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Explaining	with	models:	the	role	of	idealizations	

Julie	JEBEILE	(IHPST,	Paris)	and	Ashley	KENNEDY	(Florida	Atlantic	University)1	

Abstract	

Because they contain idealizations, scientific models are often considered to be 

misrepresentations of their target systems. An important question is therefore how models can 

explain the behaviors of these systems. Most of the answers to this question are 

representationalist in nature. Proponents of this view are generally committed to the claim 

that models are explanatory if they represent their target systems to some degree of accuracy; 

in other words, they try to determine the conditions under which idealizations can be made 

without jeopardizing the representational function of models. In this paper we first outline 

several forms of this representationalist view. We then argue that this view, in each of these 

forms, omits an important role of idealizations: that of facilitating the identification of the 

explanatory components within a model. Via examination of a case study from contemporary 

astrophysics, we show that one way in which idealizations can do this is by creating a 

comparison case which serves to highlight the relevant features of the target system. 

1 Introduction	

All scientific models contain idealizations, which are deliberate distortions or omissions of 

specific properties of the target system. Often, these idealizations are required for 

mathematical tractability. Because of the idealizations, scientific models are often considered 

to be “misrepresentations” of their targets. On the surface, it might seem that a 

misrepresentation would not provide a good explanation. However, most scientists, and 

indeed most philosophers of science, take idealized models to be explanatory.  Exactly how 

these models explain, however, is controversial. 

                                                
1 Both authors have contributed equally to this work. Julie Jebeile is at the Institute for the History and Philosophy of Science 

and Technology (IHPST). Correspondence to: IHPST – UMR 8590, 13 rue du Four, 75006 Paris, France. E-mail: 

julie.jebeile@gmail.com. Ashley Kennedy is at Florida Atlantic University. Correspondence: 5353 Parkside Dr., Jupiter, FL 

33458. E-mail: kennedya@fau.edu. 
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For the most part, attempts to understand model explanation have centered on an analysis of 

scientific models as representations. One such attempt is the de-idealization thesis which is 

most famously represented in McMullin (1985), but is also present in Laymon (1987) and 

Nowak (1992). Other representationalist attempts have been more recently provided and/or 

discussed by Strevens (2008), Bokulich (2009, 2011), Mäki (2009), Morrison (2009), and 

Weisberg (2007)2. Even though what exactly representation amounts to is the subject of 

ongoing debate (see van Fraassen 2008), these authors seem to be generally committed to the 

claim that models are explanatory if they represent their target systems to some degree of 

accuracy. No doubt this presumption stems from Hempel’s condition of truth (which he refers 

to as the “empirical condition of adequacy”) in the deductive-nomological account of 

scientific explanation (1965), which requires that “the sentences constituting the explanans 

must be true.” Thus these representationalist authors generally try to determine the conditions 

under which idealizations can be employed without jeopardizing the representational function 

of the model that contains them. 

Our aim in this paper is not to argue against the representationalist account of model 

explanation but rather to show one way in which it is incomplete and in need of revision. Our 

view is that a strictly representationalist account of model explanation does not do justice to 

the role of idealization in model explanation. In order to show this, we will first outline the 

prevailing representationalist accounts of model explanation, then we will argue that these 

accounts omit an important role of idealizations: that of facilitating the identification of the 

components within a model that do real explanatory work. Further, we will argue that 

explanation should be understood as an activity, rather than a product. In order to see both of 

these points, it is necessary to consider not only the dyadic relationship between models and 

target systems, but also the relationship between models and users. Models are not only 

representations, they are also epistemic tools which are designed by and for scientists to make 

inferences, predictions and explanations. Authors such as Giere (2010), Vorms (2011) and 

Suárez (2010) have recently developed accounts of scientific representation, which describe a 

role for the scientist or model “user” in representation. Under this kind of framework, as we 

will show, idealizations cannot be understood as merely having a negative role in possibly 

jeopardizing the representational function of models. Rather, on the contrary, idealizations 

should be seen as having an active role in making possible the identification of explanatory 

                                                
2 Non-representationalist accounts of model explanation have also been developed (Elgin 2007, 2009; Kennedy 2012; 

Knuutila and Merz 2009, Knuuttila 2011). 
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components in models; a role that current representationalist accounts of model explanation 

do not account for. Via examination of a case study from contemporary astrophysics, we will 

show one way in which idealizations can play such an active role in model explanation: by 

creating a comparison case which highlights the explanatorily relevant features of the target 

system. This example further shows that explanation is a process or an activity, rather than 

simply a product. 

2 Representationalist	accounts	of	model	explanation	

2.1 The	de-idealization	thesis	

According to one representationalist account – the “de-idealization thesis” – a model can be 

considered explanatory only if, were it to undergo a process of de-idealization, it would be a 

more accurate representation of (and thereby would provide a better explanation of) the target 

system in question (McMullin 1985; Laymon 1995; Jones 2005; Nowak 1992). On this view, 

a process of “de-idealization” consists in adding features of the target (that were originally left 

out) back in to the models and/or correcting mathematical approximations that originally 

appear in the models. According to this thesis, if a model undergoes such a process of de-

idealization and becomes more accurate or “more specific” (McMullin 1985), it means that 

the model in its idealized form was already a partially or approximately true representation of 

the target, and can therefore be considered explanatory. 

The aim of the corrective, or de-idealization process, (McMullin, 1985) is to create more 

accurate models by adding back in features of the target system which were originally 

removed, or by replacing initially highly simplified terms by more approximate ones. 

Idealizations which are amenable to being corrected in this way are qualified as “Galilean”. 

Examples of Galilean idealizations include the frictionless plane, the simple pendulum and 

inviscid fluid flow. According to this view, only a model that can be de-idealized, via a 

correction of its Galilean idealizations, is likely to be approximately true and therefore has the 

potential to explain the structure of the target system in question. Hence, only such a model 

can serve “as the basis for a continuing research program” (McMullin, 1985, p. 261). The de-

idealization process, according to McMullin, justifies the explanatory value of a model, 

because if a model can be de-idealized, that means that it captures what he calls the “real 
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structure” of the target system that it represents3. Therefore, on this view, de-idealization is 

seen as a way of enhancing or improving a model, and thus is considered to be a central part 

of the development of the research program. According to the de-idealization thesis, then, the 

aim of the modeling process is to develop models that are increasingly realistic so that we can 

arrive at increasingly better explanations of the systems that we model. 

We think that there is something right about this view of the modeling process. In some cases, 

creating a more realistic model via de-idealization does in fact improve the model 

explanation. Take, for example, Bohr’s original model of the atom (cf. McMullin 1985), 

which represented an electron in a circular orbit around a stable proton. This famous model, 

although very simplified, yielded “some startling good results for the basic H-spectrum.” 

(McMullin 1985 p. 260) The model was made simple and tractable by incorporating three 

main idealizing assumptions. First, it assumed that the orbit of the electron was circular. Next, 

it assumed that the nucleus of the atom was at rest (and thus of infinite mass) and finally, it 

ignored the relativistic effects due to the rapid motion of the electron. These idealizing 

assumptions were made for pragmatic reasons, even though they were known to be false. 

Later, when this model was improved by introducing corrective terms for each of its original 

idealizations, the de-idealized versions of the original model were considered to be more 

explanatory than their predecessor. 

This particular example well supports the claim of the de-idealization thesis – that de-

idealizing a model can improve the model explanation4. However, as we will show, a de-

idealized version of a model is not always in itself explanatory beneficial. Before we make 
                                                
3 Note that McMullin (1978, 1985) describes a kind of explanation that is structural. He writes that “When the properties or 

behavior of a complex entity are explained by alluding to the structure of that entity, the resultant explanation may be called a 

structural one.” (1978, p.139) McMullin takes this kind of explanation to be causal, since the structure that is identified is 

generally the cause of the feature that is being explained. 

4 That said, Morrison (2005, 2009) showed that there is a theoretical inconsistency in the de-idealization thesis. According to 

the de-idealization thesis, if a model can be de-idealized, then it is a good approximate representation: it is approximately 

true. And the more we de-idealize the model, the better the model explanation will be. However, this is only possible if there 

is a stable “structure,” or set of approximately true assumptions, that remains constant throughout the de-idealization process. 

As Morrison points out, the problem is that such a structure does not always exist. In some cases, a model that results from a 

de-idealization process will contradict the model from which it was derived, which seems to show that there is no constant 

underlying structure that survives the de-idealization process. While we agree with Morrison that there does seem to be a 

theoretical inconsistency in the de-idealization thesis, we think that the following question is still worth addressing: in 

practice, even if successive de-idealized models conflict with each other, is de-idealization always explanatorily beneficial? 

And we argue, in the remaining of the paper, that a de-idealized version of a model is not always in itself explanatorily 

beneficial. 
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this argument, we will first examine some more recent representationalist accounts of model 

explanation. 

2.2 More	recent	representationalist	accounts	

Recently, Elgin and Sober have claimed that: “The idealizations in a causal model are 

harmless if correcting them wouldn’t make much difference in the predicted value of the 

effect variable”. (2002 p. 447). In other words, they argue that a model is explanatory insofar 

as the idealizations it contains do not make much difference between the explanation provided 

by the idealized model and the one provided by the corrected model. 

Strevens (2008 p. 316) has similarly argued that all idealizations “work in the same way: an 

idealization does not assert, as it appears to, that some non-actual factor is relevant to the 

explanandum, rather, it asserts that some actual factor is irrelevant.” Thus, on his view, the 

role of idealization in model explanation is to highlight those factors that are not causally 

relevant to the target being explained. While we agree that sometimes idealizations within a 

model do play this role, we will argue that, in other cases, the idealizations within scientific 

models play a more active role. 

According to another recent account of model explanation, (Bokulich’s 2009, 2011), models 

are explanatory not in spite of their idealizations, but in virtue of them. Bokulich argues that 

in order for a model to count as explanatory its components must correctly capture the 

structure of counterfactual dependences in the target system. This means that the 

counterfactual structure of the model must be in an isomorphic relation with the target system. 

Bokulich bases her account on Woodward’s interventionist account of scientific explanation 

(2003). She also specifies that the isomorphic relation between the model and the target 

system must be established in accordance with the relevance of the system’s features. In other 

words, the components of the model must refer to the relevant features of the system. The 

relevance of these features is determined by the type of questions that the model aims to 

answer. A model that relevantly captures the genuine counterfactual structure of the system 

therefore allows one to answer a broad class of  “what-if-things-had-been-different” 

questions. 

All of these views of model explanation are alike in that they posit that scientific models 

explain, at least in part, because they are good representations of their target systems. 

However, as we will argue, representation alone is not enough for explanation. 
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3 Model	explanation	as	an	activity	

Our view is that representation is not sufficient for explanatory sucess. Instead, in order for a 

model to be successfully explanatory, the scientists who employ the model must be able to 

draw explanations from it. And for this purpose, scientists, in some cases, require idealized 

representations, in addition to the most accurate representation, in order to explain their 

targets. However, the representationalist assumption falls short in accounting for this kind of 

scientific activity since it only allows for accurate representations to be explanatory, and 

ignores all the other means – such as the use of more idealized representations – used by 

scientists to answer their explanatory questions. Our goal in this paper is to revise the 

representationalist view by taking into account that explanation is an activity. In this regard 

our account of explanation is closely related to Suárez’s (2015) account of representation. He 

writes that in scientific modeling, “It is the activity itself that is constitutive of representation, 

and there is no relation that may stand in its place.”  Similarly, in our view, explanation 

cannot be reduced in this way either.  

On our view, the success of the activity of explaining depends upon several factors. Here we 

will discuss two. First, the activity of explaining with a model requires that the model not 

only represent its target, but also that it allow those who use it to extract relevant pieces of 

information about the target system from the model. In most cases this requires that the model 

be an idealized representation of its target in appropriate ways. A completely realistic model, 

even if it were possible to create, would not allow for the extraction of information leading to 

explanation. Second, the success of a model explanation also depends upon the skills of an 

experienced scientist to draw explanations from the model. This means that no model is, on 

our view, explanatory per se, but that certain models can become explanatory when in the 

hands of qualified users. In other words, model explanation is a process that is user 

dependent. 

As we have noted, there is an extensive literature on models and scientific representation. 

Much of this literature seems to either implicitly or explicitly assume that models explain 

when they are accurate (or at least adequate) representations of their target systems. This view 

leaves little room for the role of idealization in model explanation, other than the “causal 

isolationist” view according to which idealization within models is a means to isolating the 

causal mechanisms that are at work in the target system that is being modeled. On this view, 

scientists include idealizations as a way of sealing off factors that are considered irrelevant to 
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what is being explained. Weisberg (2007) refers to these models as “minimalist models,” 

which are models that contain “only those factors that make a difference to the occurrence and 

essential character of the phenomenon in question.” (2007, p. 4). In some cases, scientists do 

use idealizations for this purpose, as a way of pointing out that certain factors are not relevant 

to what is being explained. For example, friction and air resistance are often given a zero 

value in models, not just for tractability reasons, but because friction and air resistance, in 

many cases, are not relevant to what is being explained.  

Another role for model idealization that has been described in the literature is that of 

simplification for the purposes of facilitating understanding. We agree that idealizations do 

sometimes play this kind of role, by simplifying very complex models in order to make them 

understandable to users5. But while we acknowledge that idealizations in scientific models 

can be used to simplify these models, what we wish to highlight here is that, at least in some 

cases, idealization can play another role in the explanatory process. In the example that 

follows, the model explanation is derived, not just from the representationally accurate parts 

of the model, but also via a comparison of the idealized model with more realistic versions. 

Thus the idealizations in this case plays an important role in the process of explanation that 

goes beyond mere simplification. 

Our second point concerning the process of explanation is that it is user-dependent. We have 

said that explanation can be conceived of as an activity. This activity depends, for its success, 

upon the skills of a competent model user to draw inferences from the model in question. 

Because of this, model explanation cannot, in our view, be understood independently from the 

user of the model. In other words, explanation requires a competent model user. 

To see our view more clearly, consider the following example. 

                                                
5 While many philosophers of science focus on the epistemic problem raised by simplifying idealizations in 

models, some have focused on their role as cognitive aids (Dilworth (ed.) 1992; Elgin 2007, 2009; Forster 2001; 

Hartmann 1998; Morrison 2009; Teller 2001). In particular, Suárez (2009, 2010) contends that fictional 

assumptions play an inferential role in scientific modeling. On his view the primary function of a scientific 

model is not (only) to faithfully represent the target system but also to provide “inferential shortcuts” from which 

we can access the properties of the target. 
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4 Case	study:	cosmological	hydrodynamical	simulations	

The standard model of cosmology posits that the mass-energy density of the Universe is 

dominated by dark matter and dark energy of unknown forms. Because dark matter is not 

directly observable, testing the predictions of the standard cosmological model requires 

observing matter in the form of stars, diffuse gas, and accreting black holes. These 

components of visible matter are organized in sheets, filaments, and voids, inside of which 

galaxies are embedded. Because galaxies are the basic units of cosmological structure, 

simulating and observing galaxies is a way in which to test the predictions of the standard 

cosmological model. Thus scientists create simulated galaxies and then compare the 

predictions of these simulations to observational data of actual galaxies. They then evaluate 

the successes and failures of these simulations in order to enhance understanding of the 

galaxy formation process and ultimately of cosmological structure. As with accretion disk 

modeling, the comparison of idealized with more realistic models is an integral part of the 

explanatory process in these cases.  

As we have noted, galaxy simulations are important for understanding large scale cosmology. 

For practical reasons, these galactic simulations are often idealized in several ways. In 

particular, a recent study (Puchwein et. al. 2015) compared galaxy simulations that assume 

that the intergalactic medium (IGM) is in photoionization equilibrium 6  (equilibrium 

simulations) with more realistic simulations that drop this simplifying assumption (non-

equilibrium simulations). The study then compared the temperature predictions of both of 

these simulations with observed temperatures in the Lyman-alpha forest7. The authors of this 

study reported that: 

the non-equilibrium treatment results in a much larger temperature increase during the 

almost simultaneous Hi and He i reionization between red-shifts ∼ 15 and ∼ 12, as 

well as during He ii reionization between redshifts ∼ 5 and ∼ 3.5. In the equilibrium 

treatment, an increase in the photoionization rates results in an unrealistic 

instantaneous increase of the ionized fractions as they are directly set to the new 

equilibrium value. [...] The significant differences in the temperature re-emphasizes 

                                                
6 Photoionization refers to the state of complete (or near complete) ionization of hydrogen. 

7 The Lyman alpha forest is an absorption phenomenon seen in the spectra of high red-shift galaxies. 
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the potential importance of accounting for out-of-equilibrium ionized fractions in 

cosmological hydrodynamical simulations. (Puchwein et al. 2015, p. 4086) 

In other words, 
 

A comparison of our equilibrium and non-equilibrium simulations corroborates 

previous findings that non-equilibrium effects are indeed significant. […] They, thus, 

ideally need to be taken into account in cosmological hydrodynamical simulations. 

(Puchwein et al. 2015, p. 4091) 

Thus the scientists in this case made use of both idealized and de-idealized simulations 

simultaneously in order to interpret and explain their modeled targets. In this case, the 

comparison of the two simulations with each other, as well as with observational data, 

allowed the scientists to confirm that equilibrium status is important in galactic temperature 

change. This example shows that, de-idealized models, in themselves, are often not enough 

for explanation of a target system. Instead, the activity of comparison, which depends upon 

the use of idealization, in some cases plays an important explanatory role. In the example, the 

scientists were able to confirm that temperature does in fact depend upon the ionization status 

of the galactic gas by comparing the idealized and the de-idealized galactic simulations. 

5 The	activity	of	explaining	with	models	

The comparison between the idealized model and its de-idealized counterpart that we have 

described in the example might be seen by some as a species of what is known in the 

literature as contrastive explanation. In particular, Lipton (1991)8 talks about contrastive cases 

in his account of “Inference to the Best Explanation.” The general idea is that claims of the 

form “p explains q” are elliptical for “p (rather than p*) explains q (rather than q*)”. Lipton 

uses contrastive cases as “fact” and “foil” where “X1 explains Y1 rather than X2 explains 

Y2.” In our example, one might think that the idealized model acts as a kind of foil for the de-

idealized one, that it is the de-idealized model that is doing the explaining by transmitting the 

information that embodies the explanatory mechanism, and that the idealized model provides 

a kind of epistemic support system that illustrates the power of the de-idealized model. 

Nevertheless our account of explanation by comparison differs from Lipton’s account in that 

                                                
8 Contrastive explanations were first systematically developed by Alan Garfinkel (1981) and Bas van Fraassen 

(1980). 
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the comparison that we describe should be considered as an explanatory activity – and one 

that serves the users to highlight what is relevant to the phenomena being explained. 

In addition, the activity of comparing idealized with de-idealized models that we have 

identified calls into question the model-oriented version of the Duhem-Quine thesis (Lenhard 

and Winsberg 2010, Winsberg 2010). According to this version of the thesis the different 

theoretical assumptions of a model cannot be tested separately. However, with the sort of 

comparative work in scientific modeling that we have here described, model assumptions can 

indeed be isolated and studied separately9. This allows scientists to study their respective 

effects (relative to the results of the more idealized versions of the model), and to say whether 

the assumption under consideration is a genuinely explanatory element of the model. In the 

example, the effect of an equilibrium assumption on galactic simulation models was only 

fully understood by comparing a model that included this assumption with a model that did 

not. Thus idealization was required in the process of successful model explanation. 

This example10 thus allows us to go beyond strictly representationalist accounts of model 

explanation in the following way. It shows that at least in some cases, de-idealization alone 

does not improve itself the explanatory power of a model. In cases such as this, idealized 

models are required in the activity of explanation. 

6 Conclusion	

In this paper, we argued that in some cases, the activity of comparison between an idealized 

and a de-idealized model is pivotal in generating a successful model explanation. Thus we 

argued that a strictly representationalist view of model explanation, while certainly plausible 

in many instances, does not allow for a complete understanding of the various roles that 

idealization can play in model explanation. Instead our claim is that there is an additional role, 

beyond that of simplification or isolation, that idealization can play in model explanation: that 

of facilitating the identification of the explanatory components within a model. While 

computer-assisted science increasingly allows for scientific models to be de-idealized, we 

                                                
9 The comparative work that we have described in our examples is not limited to de-idealization. Such 

comparative work might be also done by scientists when they replace the laws in their initial model by ones that 

are considered to be more fundamental, in an effort to improve their models. 

10 We use an example from physics, however, explanation by comparison occurs in other disciplines as well, 

such as economics (see Lehtinen and Kuorikoski 2007; Lehtinen 2013 for examples). 
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think that idealizations will always play an important role in model explanation. This idea is 

shared by other philosophers such as Hartmann (1998) who writes: that, “even when we can 

solve whatever equation we want on a computer, physicists will certainly not stop 

investigating idealized models. This is because of the cognitive role of idealizations. Idealized 

models give us a partial understanding of the relevant mechanisms for the processes in the 

system under study.” (p. 118) 
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