Balchit Obsidian (Upper Awash, Ethiopia)
Jean-Paul Raynal, Gérard Poupeau, Guy Kieffer, Marcello Piperno, J. Andy Milton, Sarah Delerue, François-Xavier Le Bourdonnec

To cite this version:
Obsidian and man in the Melka Kunture area

In the vicinity of Melka Kunture, obsidian is a major component of lithic series since the Oldowayan. The nearby Balchit volcanic massif constitutes a major obsidian source-area (Berthelet et al., 2001). Since 1999, new investigations have been undertaken on the prehistory and volcano-sedimentary environments of Melka Kunture and a special attention was paid to obsidian artefacts and its primary and secondary sources. Analyses were performed on several obsidian samples from various localizations, both in situ from a lava flow of Balchit and reworked debris or pebbles from different alluvial formations of the Awash river and its tributaries (Poupeau et al., 2004).

Obsidian occurrences

The only recognized source of obsidian is the Balchit flat flow-dome, which offers a few kilometres square outcrop with a wide variety of eruptive facies (vertical and convolute fluidal structures, finely banded perlitic lava, spherulitic facies, massive obsidian, etc.). Remarkable amygdals up to metric lenses of pure and massive obsidian are scattered among the various lava facies. The obsidian colour is dominantly black but locally blue, green, red and beige colours have been observed.

As products of erosion, blocks, cobbles, pebbles and gravels are found in quaternary alluviums and in minor river beds and form secondary sources which were available for prehistoric groups (Kieffer et al., 2004).

ICP-MS analysis and comments

The trace element contents of two Balchit samples from the main obsidian-bearing lava flow and of nine obsidian pebbles from alluvial deposits were determined by ICP-MS at LGCA (Grenoble) and at SDCFAC (Southampton), using the same experimental procedure (Barrat et al., 2000).

Six obsidians pebbles were found to present the same (type A) elemental decomposition as the two Balchit obsidians and therefore might come from this mother-rock. The three other obsidians present specific trace element systematics dubbed mother-rock.

Conclusions

Field observations show that the large size of Simbiro Acheulian obsidian artefacts found in the area studied excludes a raw material procurement from the local alluvial deposits. This preliminary work shows that at least four geochronologically different sources could have been exploited by Ancient Man. One of these sources could be the Balchit main lava flow or one of its proximal concentrations of erosion products.

Thus in order to deepen our understanding of the obsidian procurement strategies of Ancient Man, the next step (in progress) will be to draw a comprehensive map of the potential obsidian sources in the vicinity of the Melka Kunture area and to establish their geochemical fingerprinting.

Acknowledgments

We thank the Oromia Regional State and the Ministry of Youth, Sports and Culture of Ethiopia (Research and Conservation of Cultural Heritage and Department of Anthropology and Archaeology).