
HAL Id: hal-02514845
https://hal.science/hal-02514845

Submitted on 23 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Architecture assessment for safety critical plant
operation using reachability analysis of timed automata

David Gouyon, Jean-François Pétin, Thomas Cochard, Catherine Devic

To cite this version:
David Gouyon, Jean-François Pétin, Thomas Cochard, Catherine Devic. Architecture assessment for
safety critical plant operation using reachability analysis of timed automata. Reliability Engineering
and System Safety, 2020, 199, pp.106923. �10.1016/j.ress.2020.106923�. �hal-02514845�

https://hal.science/hal-02514845
https://hal.archives-ouvertes.fr

Architecture assessment for safety critical plant

operation using reachability analysis of timed automata

David Gouyona,∗, Jean-François Pétina, Thomas Cocharda, Catherine Devicb

aUniversité de Lorraine, CNRS, CRAN, F-54000 Nancy, France
bEDF (Electricité de France), R&D, F-78400 Chatou, France

Abstract

This article deals with the validation of critical industrial process architec-
tures from the point of view of safety and operation. During the engineering
phases, the objective is to complement conventional safety studies with an ap-
proach that focuses on plant operation. In this context, one of the major chal-
lenges is to provide a guarantee that the designed architecture will be able to
react safely to critical situations and events.

To face the complexity resulting from the large number of functionalities and
devices of the installations under consideration, the proposed approach is based
on dynamic models of architectures, using the formalism of timed automata
and reachability analysis to verify that, given a particular configuration of an
architecture, the process can be safely operated to achieve a given objective.
The result is a formal tool that allows engineers and plant operators to evaluate
architecture safety with different types of dysfunctional scenarios based on their
operational safety expertise.

The article presents the formal modelling framework, which emphasizes
structured modelling using patterns to promote reuse and instantiation over
several candidate architectures. The contribution is illustrated and discussed
using an experimental laboratory platform.

Keywords: Plant operation, safety assessment, critical process architecture,
reachability analysis, timed automata, modelling patterns

1. Introduction

Industrial processes involving field devices such as transmitters and actu-
ators that are controlled, monitored and operated manually by human opera-
tors, numerical systems and controls, and control and data acquisition systems
(SCADA) are complex systems. Their architectures make extensive use of func-5

∗Corresponding author
Email address: david.gouyon@univ-lorraine.fr (David Gouyon)

Preprint submitted to Reliability Engineering and System Safety January 9, 2020

tional and physical redundancies, as well as exclusions, to ensure safety.

In addition to conventional safety studies (qualitative assessment of acci-
dent scenarios, RAMS forecasts, etc.), the operational availability and safety of
plant operating scenarios must be assessed. Given the large number of possible10

scenarios, due to the redundancies and complexity of industrial installations,
operational validation is rather carried out a posteriori on the basis of archi-
tecture proposals. This is dealt with during the engineering phases but must
include feedback from human operators who must deal, day after day, with the
various situations of danger and operation of the entire system. Indeed, some15

operating scenarios using redundancies may be imagined during the engineering
phase but considered inappropriate or even prohibited by operators’ practices
[1].

The work presented in this document was supported by the Connexion20

project (French Excellence in Nuclear Control Systems). The document pro-
poses a formal approach based on a dynamic process model to help designers
and operators perform an automatic analysis of the reachability of situations.
The objective is to prove that an architecture provides at least one solution to
operate the system safely in order to achieve a targeted situation from a cur-25

rent situation. The added value of operators lies in the provision of significant
initial and targeted situations and in the analysis of safety based on practical
considerations.

Finally, several candidate architectures can be evaluated during the engi-
neering phase and, therefore, several safety models must be built. A practical30

consideration of the work for reducing resource consumption, in terms of man-
power and time, is to promote modularity and reuse of models.

This article is organized into six sections. The following section presents the
industrial context and the problem. The section 3 provides a brief overview of35

the related works. The section 4 provides an overview of the proposed approach
to architecture evaluation, including the selected formalism of timed automata
and the generation of action sequences. The modular pattern-based modeling
framework is then detailed in the section 5 devoted to architecture and sequencer
modeling. The proposed approach is illustrated and discussed using a case study40

in the section 6.

2. Industrial context and problem

This article focuses on large industrial processes involving thousands of field
devices (transmitters and actuators) to perform a variety of functions. These de-
vices can be manually operated and monitored by human operators, automated45

reflex control systems and SCADA systems. The control of the plant consists in
defining an ordered sequence of control and monitoring tasks to be applied to
the devices (opening or closing of valves, consignment of devices, etc.), in order
to manage the evolutions of the plant. In other words, from a current situation

2

including the values of the process physical variables (such as temperature or50

pressure...), the state of the devices (such as idle or locked...), the state of the
functions (filling of a tank in progress, pressurization of a fluid circuit...) and
the process (reactor shutdown, rated production...), the objective is to find an
appropriate and safe sequence of actions to achieve a predicted process situa-
tion. Such a sequence must satisfy logical (e.g.: priority rule), temporal (e.g.:55

minimum time to operate a device) and physical (e.g.: threshold required for
physical values) constraints.

In the case of critical process systems, plant operation is generally under the
control and validation of human operators who refer to predefined and quali-
fied procedures. This activity is complex because architectures massively use60

functional and physical redundancies, as well as exclusions to ensure security.
This complexity makes it difficult to assess, from a safety perspective, all possi-
ble operational scenarios [2], predict and control possible interference between
devices or functions, and anticipate blockings.

During the engineering phase, the safety assessment aims to demonstrate65

that the plant has sufficient redundancies to deal with any critical situation.
More precisely, the process architecture is designed in such a way that there is
at least a safe sequence of actions that an operator can activate, from a current
process situation, to achieve the expected state and status of the process. This
validation activity can be performed manually by experienced operators but its70

level of confidence is questionable because it seems quite impossible for opera-
tors to consider all potentially possible scenarios [3, 4, 5].

The industrial problem is then to validate the architectures with regard
to safety and operational requirements using formal model-based approaches.75

This activity is carried out from the early stages of architectural engineering
and places the human operator ”in the loop” to confirm the operational avail-
ability and safety of the designed architectures. It requires helping engineers
and operators to perform an automatic analysis of the reachability of situations.
In other words, the objective is to generate an acceptable sequence of actions to80

demonstrate that the process can be safely operated to reach a planned situa-
tion. If the situation is not reachable, it can lead to a redesign of the functional
and/or organic architecture of the system.

3. Related works

According to the industrial requirements of section 2, the qualitative eval-85

uation of architectures is assumed to be based on demonstrating the existence
of a safe sequence of actions to reach a target state from a source state. Ex-
isting approaches can be classified into two categories: static models describing
the plant structure (Boolean models, graph-based models, etc.) and dynamic
models whose system behaviour is characterized by a state space.90

Typically, static analysis of architecture safety takes into account the re-
lationships between a combination of faulty devices and the occurrence of a
dangerous event. The most frequently used Boolean models are event or error

3

trees. They are suitable for modelling non-repairable systems (such as safety
or protection systems) and have a static set or faulty event sequences. Graph-95

based approaches can be considered by assuming that the generation of action
sequences can be given, in a first approximation, by a path search in a graph
representing the stabilized situations of the process to be operated. This type of
sequence synthesis has been first applied in the chemical industry by [6] which
proposed a method for automatically generating routes from the initial state to100

the expected state of a plant, taking into account safety rules, but without tak-
ing into account structural elements or physical values. In practice, the problem
is more complex because the dynamics of the plants (operating mode, value of
physical variables, etc.) must be taken into account:

• redundancies provide several operating scenarios, but their operational105

availability depends on the state of the process (for example, some physical
values must have reached a given threshold in order to use some devices),

• the complexity of the architectures makes it difficult to take into account
all possible scenarios [7]; the analysis can focus on some of them and
requires initializing the analysis models with the accurate parameters.110

The consideration of dynamic characteristics leads to a shift to state space
models that can be used, depending on their deterministic or stochastic charac-
teristics, to analyze sequences with two types of problem solving: determination
and probability evaluation of event sequences [8]. Since the problem focuses on
the deterministic generation of a sequence of actions, the probabilistic evaluation115

of architectures is outside the scope of this article and the required models will
not address probabilities. In addition, this article assumes that a discrete and
simplified representation of the evolution of physical values must be sufficient to
solve this problem. Consequently, it is proposed that dynamic representations
of the architecture be based on discrete event system models [9].120

In the context of deterministic systems, the most commonly used state mod-
els are finite state automata (and language theory) and Petri nets [10]. Hybrid
automata [11] also seem to be an interesting way to represent the structure and
behaviour of the physical process. In the field of plant operation engineering,125

the graphical representation of operation can be done with different languages,
such as OPNet (Operation Procedure NETwork) [12], Petri nets [13], UML
based approaches [14], Grafchart models [15], the procedure-oriented graphical
notation ProcGraph for the specification of the process control software [16] or
the FRDL (Formal Recipe Description Language) [17]. On the basis of these130

Discrete Event Systems representations, the problem of sequence determination
can be considered as a research and trajectory analysis in a state space charac-
terizing the evolutions of a set of dynamic models. Several formal approaches
can be considered, such as verification of safety properties, synthesis and anal-
ysis of reachability.135

4

Formal verification is the provision of mathematical evidence that the oper-
ation of a given architecture meets certain safety and performance properties.
The main approach is based on the verification of the model [18] which is an au-
tomatic technique of state spatial exploration in relation to properties expressed140

in a formal logic. It applies to prove the safety of the installation’s operating
procedures, which are a priori known [19, 20, 2], which is not the case for our
problem.

The automatic control synthesis techniques [21, 22] define all possible paths
in a controller model that meet a set of behavioral specifications. These tech-145

niques have been used to generate action sequences for plant operation using
Petri nets [23] and state machines [24]. However, they require the modelling
of a specification that presents certain choices in terms of plant operating be-
haviour. This is obviously not the best way to prove the existence of a safe
sequence, whatever the specification.150

Finally, reachability analysis clearly appears to be the appropriate means of
solving the problem of qualitative evaluation of architectures and proving the
existence of a legal and safe sequence from one state to another. Among the
different reachability analysis techniques, model-checking can be used by con-
sidering the properties to be proven [25] as a reachability property. In case of155

existence, the model-checker returns a single sequence, represented by a trace,
among all the possibilities. This technique has already proven its effective-
ness, using the Timed Automata [26], in the field of operation [27, 28]. For
hybrid automata, the reachability problem can be undecidable, which makes
them unusable for an approach to analyse reachability. Although the extension160

to industrial installations is still an open issue, the existing literature shows the
advantage of using reachability analysis on Timed Automata models to generate
secure process operations.

4. An architecture assessment approach based on reachability analy-

sis165

4.1. Objectives and hypotheses

This work focuses on the early validation of the architecture of critical com-
plex systems in the context of plant operations. The objective is to provide
designers and human operators with formal models to prove that the plant can
be operated safely, particularly in critical situations, and that the architecture170

design provides capabilities to achieve safe states. The role of the operators is
to identify critical plant operations and to introduce into the models the precise
parameters that characterize the situation being analyzed.

According to related work, timed automata (TA) and model-checking reach-
ability analysis appear to be an effective means of demonstrating the existence175

of at least one sequence of actions satisfying the safety and time constraints for
reaching an expected process state from the current state. If the existence of at
least one sequence is demonstrated, the process architecture will be considered
as valid for the analyzed situation.

5

Two main hypotheses are retained to enrich the TA related works in the180

case of large industrial systems: the size and complexity of the models, and the
practicability of the approach in an engineering process where several candidate
architectures have to be evaluated.

The first hypothesis is that modularity and hierarchy are an effective an-185

swer to the problems of model size and complexity. It takes advantage of the
hierarchical structure of the process architecture around different levels of func-
tionality (actuation and measurement, control and monitoring, plant operation
and management...) and operational devices (field devices such as valves and
pumps, PLCs, SCADA systems).190

Several research works (Multilevel Flow Modelling [29]) or international stan-
dards (ANSI/ISA-88.01-1995 standard [30]) provide guidelines for modelling
complex industrial processes according to recommended hierarchy schemes. Ap-
plications for critical industrial processes, such as chemical and energy processes,
are available [31] and will be our basis for producing modular and hierarchical195

TA architecture models.

The second assumption is that the reuse of models is essential to make our
approach acceptable and applicable in an engineering process. Indeed, as many
architectures have to be evaluated during the engineering process, a major issue200

is then the ability of modelers to easily build and modify the system model (for
example by adding or removing component models). Pattern-based modeling,
combined with a structured modeling framework, seems to be a very efficient
way to allow a plug-and-play approach to compose models from a library of
generic and reusable models: [32, 33, 34]. These models must have standard205

interfaces to ensure their interoperability and can be adapted and composed
according to the architecture to be modelled.

4.2. Chosen modelling formalism : Timed Automata

As mentioned previously, the chosen modeling formalism is based on timed
automata defined by [26] as an extension of finite state automata. A timed210

automaton is a 9-uplet A = (S, V, X, L, I, T, Sm, s0, v0) where:

• S, V , X and I are respectively finite sets of locations, variables, clocks
and invariants that label locations with some clock constraints,

• L is a set of synchronization labels (or channels) divided into emitting
labels Le (noted label!) and reception labels Lr (noted label?),215

• T is a set of transitions (s, l, g, m, s′) ∈ S × L×G×M × S where G is a
set of guards (crossing constraints on variables of V and clocks of X) and
M a set of updates on the valuation of variables and clocks 1; l, g and m

are optional,

1Notation convention: synchronization labels are followed by ! or ?, guards are between
brackets [], and updates are under the following form: v = value

6

• Sm ⊆ S, s0 ∈ S and v0 ∈ V are respectively the set of marked locations,220

the initial location and the initial values variables of V .

The state of a TA is described in a triplet stateA = (s, v, x), where s is the
active location, v is the set of variable values and x is the set of clock values.
It can evolve in two cases: after a transition crossing or after a lapse of time
(evolution of the clocks) if the invariant is maintained.225

An execution trace γ = (s1, x1, v1)
t1→ (s2, x2, v2) ...

tn→ (sn, xn, vn) is a se-
quence of size n alternating states and transitions with |γ| = n.

A network of m timed automata, NA = A1‖A2‖...‖Am consists in a set of
timed automata which can evolve in parallel (symbol ‖). A network provides230

structuring mechanisms to represent the synchronisation of timed automata
through channels (emission and reception labels) and shared variables or clocks.
The overall state of the network is a triplet stateN A = (rs, rv, rx) ∈ ST AT ENA

where rs is the set of active locations, rv is the set of variables values and rx is
the set of clocks values. An automata network NA evolves with:235

• a local evolution in an automaton of the network (if not related to a
synchronisation label),

• the simultaneous crossing of both transitions tα
p , tβ

q of an automata couple

(Aα, Aβ) with tα
p and tβ

q respectively labelled by lα
p ! and lβ

q ? such as

lα
p = lβ

q , source locations of tα
p and tβ

q are active and their guards satisfied.240

An execution trace on a timed automata network Γ = S1
T1→ S2 ...

TN→ SN

is an alternating sequence of states and transitions where Si is a state of the
automata network ∈ ST AT ENA, and Ti is either a transition of the automata
network, or a couple of transitions (tα

p , tβ
q) crossed simultaneously in the case of

a synchronization channel.245

4.3. Principles of the use of reachability analysis for architecture validation

This subsection presents the general framework of the proposed approach
(Figure 1). The proposal is based on the definition of modelling patterns (Pro-
cess and Sequencer Models) which are presented in the section 5, on the analysis
of the reachability thanks to model-checking then on the analysis of the resulting250

trace in terms of action sequences to validate or invalidate the architecture.

Timed Automata

Process models

Timed Automaton & CTL Formula

Reachability Property
Sequencer Model &

b
y

M
o
d
el

C
h
ec

k
in

g
R

ea
ch

a
b
il
it

y
A

n
a
ly

si
s

for architecture assessment

of an action sequence
Proof of existence

Trace
Execution

Figure 1: Framework for architecture validation

7

4.3.1. Reachability analysis by model-checking

The reachability analysis is designed to return a trace of execution from
the initial state of the sequencer to the state mentioned in the CTL property.
As seen in the section 3, formal model-checking techniques [35] allow, thanks to255

automatic state space traversal mechanisms, to prove (or disprove) that a model
satisfies (or does not satisfy) a formal property, which can be a reachability
property.

If a path to the target state of the sequencer model exists, then the property
will be satisfied and a model-checking tool will be able to provide an execution260

trace leading to this target state. A trace is then an alternating sequence of

states and transitions Γ = S0
T1→ S1 ...

Tn→ Sn on the automata network where
Si represents a state and Tj a transition.

It is important to note that the generated trace is often the first path leading
to the property check that is encountered when exploring the state space. It is265

therefore totally dependent on how the model-checker conducts its exploration
(in width or depth, for example). The operational relevance of this sequence may
be questioned, but the objective of the approach proposed here is only to show
that it is possible to reach a target situation, and not to try to make a system
work in an optimal way. However, some model-checkers offer the possibility of270

providing an optimal trace (in terms of length or duration of the sequences) but
with a major drawback linked to the problem of combinatorial explosion since
it requires exploring the entire state space.

4.3.2. Architecture validation

If such a trace can be provided, it means that there is a sequence of actions275

that meets the operational requirements of the facility for the analyzed context
expressed through the sequencer. Otherwise, a failure of the proof means that
the objective is not achievable and will probably require an evolution of the
designed architecture.

From the traces that are generated, it is then possible to interpret the process280

operations which are sequences of steps specifying the actions and observations
to be made on the process to go from a given state (considered as initial) to
a desired state (considered as final). The trace given by the model-checker
shall be processed to present the sequence of actions as understandable in the
context of the operation of the plant. For the purpose of this study, only the285

actions to be applied to the process devices shall be considered. This leads to
the application of a projection function on the generated run-time trace to filter
the observations, i.e. the transitions identified by a report, in order to keep, for
each transition drawn, only the source and reached states (locations, variables
and clocks) and the requested actions.290

4.4. Generation of action sequences

As presented in Figure 1, the reachability of a target location in the se-
quencer model requiring the process models is a safety indicator to validate the

8

architecture against the scenario described in the sequencer model under bound-
ary conditions (especially in case of unavailability of some devices). Proof of295

reachability is given in the form of an execution trace from which a sequence of
actions for plant operation can be deduced.

4.4.1. Reachability properties and generation of execution traces

The reachability property to be proved is modelled using a CTL (Com-
putation Tree Logic) formula. The CTL language uses logical and temporal300

operators to formalize different types of properties: among them, the quanti-
fiers A means ’along the whole path’ (inevitably) and E means ’along at least
one existing path’ (possibly). These quantifiers can be complemented by path
specific quantifiers such as G for ’Overall’ and F for ’Finally’. Therefore, the
reachability property of a sequencer will be represented as a combination of E305

and F as follows : EF sequencer.sexpected state.
Verification of the reachability property EF Sequencer.EndOfSequence on

models SN , MN , MN−1, . . . , M1 can be formalized as:

Γ← (MN ‖MN−1 ‖ ... ‖M1 ‖ SN) |= EF Si.EndOfSequence

where Γ is the trace of execution sought and |= is the relationship of sat-310

isfaction. The obtained execution trace contains a sequence of states (active
locations, clocks and variables) and transitions leading to the target location of
the sequencer. An example of such a trace is given in Figure 2.

!"

#"$%&
'"$%&
("$%&
)*%+(",-

)*%+',-

("$./0,-

'$./0,-

1,23432

#"$%*
'"$%*
("$%&
)*%+(",-

)*%+',-

("$./0,-

'$./0,-

1,23432

#"$%*
'"$%.
("$%*.5
)*%+(",-

)*%+',-

("$./0,-

'$./0,-

1,23432

#"$%*
'"$%.
("$%6
)*%+(","

)*%+',-

("$./07872("
'$./0,-

1,23432

#"$%*
'"$%5
("$%9
)*%+(","

)*%+',-

("$./0,-

'$./0,-

1,23432

#"$%*
'"$%6
("$%9
)*%+(","

)*%+',"

("$./0,-

'$./0 872:69:;35
1,23432

#"$%.
'"$%9
("$%9
)*%+(","

)*%+',"

("$./0,-

'$./0,-

1,23432

#"$%9
'"$%9
("$%9
)*%+(","

)*%+',"

("$./0,-

'$./0,-

1 <7%6=3/

!> !? !@ !A !B !C !D

1" 1> 1? 1@ 1A 1B 1C

Figure 2: Example of execution trace

4.4.2. Generation of an admissible action sequence

While a sequence of execution may be sufficient to prove the existence of a315

safe operating path, its interpretation and understanding by a plant operations
expert is not without significance. Indeed, it often contains many transitions
that make sense only for the internal evolution mechanisms of the models.

From the plant operation point of view, a sequence of actions consists of
the different operations that must be performed sequentially on the process320

elements. Depending on the context, these may be field devices (process mod-
els M1) such as actuation and measurement systems (opening/closing a valve,
starting/stopping a pump, a motor, configuring a transmitter, ...) or computer
devices (Mi with process models i ≥ 1) to control or operate the plant (start-
ing/stopping a function, an operating mode, a subsystem, ...). Each step of an325

action sequence identifies the action to be executed and defines the initial and
reached situations.

9

Formally, an action is defined as a 4-uplet (label, vd, vf , n), where label con-
tains a Req

p
i request to be applied on the p element at the i level to change

its state, vd and vf contains the values of the observation variables (Obs M
p
i)330

and the clocks respectively before and after the action, and n indicates the
hierarchical level of the actuated element.

The algorithm 1 allows to generate an action sequence ∆ associated with Γ.
In order to respect the semantics of an action sequence, the basic principle used
in the logic of the algorithm is close to a projection function, since it consists335

in extracting from the Γ trace all the transitions that do not involve actions
to be performed on one of the elements of the process, and in constructing
timestamps, values of the variables and states before and after actions.

Algorithm 1 Generation of action sequence ∆ for SN‖MN‖MN−1‖...‖M1

Require:

Γ = E1
T1→ E2...

TN→ EX % Execution trace %

Ensure:

∆ = δ1δ2...δX with δs = (label ∈ L, vd ∈ V, vf ∈ V, n ∈ N
∗)

% Ch(Tk) returns the channel (report or request) that labels the transition Tk if it
exists or null otherwise.
% V (Ei) returns the value of variables of the state Ei in the execution trace and the
value of the global clock.

% Σ
M

p

i−1

r is a subset of the alphabet associated to the automata M
p
i−1

that only
contains request channels.

k← 1 ; s← 1
for k=1 à X do

if Tk = (tα, tβ) ∧ tα ∈Mi ∧ tβ ∈M
p
i−1
∧ Ch(Tk) ∈ Σ

M
p

i−1

r then

label← Ch(Tk) = Req
p
i−1 ; vd ← v(Ek) ; vf ← V (Ek+1); n← i− 1

δs ← (label, vd, vf , n) ; s← s + 1
end if

if (Tk = tα) ∧ (tα ∈ SN) then

label← ε ; vd ← v(Ek) ; vf ← V (Ek+1); n← N

δs ← (label, vd, vf , n) ; s← s + 1
end if

k← k + 1
end for

return ∆ = δ1δ2...δs−1

5. Pattern-based hierarchical modelling

The previous section introduced the principles of using Reachability Analysis340

for architecture validation. This approach is based on a modelling framework for
process and sequencer models that is presented in this section. This framework
uses hierarchical and standardized synchronization mechanisms. An originality

10

is the definition of generic models to systematize the modelling of process and
sequencers and to promote the reuse of models. The standardized variables345

and elementary generic structures of the TA patterns will be stored in a library
from which the process and sequencer models will be built using a plug-and-play
approach. The expected benefits are the reduction of modelling activity time
since model building is done through specialization and model instantiation.

5.1. Models structure350

5.1.1. Process models

Process architecture modelling promotes hierarchy and modularity. For
these reasons, we consider that a process architecture is structured in N hi-
erarchical levels (left part of Figure 3). These levels can be identified using
ANSI.ISA-88 or internal company practices. The set of higher level models cor-355

responds to the plant operating recipe and will be denoted as MN while the set
of lower level models relates to field devices and will be denoted as M1. Each
level i involves a set Mi of models denoted as Mk

i describing a component k

belonging to that level. The details of these models will be given later in this
section.360

Process models Sequencer model

MN

MN−1

M1

S

ReqN

RepN

ReqN−1RepN−1

ReqN−2RepN−2

Req1Rep1

Figure 3: Structured process models Mi with a sequencer model S

The hierarchical communication between components is based on the classic
semantics of requests and reports. The evolution of reports on a k component
of level i may require the use of one or more resources belonging to level i− 1,
which means that these resources must also be the scene of state changes. This
is represented by a channel Req

p
i−1! where a model M

p
i ∈ Mi sends a query365

to a model Mk
i−1 ∈ Mi−1. In Figure 3, all queries sent by the level N − i are

grouped under the notation ReqN−i−1. The orientation of the arcs represents a
synchronization of the sent label (!) with the received label (?). By construction,
lower-level templates M

p
1 cannot request any resources.

11

In response to a state change request from a level i + 1, the requested model370

M
p
i will report a message when its state change has occurred. This message is

modeled by a synchronization channel Rep
p
i . In Figure 3, all reports sent by the

level N − i are grouped under the notation RepN−i−1.
In addition to this query/report mechanism, the evolutions of all models

can be conditioned by shared global variables representing physical variables or375

clocks.

5.1.2. Sequencer model

A sequencer is used to describe the plant operating scenario to be evaluated.
In principle, it represents the initial process situation and one or more target
situations. The transitions between these situations are conditioned by various380

constraints concerning physical variables, the state of some field devices, the
state of functions or the operational state of the plant. Operators and engi-
neering know-how help characterize these constraints which are, by definition,
specific to each scenario.

The sequencer interacts with the highest level of the process model MN via385

the same request/report semantics using the ReqN and RepN synchronization
channels (right part of Figure 3).

5.1.3. Modelling hypotheses

At this step, some very important assumptions need to be highlighted. The
first concerns the synchronisation of the models. The request sent by a compo-390

nent does not contain any explicit action that the called resources must execute.
This only means that the state of these resources does not meet the require-
ments of the state the requester wants to reach and, therefore, a change in the
state of the resources is mandatory. The appropriate evolution taken by the
resource to meet the conditions set by the requester will be randomly selected395

during the reachability analysis process until a solution is found. Similarly, if
several resources are able to provide the services requested by a component, the
model for that component will contain several transitions, each of which will
be labelled by a request to a resource, without identifying a choice between the
resources requested. Again, this role will be assigned to reachability analysis.400

The second hypothesis concerns the modelling of the evolution of physical
quantities. In the models, it is represented by loop transitions on stable states.
The crossing of these transitions is only conditioned by a clock invariant and
triggers a modification of the value of the physical quantity concerned. For the
purposes of this article, since the systems concerned are mainly composed of405

valves, pipes and pumps with constant and controlled flow rates, the modelling
of the evolution of the physical parameters depends on conditions that can be
modeled by first-order relationships. This discretization is therefore represented
by fixed increments or decrements, the value of which depends on the clock value
chosen to cross the transition. This may depend, for example, on the flow rate410

of a pump. The incrementation and decrementation of a physical quantity is
included in only one model, which ensures that there will be no simultaneous
changes or multiple updates.

12

The third hypothesis concerns the synchronization of the models. Figure 3
shows the exchanges between the process models at different levels, as well as415

with the sequencer model. These exchanges of requests and reports are updates,
and not communications between distributed components of the considered sys-
tem. For this reason, there is no latency when synchronizing the models.

5.2. Variable patterns

Standardised synchronisation mechanisms, based on query/report semantics420

(Reqi or Repi), do not contain all the necessary information on the status of
the process and sequencer models. This information is nevertheless mandatory
because the conditions of evolution within a model may depend on it (such as
functional or availability constraints, exclusion guards...). This information is
modelled by shared variables that can be written or read in the process and425

sequencer models :

• the observation of the active locations of the model Mk
i is recorded in the

variable noted Obs Mk
i ; these variables can be boolean, in the case of a

model having only two locations of interest, or integer otherwise; these
variables are updated when the locations of interest are reached;430

• physical values Φ; these variables are integer and are updated by the
models that act on them;

• the availability of a device described by the Mk
i model is recorded in the

Avail Mk
i boolean variable. These variables are used to characterize the

operating scenario analyzed in the presence of certain unavailable devices435

and/or functions. They are set at model initialization, before the reacha-
bility analysis, to evaluate the reachability of a target situation given the
known unavailability of some devices.

5.3. Location pattern

The modelling pattern for process and sequencer models is based on the con-440

cept of stable locations and on a set of transitions between two stable locations.
A stable location in a model Mk

i is a location whose deactivation requires the
receipt of a state change request. A stable location is a location such as :

• all output transitions must be at least labelled by a synchronization label
Reqk

i ? ∈ Lr,445

• by symetry, all input transitions have to be labelled by synchronization
label Repk

i ! ∈ Le.

In addition, we consider that a change in physical values can only be made
when a stable location is active. These modifications are modelled using a self-
loop transition on the stable location that updates the shared integer variables450

Φ. This discrete modelling of the physical variables was considered sufficiently
efficient by plant operations experts in our studies. The time step that evaluates
the periodic evolution of the physical variables is given by the step parameter
that is used as a guard for self-loop transitions.

13

5.4. Transition patterns455

Sets of transitional locations between stable locations ensure the preparation
and closure of operations executed in stable locations. Generic semantics are
given by the following sequence: a component receives a request from a higher
level to change its internal stable location, then it calls one or more resources
from lower levels and finally sends a status to the higher level when the new460

stable location is reached. Therefore, transitions from one stable location of Mk
i

to another can be labelled by three types of channels :

• a request Reqk
i ? received from higher level that justifies leaving the current

stable location;

• several requests Req
p
i−1! that request resources for state changes; all chan-465

nels that request resources are grouped together in a set noted {Req
p
i−1};

• a report Reqk
i ! sent to a higher level when a new stable location is reached.

The authorization of a transition sequence between two stable sites may de-
pend on conditions related to the availability of the requested resources, the
configuration of the requested resources and security constraints. These condi-470

tions are formalized by generic guards.

The availability constraint is formalized by a boolean guard G
(sa,sb)
avail , defined

for a pair of stable locations (sa, sb) by:

G
(sa,sb)
avail = [f

(sa,sb)
avail (Avail M

p
i−1) == T RUE].

This constraint is computed by function f
(sa,sb)
avail , which is specific to each475

process model, from shared variables Avail M
p
i−1 indicating the availability of

the resources called. If and only if the resources needed for the configuration
are all available, then the function returns the value true.

The configuration constraint represents the active locations of the called
resources and/or the values of certain physical variables that must be satisfied480

to allow the new stable location of the requester. Configuration conformance
for a stable location sa is formalized by a boolean guard Gsa

conf defined by :

Gsa

conf = [fsa

conf (Obs M
p
i−1, Φ) == T RUE].

This constraint is computed by the function fsa

conf , which is specific to each

process model, from the shared variables Obs M
p
i−1, and Φ.485

Finally, security constraints represent some properties that must be satisfied
before a requester is allowed to call a given resource. These properties can
be linked to priority rules (for example, a pump’s engagement can only be
required if upstream valves are open) or exclusion constraints (for example,
incompatibility between the execution of two given functions). In other words,490

when a resource M
p
i−1! is requested by a channel Req

p
i−1!, the safety constraint

requires that the active locations of some same-level elements and/or the values
of certain physical variables be respected. It is formalized as a boolean guard
G

p
safe defined as :

14

G
p
safe = [fp

safe(Obs M l
i−1, Φ) == T RUE].495

where l 6= p (safety constraint on the requested element p relates to the other
elements l). This constraint is computed by function f

p
safe, which is specific to

each process model, from the shared variables Obs M
p
i−1, and Φ. If and only if

the safety constraints are satisfied, then the function returns the value true.

5.5. “Two stable locations” pattern for process models500

The generic structure between two stable locations of a model Mk
i for i 6= 1

is given in Figure 4a.
The transition from the stable location sa to the stable location sf is crossed

upon receipt of a request Reqk
i ? from a model M

q
i+1 (this request is issued

between the locations sb and sc of M
q
i+1). This request can only be accepted if505

the availability guard Gd is true.
Assuming the request is enabled, the model starts calling lower-level re-

sources until the conditions for reaching the stable location sf are met. The
loop between sb and sc represents the successive requests Req

p
i−1 sent to the

resources (these requests are received by M
q
i−1 between sa and sb) until the re-510

quirements G
sf

f for the stable location sf are met. The sb→sc→sb trace means
that a resource was requested and responded positively but did not satisfy the
configuration guard G

sf

f . This sequence is executed until G
sf

f is true and reaches
the sd location.

The transition from sd to se is intended to update the observation variable515

Obs Mk
i after time tMk

i
has elapsed. This time, which can be null, represents

the transfer time from one stable location to another. Finally, the transition
from se to sf is only used to send a status change report Repk

i ! to M
q
i+1 (this

report is received between locations sc and sb or sc and sd).
The same process is applied for modelling the transient sequence between520

the stable location sf and the stable location sa.
In order to reduce the number of request transitions in a model Mk

i (poten-
tially equal to the number of level i− 1 elements), it is possible to restrict them
only to the level i− 1 resources used by the Mk

i element. This is formalized by
[35] through a set called cone of influence. In our case, this set is a set of re-525

quests Req
p
i−1! which is computed by listing the observations Obs M

p
i−1 and the

physical values Φ(Mp
i−1) involved in the configuration guards of Mk

i . This cone

of influence is defined as C(Mk
i) = {Req

p
i−1} for all p where either Obs M

p
i−1 or

Φ(Mp
i−1) belongs to the guard Gsx

c for all stable locations sx of the model Mk
i .

Finally, let us recall that the set {Req
p
i−1 ∈ C(M

k
i)} which labels some530

transitions (for example from sb to sc) is a notation convention which actually
represents a set of transitions, each of them being labelled by an element of the
set {Req

p
i−1}.

For lower level process models M1 (valves, pumps, sensors, ...), the pattern is535

given by Figure 4b. The transient sequence from one stable location to another
has no resources to trigger. Consequently, no functional constraints are taken

15

sa

sb sc sd se

sf

[clk ≥ step]

Evolution Φ

clk = 0clk ≤ step

sgshsisj

[G
(sa,sf)
avail]

Reqk
i ?

[Gp
safe]

{Req
p
i−1! ∈ C(Mk

i)}

{Rep
p
i−1? ∈ C(Mk

i)}
[¬G

sf

conf]

clk = 0
{Rep

p
i−1? ∈ C(Mk

i)}
[G

sf

conf]

clk = 0
Obs Mk

i = 1,
[clk ≥ tMk

i
]

clk = 0
Repk

i !

[G
(sa,sf)
avail]

Reqk
i ?

[Gp
safe]

{Req
p
i−1! ∈ C(Mk

i)}

{Rep
p
i−1? ∈ C(Mk

i)}
[¬Gsa

conf]

clk = 0
{Rep

p
i−1? ∈ C(Mk

i)}
[Gsa

conf]

clk = 0
Obs Mk

i = 0,
[clk ≥ tMk

i
]

clk = 0
Repk

i !

[clk ≥ step]

Evolution Φ

clk = 0clk ≤ step

clk ≤ 0

clk ≤ 0

clk ≤ tMk
i

clk ≤ tMk
i

(a) Pattern for Mk
i models

sa

sbcd se

sf

sghisj

clk = 0
Reqk

1
?

[Gavail]

Obs Mk
1

= 1, clk = 0
[clk ≥ t

Mk
1

]

clk = 0
Repk

i
!

clk = 0
Reqk

1
?

[Gavail]

Obs Mk
1

= 0, clk = 0
[clk ≥ t′

Mk
1

]

clk = 0
Repk

1
!

clk ≤ t
Mk

1

clk ≤ t′

Mk
1

[clk ≥ step]

clk ≤ stepclk ≤ step
Evolution Φ

clk = 0

[clk ≥ step]

Evolution Φ

clk = 0

clk ≤ 0

clk ≤ 0

(b) Pattern for Mk
1

models

Figure 4: Two stable locations pattern

into account, and safety constraints are ensured by the higher levels. The two
stable location model of Figure 4a is then simplified by substituting the locations
and transitions from sb to sd by a single location (similarly for sg to si). The540

only guard considered is the availability constraint but its semantics needs to
be adapted. Indeed, talking about availability of lower level resources makes
no sense but availability must be considered for the device itself since it must

be available to be triggered. The guard [G
(sa,sf)
d] is then substituted by a

guard Gd = Avail Mk
i , where Avail Mk

i is a boolean variable representing the545

availability of the element Mk
i .

5.6. Using patterns to structure process models Mn

The generic pattern proposed in the previous section allows to systematically
obtain the evolution model between two stable locations of a process element.

If this process element has only two stable states, which is often the case550

(on/off valve, pump, two-mode functions such as off and on, ...), the model of
the process element is similar to the generic model. It will suffice to define the

functions f
(sa,sf)
avail , fsa

conf , f
sf

conf and f
p
safe which are specific to each model.

16

Pio si so

clk = 0
Obs Mk

i = 1,
[clk ≥ tMk

i
]

clk ≤ 0

(a) Macro-location for models Mk
1

Pio si s1 s2 so

[Gp
s]

{Req
p
i−1! ∈ C(Mk

i)}

{Rep
p
i−1? ∈ C(Mk

i)}
[¬G

sf

f]

clk = 0
{Rep

p
i−1? ∈ C(Mk

i)}
[G

sf

f]

clk = 0
Obs Mk

i = 1,
[clk ≥ tMk

i
]

clk ≤ 0

(b) Macro-location for models Mk
i

Figure 5: Macro-locations

Otherwise, in the case of a number of stable locations greater than two
(three-way valves, functions with several modes such as off, on, gradient, ...),555

the process model is obtained by applying the ”two stable locations” for all pairs
of stable locations.

To simplify the representation of the models, a graphical notation of macro
localization, inspired by the Grafcet macro step of the IEC 60848 standard560

[36, 37], is proposed. A macro-location Pio, whose notation is given in the left
part of the Figure 5 is characterized by an input location si, an output location
so and inner locations sint. The transition from a sx location to a macro-location
is a graphical representation of the transition from that sx location to the si

input location of the macro location; the transition from a macro-location to565

a sy location is a graphical representation of the transition from the so output
location to that sy location.

The right part of Figure 5a shows the expansion of a macro-location repre-
senting the sequence from sb to se of the template pattern given in Figure 5a
while the right part of Figure 5b shows the expansion for Mk

i templates. As this570

notion is only a graphical notation, the syntax and semantics of macro-locations
remain classical.

A process model using macro-locations must satisfy the following two prop-
erties :

• there is at most one Pab macro location from the stable sa to the stable575

sb location regardless of a and b,

• a stable sa location must have at least one output transition to a Pab

macro transition with a 6= b.

The building of a model with k stable locations depends on the transitions
between the different stable locations. If a change between two stable locations,580

17

for example from sa to sb, is to be modeled, then a Pab macro-location is placed
between these two stable locations, and two transitions are defined from sa to
the input location of Pab and from the output location of Pab to sb. Figure 6
gives an example where 3 stable locations can be reached using 5 paths.

s1 P12 s2

P21

s3P23

P32

P31

ET = 0
G

(s1,s2)
d

Reqk
i ?

ET = 0
clk = 0
Repk

i !

ET = 0
G

(s2,s3)
d

Reqk
i ?

ET = 0
clk = 0
Repk

i !

ET = 0
G

(s1,s3)
d

Reqk
i ?

ET = 0
clk = 0
Repk

i !

ET = 0
G

(s1,s2)
d

Reqk
i ?

ET = 0
clk = 0
Repk

i !

[clk ≥ step]

Repk
i !

clk = 0
ET = 0

Reqk
i ?,G

(s2,s3)
d

ET = 0

clk = 0

clk ≤ step

[clk ≥ step]

T = T − 1

clk = 0

clk ≤ step

[clk ≥ step]

H = H + 1, T = T − 1

clk = 0

clk ≤ step

Figure 6: Example of model using macro-locations

5.7. Patterns for sequencer models S585

As presented in Figure 3, the sequencer model is synchronized with the
models MN using two channels: transmission of a set of requests {Reqk

N ! ∈
ReqN} and receiving a set of reports {Repk

N? ∈ RepN}.
The sequencer has an initial location, noted sa, and an expected location,

noted sc. The change from sa to sc corresponds to the operating scenario being590

evaluated. Recalling that the objective is to find an execution trace on the pro-
cess models Mi, the sequencer will use the request channels to trigger the process
models as resources helping to reach its expected location. Accordingly, the se-
quencer iteratively sends requests to the Mk

N models if the security conditions
(fk

safe(Obs Mk
N , Φ)) are met, until the conditions in terms of active locations595

of the Mk
N models and physical values fsc

conf(Obs Mk
N , Φ) are met. Iteration is

supported by the first transition from sa to sb and by self-loop transitions on
the location sb. An example of a sequencer automaton is given by the Figure 7,
where the location sc represents the desired target situation.

18

sa sb sc

[fk
safe(Obs Mk

N , Φ)]
{Reqk

N ! ∈ ReqN}

[fsc

conf (Obs Mk
N , Φ)]

{Repk
N? ∈ RepN}

¬ ([fsc

conf (Obs Mk
N , Φ)]) ∧ [fk

safe(Obs Mk
N , Φ)]

{Reqk
N? ∈ ReqN}

Figure 7: Sequencer pattern

This generic pattern can be used in combination, as with process patterns, to600

create compound sequencers. It can be useful to describe a sequence of phases
in which the physical values must reach different sets of values: for example, a
preparation phase, then an equilibrium state, and finally a closing phase.

6. Application using an Industrial case study

6.1. Presentation of the case study605

The CISPI platform is part of a larger demonstrator developed within the
CONNEXION project2. It is dedicated to research work on industrial process
management, which involves a set of complex processes covering different func-
tional modes (production, shutdown, start-up, ...) and critical modes (normal,
incident and accidental operation).610

The CISPI platform provides auxiliary water supply to other systems and
is structured in three hierarchical levels with a large number of hardware and
functional redundancies: 22 field equipments (M1) can be configured to perform
24 process functions (M2) to reach different operational situations of a recipe
(M3). A partial flowchart of the platform is given in Figure 8.615

The objective is to validate the process architecture by demonstrating that
a target situation can always be reached safely even if some resources are not
available or if changes have been made to the process and its control. The
initial situation is as follows: the valves are closed, the pumps do not work,
tank 001BA is full of water and tank 002BA is empty. The target situation is620

to supply tank 002BA with water up to a volume of 10 volume units. Three
scenarios are proposed, which differ in terms of equipment availability :

• Scenario 1: all devices are available;

• Scenario 2: all devices are available except valves V M3 and V E3 and
pump P O1;625

• Scenario 3: all devices are available except valves V E1 and V E3.

2CONNEXION (French Excellence in Nuclear Control Systems) is a research project on the
safety of control systems in the nuclear industry. It was supported by the French government.

19

Ck

VM51

Output
VM52

VE42 VM42 VE41

P
O
1

In
p
u
t

001BA

VR3 VM3 VM1 VR1

VM2

VM21 VM24

VM22 VM29 VM25

VM23 VM26

PO3 VE3 VE1 PO1

002BA

Figure 8: Process flow diagram of the CISPI platform

6.2. Case study modelling

The implementation of the models of recipes, functions, devices and se-
quencers with timed automata, as well as the reachability analyses, were per-
formed with the UppAal model checking tool [38]. The models presented in the630

section 5 have been implemented into the UppAal tool, which conforms to TA
semantics, to model equipment, functions and process recipe. Although the lan-
guage proposed by Uppaal is more expressive than the traditional TA definition
and may allow the creation of more ”readable” models, we chose to use TA to
facilitate model and approach portability.635

As discussed in the previous section, the main advantage of using TAs is
that it reduces the time required to build the model. The UppAal tool has

20

component-oriented features that allow the creation of parametric ”templates”,
which can be used as generic models and then instantiated. Therefore, defining
process models for an architecture is similar to a plug-and-play process that se-640

lects process models from the library. Their parameterization is done according
to parameter tables (for variables, constants and clock thresholds) and functions
(for the definition of guards) which are interpreted by C♯ scripts to set up the
UppAal automata.

Figure 9a provides the UppAal implementation of the process model (at645

the level ≥ 2) and Figure 9b gives an example of the instantiated valve model
V M21. Note that a double circled UppAal location is an initial location.

clkFi<=0

clkFi<=delay_obs

clkFi <= delay_fonction[F_id]

clkFi<=0

clkFi<=delay_obs

clkFi <= delay_fonction[F_id]

clkFi >= delay_fonction[F_id]
evol_phi(),clkFi=0

E_id : int[0, NB_EQ-1]
influence_f(F_id, E_id)
&& deconfiguration(F_id)

Eq_Ouvert[E_id]?

clkFi=0

E_id : int[0, NB_EQ-1]
influence_f(F_id, E_id) && !deconfiguration(F_id)

Eq_Ouvert[E_id]?

E_id : int[0, NB_EQ-1]influence_f(F_id, E_id)
&& securite(E_id)
&& operation_necessaire(E_id)

Fermer_Eq[E_id]!

E_id : int[0, NB_EQ-1]
influence_f(F_id, E_id) && !configuration(F_id)

Eq_Ferme[E_id]?

E_id : int[0, NB_EQ-1]
influence_f(F_id, E_id)
&& configuration(F_id)

Eq_Ferme[E_id]?clkFi=0

E_id : int[0, NB_EQ-1]influence_f(F_id, E_id)
&& securite(E_id)
&& operation_necessaire(E_id) Fermer_Eq[E_id]!

E_id : int[0, NB_EQ-1]
influence_f(F_id, E_id)
&& configuration(F_id)

Eq_Ouvert[E_id]?
clkFi=0

E_id : int[0, NB_EQ-1]influence_f(F_id, E_id)
&& securite(E_id)
&& operation_necessaire(E_id) Ouvrir_Eq[E_id]!

E_id : int[0, NB_EQ-1]
influence_f(F_id, E_id)
&& deconfiguration(F_id) Eq_Ferme[E_id]?

clkFi=0

E_id : int[0, NB_EQ-1]
influence_f(F_id, E_id) && !deconfiguration(F_id)

Eq_Ferme[E_id]?

E_id : int[0, NB_EQ-1]influence_f(F_id, E_id)
&& securite(E_id)
&& operation_necessaire(E_id)

Ouvrir_Eq[E_id]!

E_id : int[0, NB_EQ-1]
influence_f(F_id, E_id) && !configuration(F_id)

Eq_Ouvert[E_id]?

clkFi>=delay_obs

Fonction_configuree[F_id] = 0,
clkFi=0

RepB_Fct[F_id]!
clkFi=0

disponibilites_fct[F_id]
ReqB_Fct[F_id]?

clkFi >= delay_fonction[F_id]
evol_phi(),clkFi=0

RepA_Fct[F_id]!
clkFi = 0

clkFi>=delay_obs

Fonction_configuree[F_id]=1,clkFi=0

disponibilites_fct[F_id]
ReqA_Fct[F_id]?

(a) UPPAAL pattern for process models Mi with i ≥ 2

clkEi<=delay_equipement[16]

clkEi<=delay_action[16]

clkEi<=0

clkEi<=0

clkEi<=delay_action[16]

clkEi<=delay_equipement[16]
clkEi>=delay_equipement[16]

evol_phi(),
clkEi=0

clkEi>=delay_equipement[16]
evol_phi(),
clkEi=0

Eq_Ferme[16]!
clkEi=0 clkEi>=delay_action[16]

Position_Eq[16] = 0,
clkEi=0

disponibilites_eq[16]
Fermer_Eq[16]?

clkEi=0

Eq_Ouvert[16]!
clkEi=0

clkEi>=delay_action[16]

Position_Eq[16] = 1,
clkEi=0

disponibilites_eq[16]
Ouvrir_Eq[16]?

clkEi=0

(b) UPPAAL model of valve V M21

Figure 9: Implementation of process models with UPPAAL

6.3. Results and analysis

For Scenario 1, a proof of success has been returned, meaning that a safe
sequence of action exists to reach the target state of the sequencer. An execution650

trace has been proposed and has been interpreted according to Algorithm 1 as:

1. Configure function CpCsExt1G

(a) Open valve VR3

(b) Open valve VM3

(c) Start pump PO3655

(d) Open valve VE3

21

2. Wait 10 time units

3. Objective situation is reached

For Scenario 2, for which V M3, V E3 and P O1 are not available, it was
also possible to achieve the target situation by opening the valves V M1, V R3,660

V M23, V M26 and V E1, starting the pump P O1 and waiting 10 units of time.
This means that the considered architecture is valid with respect to the opera-
tional objective, in the considered architecture configurations.

On the opposite, a proof of failure has been returned for scenario 3 where
neither V E1 nor V E3 are available. This means that if the operational situa-665

tion being assessed occurs, the current CISPI architecture will not be able to
respond in a safe manner.

Even if an architecture is valid, this does not mean that the generated se-
quences are operationally valid. Indeed, a generated sequence can use the same670

device several times, on opposite actions which are consequently useless actions,
or be very long compared to others. One way to validate generated sequences is
to obtain the operator’s point of view. If several sequences are generated for the
same case, some may be considered better than others, and the operator will
then have to make a choice between them. This choice can be made according to675

different criteria such as, for example, the duration of the sequence, the number
of actions in the sequence, or the geographical distance between devices.

The simulation of the generated traces or sequences can be useful for such
activities. A prototype has been developed in this way in the CONNECTION
project. The process behavior has been simulated with Alices 3 while the control680

and operation of the plant has been implemented with Scade4. The generated
sequences were run by an operator on this coupled simulation to visualize and
evaluate the relevance of the generated sequence.

7. Conclusion and open issues

The objective of the work presented in this paper is to propose an approach to685

validate as early as possible the operability of the architecture of safety-critical
systems. It considers operational validation from the operator’s point of view.
The approach is based on reachability analyses of timed automata representing
the process behaviour, which are initiated by the operators. If the situations
characterized by the operators are reachable, the architectures considered are690

valid; otherwise, the architectures are not and must be modified.
The proposal of a formal modeling framework, based on patterns, favors

their reuse for many architecture validations. In this way, the modelling effort,
and thus the time and cost of modelling, is reduced.

3Alices is a tool for the full-scale simulation of a power plant developed by CORYS.
4Scade is a formal simulation and verification tool for embedded control systems developed

by ANSYS.

22

Work in progress is the definition of a library of models and patterns that695

could be used to facilitate the composition of process models and sequencers.
The open issues in this definition are the classification criteria and the level of
detail that the model author must address. Indeed, depending on the expertise
of the user, different levels of detail may be required: for example, a low level
may be required in the case of an operator who wants to validate an architecture700

in a particular situation, or a high level in the case of a modeler who proposes
a new model.

Beyond the reachability analysis, which enables an architecture to be vali-
dated, the use of model-checking on models developed according to the proposed
approach enables the models to be validated, in particular from the point of view705

of operating safety. In other words, from a physical point of view, it is a ques-
tion, for example, of checking that physical quantities do not exceed certain
thresholds (is the volume of the tank greater than a safety level?). From an
operational point of view, it may be necessary to check that a configuration has
been carried out before starting an action (is the valve open before starting the710

pump?).
Another major problem in using reachability analysis is the risk of combina-

torial explosion that often occurs when verifying large-scale models, as shown
by previous preliminary work on the feasibility of generating action sequences
[39]. The fact that the systems covered are very large justifies the use of dif-715

ferent levels of abstraction to progressively construct action sequences through
iterative refinement.

8. References

[1] L. Mårtensson, Are operators and pilots in control of complex systems?,
Control Engineering Practice 7 (2) (1999) 173 – 182.720

[2] J. Lahtinen, J. Valkonen, K. Björkman, J. Frits, I. Niemelä, K. Heljanko,
Model checking of safety-critical software in the nuclear engineering do-
main, Reliability Engineering & System Safety 105 (2012) 104–113.

[3] C. Devic, P. Morilhat, Connexion contrôle commande nucléaire numérique
pour l’export et la rénovation - coupler génie logiciel et ingénierie système725

: source d’innovations, Génie Logiciel 104 (2013) 2–11.

[4] O. Goubali, P. Girard, L. Guittet, A. Bignon, D. Kesraoui, P. Berruet,
J.-F. Bouillon, Designing functional specifications for complex systems, in:
International Conference on Human-Computer Interaction, Springer, 2016,
pp. 166–177.730

[5] D. Galara, Roadmap to master the complexity of process operation to help
operators improve safety, productivity and reduce environmental impact,
Annual Reviews in Control 30 (2) (2006) 215–222.

23

[6] N. Foulkes, M. Walton, P. Andow, M. Galluzzo, Computer-aided synthesis
of complex pump and valve operations, Computers & Chemical Engineering735

12 (9) (1988) 1035–1044.

[7] J. Rushby, Using model checking to help discover mode confusions and
other automation surprises, Reliability Engineering & System Safety 75 (2)
(2002) 167–177.

[8] M. Bouissou, J. Bon, A new formalism that combines advantages of fault-740

trees and markov models: Boolean logic driven markov processes, Reliabil-
ity Engineering and System Safety 82 (2) (2003) 149–163.

[9] C. G. Cassandras, S. Lafortune, Introduction to discrete event systems,
Springer, 2008.

[10] C. A. Petri, Communication with automata (1966).745

[11] T. A. Henzinger, The theory of hybrid automata, in: Verification of Digital
and Hybrid Systems, Springer, 2000, pp. 265–292.

[12] G. Rotstein, R. Lavie, D. Lewin, A qualitative process-oriented approach
for chemical plant operations — the generation of feasible operation pro-
cedures, Computers & Chemical Engineering 16 (1992) S337 – S344, Euro-750

pean Symposium on Computer Aided Process Engineering.

[13] A. Castelnuovo, L. Ferrarini, L. Piroddi, An incremental Petri net-based
approach to the modeling of production sequences in manufacturing sys-
tems, IEEE Transactions on Automation Science and Engineering 4 (3)
(2007) 424–434.755

[14] M. Theißen, R. Hai, W. Marquardt, A framework for work process model-
ing in the chemical industries, Computers & Chemical Engineering 35 (4)
(2011) 679 – 691.

[15] S. Viswanathan, C. Johnsson, R. Srinivasan, V. Venkatasubramanian, K. E.
Ärzen, Automating operating procedure synthesis for batch processes: Part760

i. knowledge representation and planning framework, Computers & Chem-
ical Engineering 22 (11) (1998) 1673–1685.

[16] G. Godena, ProcGraph: a procedure-oriented graphical notation for
process-control software specification, Control Engineering Practice 12 (1)
(2004) 99 – 111.765

[17] H. A. Gabbar, A. Aoyama, Y. Naka, Recipe formal definition language for
operating procedures synthesis, Computers & Chemical Engineering 28 (9)
(2004) 1809–1822.

[18] E. M. Clarke, O. Grumberg, D. Peled, Model checking, MIT press, 1999.

24

[19] E. Németh, T. Bartha, C. Fazekas, K. M. Hangos, Verification of a770

primary-to-secondary leaking safety procedure in a nuclear power plant
using coloured Petri nets, Reliability Engineering & System Safety 94 (5)
(2009) 942–953.

[20] D. Soliman, G. Frey, Verification and validation of safety applications based
on plcopen safety function blocks, Control Engineering Practice 19 (9)775

(2011) 929 – 946.

[21] P. J. Ramadge, W. M. Wonham, Supervisory control of a class of discrete
event processes, SIAM Journal on Control and Optimization 25 (1) (1987)
206–230.

[22] J. Zaytoon, B. Riera, Synthesis and implementation of logic controllers–a780

review, Annual Reviews in Control 43 (2017) 152–168.

[23] Y.-F. Wang, H.-H. Chou, C.-T. Chang, Generation of batch operating pro-
cedures for multiple material-transfer tasks with Petri nets, Computers &
Chemical Engineering 29 (8) (2005) 1822–1836.

[24] M.-L. Yeh, C.-T. Chang, An automata-based approach to synthesize un-785

timed operating procedures in batch chemical processes, Korean Journal of
Chemical Engineering 29 (5) (2012) 583–594.

[25] S. Dai, M. Hong, B. Guo, Synthesizing power management strategies for
wireless sensor networks with uppaal-stratego, International Journal of Dis-
tributed Sensor Networks 13 (4).790

[26] R. Alur, D. L. Dill, A theory of timed automata, Theoretical Computer
Science 126 (2) (1994) 183–235.

[27] C.-J. Wang, Y.-C. Chen, S.-T. Feng, C.-T. Chang, Automata-based op-
erating procedure for abnormal situation management in batch processes,
Computers & Chemical Engineering 97 (2017) 220–241.795

[28] J.-H. Li, C.-T. Chang, D. Jiang, Systematic generation of cyclic operating
procedures based on timed automata, Chemical Engineering Research and
Design 92 (1) (2014) 139–155.

[29] M. Lind, An introduction to multilevel flow modeling, Nuclear safety and
simulation 2 (1) (2011) 22–32.800

[30] ISA, ANSI/ISA-88.01-1995 : Batch control - part 1 : Models and termi-
nology, The Instrumentation, Systems and Automation Society.

[31] M. Lind, H. Yoshikawa, S. B. Jørgensen, M. Yang, K. Tamayama,
K. Okusa, Multilevel flow modeling of monju nuclear power plant, Nuclear
safety and simulation 2 (3) (2011) 274–284.805

25

[32] H. Meng, L. Kloul, A. Rauzy, Modeling patterns for reliability assessment
of safety instrumented systems, Reliability Engineering & System Safety
180 (2018) 111–123.

[33] M. Bonfè, C. Fantuzzi, C. Secchi, Design patterns for model-based au-
tomation software design and implementation, Control Engineering Prac-810

tice 21 (11) (2013) 1608 – 1619.

[34] S. Mouelhi, M.-E. Laarouchi, D. Cancila, H. Chaouchi, Predictive for-
mal analysis of resilience in cyber-physical systems, IEEE Access 7 (2019)
33741–33758.

[35] E. Clarke, A. Biere, R. Raimi, Y. Zhu, Bounded model checking using815

satisfiability solving, Formal Methods in System Design 19 (1) (2001) 7–
34.

[36] IEC, IEC 60848: Grafcet specification language for sequential function
charts.

[37] R. Julius, M. Schürenberg, F. Schumacher, A. Fay, Transformation of820

Grafcet to PLC code including hierarchical structures, Control Engineering
Practice 64 (2017) 173 – 194.

[38] K. G. Larsen, F. Lorber, B. Nielsen, 20 years of uppaal enabled industrial
model-based validation and beyond, in: T. Margaria, B. Steffen (Eds.),
Leveraging Applications of Formal Methods, Verification and Validation.825

Industrial Practice, Springer International Publishing, Cham, 2018, pp.
212–229.

[39] T. Cochard, D. Gouyon, J.-F. Pétin, Generation of safe plant operation
sequences using reachability analysis, in: 20th IEEE International Confer-
ence on Emerging Technologies and Factory Automation, 2015.830

26

	Introduction
	Industrial context and problem
	Related works
	An architecture assessment approach based on reachability analysis
	Objectives and hypotheses
	Chosen modelling formalism : Timed Automata
	Principles of the use of reachability analysis for architecture validation
	Reachability analysis by model-checking
	Architecture validation

	Generation of action sequences
	Reachability properties and generation of execution traces
	Generation of an admissible action sequence

	Pattern-based hierarchical modelling
	Models structure
	Process models
	Sequencer model
	Modelling hypotheses

	Variable patterns
	Location pattern
	Transition patterns
	“Two stable locations" pattern for process models
	Using patterns to structure process models Lg
	Patterns for sequencer models Lg

	Application using an Industrial case study
	Presentation of the case study
	Case study modelling
	Results and analysis

	Conclusion and open issues
	References

