shifted to thghti but
also markedly longer. Another group of clusterssisis of shifted schedules: in the morning, in the
afternoon, in the evening and in the night. As sulte we see that night work, the only shifted work
schedule usually taken into account, is only tipedti the iceberg “shifted work schedules”. Work
schedules located at the margin of the 9 to 5 vetak have increased in France: a similar result,
though not based on a classification but on visestimates, has also been found for the US
(Hamermesh, 2002).

1985-86 1998-99
Mid-work Mid-work

Type of work day Size (%) day Duration Size (%) day Duration

Standard 56,45 12:59 8:26 54,71 13:06 8:43
1 8to4 7,60 12:00 8:14 6,79 11:53 8:22
2 9to 5 38,17 12:53 8:17 33,88 12:57 8:23
3 10to 7 10,69 14:01 9:09 14,03 14:03 9:39

Shifted 14,41 7:16 16,55 7:16
4 In the morning 5,26 9:44 7:39 6,07 9:45 7:44
5 In the afternoon 5,40 15:32 6:46 6,43 15:24 6:43
6 In the evening 2,08 17:02 7:20 2,49 17:20 7:04
7 In the night 1,66 7:38 1,57 7:56

Long work day 9,12 13:57 10:29 11,60 14:06 11:02
8 Long 9to 5 3,53 12:54 10:47 4,08 12:53 11:08
9 10 to 7 spreading in the evening 5,59 14:38 10:18 7,52 14:46 10:58

Other 20,02 12:50 3:45 17,14 13:11 4:13
10 Fragmented part-time 3,23 13:21 3:50 2,38 13:28 5:33
11 Fragmented full time 3,46 12:15 8:06 4,22 12:11 7:20
12 Very short work day 13,32 12:52 2:14 10,54 13:31 2:41

Total 100,00 7:32 100,00 7:58

Table 5 — Basic characteristics of the classificatn (averages in hours:minutes per day).

Longer work days come in two flavors: either incaad version of the standard work da.
beginning earlier and ending later than the 9 torSn a long version of the 10 to i%e. ending later
than 7 pm. Other patterns of work days are lesarcénd are generally made of short and/or
fragmented work days. By fragmented we mean thakwohedules have at least two distinct work
periods separated by considerable time: the beshpbe is supermarket cashiers (Prunier-Poulmaire,
2000) who are asked to work only during peak shagjpieriodsj.e. during the 9 to 5 workers’ lunch
break and after the 9 to 5 work day. Fragmentetitpae work days are concentrated mostly around
the lunch break,e. at the end of the morning and the beginning ofatfternoon. Fragmented full-time
work days are fragmented work dagr excellencealthough their duration is on average of eight
hours, they are made of two distinct work periogigasated by several hours. In this case, mid-work
day is a very poor indicator of the scheduling airkv Eventually, in the last cluster are gatheredyv
short work days: since all days with at least arlifute work spell have been considered as work,days
this last cluster collects in fact the very shodrkvdays without our defining priori and unavoidably
arbitrarily a minimum work time.
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Quality

One possibility to assess the quality of cluster®idisplay the distribution of work durations and
mid-workdays, for instance in box-plots. This smatis however not too satisfying as it reliestie t
first place on the relevance of the indicators ugesiwe have already seen, mid-workday is a very
rough indicator of the scheduling of work and cantiticky. The problem of using variance and other
standard statistical analysis tools to assess uhéty) of the clusters takes us back to the probtém
defining synthetic and faithful indicators of seqgaes: if it was possible to design relevant inaicst
there would be no need to do sequence analysis.

A natural visual representation of clusters madsimilar sequences is to plot for each episode the
proportion of sequences in the cluster that arthéndifferent states. An alternative is to stadk al
individual sequences horizontally. The former isaggregate tempogram and the latter is an individua
tempogram. Both kinds of tempogram help to intdrpgret also to assess visually the quality of
sequence classifications. The gradient and thenheigthe curve of an aggregate tempogram indicate
how homogeneous clusters are: the steepest andigher, the more homogenous clusters are. If
individual sequences are represented in individaaipograms by colored sub-segments then it is
possible to assess the quality of clusters by ttledgeneity of the different patches of color.

With the exception of the two last clusters whidacly lack homogeneity, the overall quality of
the taxonomy measured through duration box plae Ggure 4) and also to a lesser extent through
mid-workday box plots (see Figure 5) is satisfactaverall, boxes are small and distinct from one
another. As expected, the two last clusters ardetsee homogeneous in terms of mid-workdays: this
indicator is particularly inappropriate to descrifrmgmented work hours. Clusters appear also
remarkably homogeneous depicted by aggregate tammsgsee Figure 6).
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Figure 5 — Boxplot of clusters’ mid-workdays (boxe'swidth are proportional to the size of
clusters).

Individual tempograms (see Figure 7) confirm thé@spressions and measures: most clusters
contain very similar sequences. The homogeneityheffirst four clusters is quite impressive and
corresponds in fact to traditional work schedtitethe three variants of 9 to 5 (standard workess) a
well as the work schedules shifted in the morning also in the night (shift workers) correspond to
the industrial organization of work (Fordist). Ik fragmented work schedules are here to satisfy t
new temporal requirements of the service indussfyop and services opening hours) and are by
definition less socially structured. In other wartte lack of homogeneity found in some clustert® is
a large extent not due to a defect in the methampgwed but on the contrary to crucial social
phenomena: work schedules’ variability is incregsin

2 For more details, see Lesnard (2006).
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Figure 7 — Individual tempogram: individual sequenes are represented horizontally. Black
indicates work spells and light gray non-work sped.

Despite only substitution operations are used awhlse OM is only the first stage of the analysis
and is supplemented by cluster analysis, theserdiftes in timing appear in the results. Indeed, as
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collective rhythm is the basis of the measure diilarity between sequences atypical rhythms are
easily found because they are opposed to majortsithms: temporal shifts are crucial components of
sequences and disregarding them result in a loBsdamental information on the dynamic aspect of
the processes studied.

Conclusion

As in biology, the three elementary operations use®M are of little theoretical relevance in
social sciences: it is costs, their interpretafiod determination, which are central. Indeed, theess
of OM in the biological field does not rely on amgsemblance between insertion, deletion, and
substitution operations, and bio-chemical processestitutions are interpreted as plausible
evolutionary changes only when substitution coséslaw. In other words, costs help biologists to
distinguish between evolutionary changes and randhmations: “pattern search algorithms in general
do not assume anything about the way the dataearergted. (They rather make assumptions about the
kinds of patterns we expect to see.)” (Abbott, 2&)0

Evolutionary changes in biology, social rhythmsatial sciences: the aim of the analysis is not to
detect plausible evolutionary changes but, as semseare not made of biological matter but of event
and time, to cast light on social rhythms, on theia structuration of the timing of events. Indged
time is socially structured: the continuous flowedfents is differentiated by collective rhythms, by
what a part or the whole society is doing. Calesdemed nowadays are objectified social symbols of
former social rhythms, marked by religion and sgreemporal symmetry (Durkheim, 1912; Zerubavel,
1985). However, these calendars have lost thegir@i connection with social rhythms with the
transformation of collective rhythms following satcdifferentiation: modern time is plural and net a
institutionalized as the collective rhythms fogli in calendars. As a result the time of conteamyor
societies is harder to analyze and uncovering fhisal structuration, these social rhythms, is
ultimately what is at stake in the analysis of ssues of social events, whether OM or event history
models are used.

If OM should be used in social sciences in ordeurtoover social calendars, then costs should be
set in order to distinguish sequences belongingléatical or different collective rhythms. Sincesth
nature of the elements of sequences are not giyemture but decided, social scientists have more
freedom than biologists. Indeed, prior to sequesntaysisper se states have to be defined and this
step is as crucial as parameterizing correctly @ dollective rhythms are measured within the
bounds laid out by the different states chosemoliifference is made between two states playing a
fundamental part in the differentiation of time nhé& will be hard to get something out of OM,
whatever costs are chosen.

Another parameter must be taken into account ifasgbythms are to be uncovered: the effects
indel and substitution operations have on sequeimcescial sciences. Indel operations warp time in
order to match identically coded states but ocngrrat different moments in their respective
sequences. Substitutions do the opposite: sulisttto events is warping them in order to conserve
their co-occurrence. One major consequence of db&lsstructuration of time is that the timing of
events is not random but on the contrary refleleés social rhythms analyzed. It is not because two
events are coded identically that they are socelyivalent: a one-hour work spell in the midd|eef
afternoon vs. one at the beginning of the nightcearly different. But this difference is only gar
due to the absolute number of hours that sepdrata:tthis pure numerical difference is indeed after
by collective rhythms: the social difference betweme hour of work from 4 pm to 5 pm and another
from 7 pm to 8 pm is larger than the absolute nundfehours. Therefore, using indel operations
amounts to voluntarily adding noise to the phenameunder study and should be used with extreme
caution.

22



In biology, costs are not coming from theoreticaddals (otherwise these model could be used
directly) but are derived from a sample of confichend/or hypothetical alignments. How theory is
used is particularly interesting here: relationshigthin the set of alignments used as a yardstiek
not perfectly known (otherwise, once again, OM wlobt be necessary) but are synthesized into costs
to be used to analyze other samples. The substitabists proposed here partakes of the same gic:
complete social and historical model (Elzinga, 20630t necessary if principles to derive substitu
costs capable of distinguishing social flows canebmblished. As collective rhythms are behind the
social differentiation of time, they should be eahin the definition of substitution costs. Theiss of
transition matrices associated with a sample pesvigrecisely an aggregate description of collective
flows between the states defined in the analysigh \Wubstitution costs inversely proportional to
empirical transition probabilities low transitiolofvs mean high substitution costs: when two states
disconnected in terms of transition probabilitigsey will be considered as belonging to two didtinc
social rhythms. On the contrary, high transitionkabilities between two states may reveal changes i
a single rhythm.

It is argued here that substitution operationshwibsts inversely proportional to transition
probabilities, should be used alone whenever jitoissible,i.e. when sequences are contemporaneous
and of equal length. When the sequences under stigyot contemporaneous, it is not possible to
only use substitution operations nor to set theiste as inversely proportional to transition
probabilities. The object of the analysis is albarmged: as time loses its indexicality, it is oaerage
social calendars, trans-historical regularitiesgt tban be uncovered. In such a case, the series of
transition matrices lost most of their meaning ahduld not be used to set substitution costs. Hewev
the average Markovian transition matrix can be us®a description of some of the trans-historical
regularities analyzed. When sequences’ length samelel operations have to be used. Once again the
goal of the analysis is also at the same time foamed and the legitimacy of the comparison itéelf
at stake.

Deriving substitution costs from transition matsa@mounts to individually connect this aggregate
information on collective rhythms: with such suhston costs, OM is basically a way to individualiz
and connect collective transition matrices. Howetlds connection is synthesized by single measures
— dissimilarity coefficients — and information dretsequential nature of these different rhythnase
disappearing at the same time. Cluster analysisvezs most of this information and is therefore a
crucial step of OM. As the underlying distance noeasis unlikely to be Euclidean, the Ward
algorithm should not be used and all the more soeas techniques such as flexible WPGMA and
UPGMA have been proven far superior to recoverrmftion on the structure of data in presence of
outliers and noise.

The method proposed in this paper has been aptalieite timing of paid work. As all sequences
have the same length (144 10-minute time slotdy, substitution have been used with costs inversely
proportional to transition probabilities. The dieslarity matrix produced by this modified Hamming
distance was then analyzed using flexible WPGMA.e Thuality and interpretability of the
classification of workdays obtained suggest that ®Mot only an exploratory tool but also a powkrfu
method to identify social rhythms when parameteeschosen accordingly.

Since OM is new in social sciences, considerabl&kweeds to be done in order to demonstrate the
reliability and interest of this method. Results stibe replicated and validated: in other words
abundant critical use of OM is needed (Levine, 20Bwever, this task is not facilitated by the
computer power required by this method but alsaheylack of programs proposing this metfodt

30 Besides Optimize, a program supervised by Abbdtnbuonger maintained, and TDA, OM is not impleteeh
in any statistical packages intended for sociargcts. Numerous OM packages are available irogjobut are
most of the time almost impossible to use in sostances because of the dramatic differenceseiraitn of the
analysis and in the nature of sequences, as il¢beiclear to the reader now.
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goes without saying that standard statistical pge&alo not feature OM: a new method is by definitio
difficult to use and therefore to validate.

Nonetheless, this is more than a catch-22. Stalssioftware do not feature all statistical methods
equally: if regression and inferential statistiag avell implemented, multidimensional descriptive
methods are lagging far behind. Geometric datayaisahnd cluster analysis are two striking examples
Although correspondence analysis is theoreticalyl established and has long proven empirically its
worth, its implementation in major statistical pagks such as SPSS or Stata is indigent. Whereas it
has never been easier to run a complex duratioreseign full of untestable and untested causal
hypotheses, performing a basic multivariate cowadpnce analysis with supplementary variables is
purely and simply impossible in the current versimi SPSS and Stata. Cluster analysis is treated
somewhat better but it seems that statistical soBwcompanies believe that cluster analysis is a
finished or frozen research project with no newodthms or techniques since the 1970s: major
improvements such as flexible WPGMA and UPGMA, msgd in the 1980s, are missing. It is also
during the 1980s that OM was introduced in soag@rices: OM has been around for more than twenty
years now and is still ignored by standard statis{packages.

The indigent situation of the implementation of tiwariate descriptive methods is obviously
related to what Abbott calls the causal devolut{@898): the advent of a new generation of social
scientists with strong quantitative skills and ¢afir new methods corresponds to the diffusion of
personal computers and of the first statisticakpges. The dominant academic positions they aadjuire
oriented on a long-term basis the teaching ofsitesi in social sciences, but also indirectly wkiatl
of statistical procedures are implemented in stesispackages. Whereas the latest regression model
are widely available, social scientists who needd® cluster analysis either have to resign toguais
year old methods (something unthinkable for ecoridoi@ns) or to try to find if an obscure
specialized package is available. The pluralitystdtistical methods as reflected in the statistics
literature is far from being respected in statatipackages and the marginality of OM in social
sciences is doubly affected by this phenomenonesihaelies on other multivariate descriptive
procedures. If standard multivariate descriptivecpdures are still not well implemented, OM is
unlikely to be featured in the next version of &tahot to mention SPSS: this calls for a better
explicitation of the sequences of treatment andceutares OM users are using, and for sharing
programs when users designed their own computetieo$. The growing number of articles using this
method evidences that the unprecedented insightsequences offered by OM outweigh the huge
difficulties to apply it.
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