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Abstract

Understanding the demographic history of populations and species is a central issue in evolutionary biology and mo-
lecular ecology. In this work, we develop a maximum-likelihood method for the inference of past changes in population
size from microsatellite allelic data. Our method is based on importance sampling of gene genealogies, extended for new
mutation models, notably the generalized stepwise mutation model (GSM). Using simulations, we test its performance to
detect and characterize past reductions in population size. First, we test the estimation precision and confidence intervals
coverage properties under ideal conditions, then we compare the accuracy of the estimation with another available
method (MSVAR) and we finally test its robustness to misspecification of the mutational model and population structure.
We show that our method is very competitive compared with alternative ones. Moreover, our implementation of a GSM
allows more accurate analysis of microsatellite data, as we show that the violations of a single step mutation assumption
induce very high bias toward false contraction detection rates. However, our simulation tests also showed some limits,
which most importantly are large computation times for strong disequilibrium scenarios and a strong influence of some
form of unaccounted population structure. This inference method is available in the latest implementation of the
MIGRAINE software package.

Key words: demographic inference, maximum likelihood, coalescent, importance sampling, microsatellites, bottleneck,
population structure, mutation processes, population contraction.

Introduction
Understanding the demographic history of populations and
species is a central issue in evolutionary biology and molecular
ecology, for example, for understanding the effects of envi-
ronmental changes on the distribution of organisms. From a
conservation perspective, a severe reduction in population
size, often referred to as a “population bottleneck,” increases
rate of inbreeding, loss of genetic variation, fixation of dele-
terious alleles, and thereby greatly reduces adaptive potential
and increases the risk of extinction (Lande 1988; Keller and
Waller 2002; Frankham et al. 2006; Reusch and Wood 2007).
However, characterizing the demographic history of a species
with direct demographic approaches requires the monitoring
of census data, which can be extremely difficult and time
consuming (Williams et al. 2002; Schwartz et al. 2007;
Bonebrake et al. 2010). Moreover, direct approaches cannot
give information about past demography from present-time
data. A powerful alternative relies on population ge-
netic approaches, which allow inferences on the past demog-
raphy from the observed present distribution of genetic

polymorphism in natural populations (Schwartz et al. 2007;
Lawton-Rauh 2008).

Until recently, most indirect methods were based on test-
ing whether a given summary statistic (computed from ge-
netic data) deviates from its expected value under an
equilibrium demographic model (Cornuet and Luikart 1996;
Schneider and Excoffier 1999; Garza and Williamson 2001).
Because of their simplicity, these methods have been widely
used (see, e.g., Comps et al. 2001; Colautti et al. 2005, and the
reviews of Spencer et al. 2000 and Peery et al. 2012). But they
estimate neither the severity of the contraction nor its age or
duration.

Although much more mathematically difficult and com-
putationally demanding, likelihood-based methods outper-
form these moment-based methods by considering all
available information in the genetic data (see Felsenstein
1992; Griffiths and Tavar�e 1994a; Emerson et al. 2001, and
the review of Marjoram and Tavar�e 2006). Among others,
the software package MSVAR (Beaumont 1999; Storz and
Beaumont 2002) has been increasingly used to infer past
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demographic changes. MSVAR assumes a demographic model
consisting of a single isolated population, which has under-
gone a change in effective population size at some time in the
past. It is dedicated to the analysis of microsatellite loci that
are assumed to follow a strict stepwise mutation model
(SMM, Ohta and Kimura 1973). In a recent study, Girod
et al. (2011) evaluated the performance of MSVAR by simula-
tion. They have shown that MSVAR clearly outperforms
moment-based methods to detect past changes in population
sizes, but appears only moderately robust to misspecification
of the mutational model: Deviations from the SMM often
induce “false” contraction detections on simulated samples
from populations at equilibrium. Chikhi et al. (2010) also
found a strong confounding effect of population structure
on contraction detection using MSVAR. Thus, departures
from the mutational and demographic assumptions of the
model appear to complicate the inference of past population
size changes from genetic data.

This work extends the importance sampling (IS) class of
algorithms (Stephens and Donnelly 2000; de Iorio and Griffiths
2004a, 2004b) to coalescent-based models of a single isolated
population with a unique past change in population size. Such
a model is rather simple compared with complex demo-
graphic scenarios occurring in natural populations but infer-
ences based on it can easily be tested by simulation and
compared with existing methods. Furthermore, we provide
explicit formula for a generalized stepwise mutation model
(GSM; Pritchard et al. 1999), following de Iorio et al. (2005).

We have conducted three simulation studies to test the
efficiency of our methodology on past contractions (i.e., bot-
tlenecks) and its robustness against misspecifications of the
model. The first study aims at showing the ability of the al-
gorithm to detect contractions and to recover the parameters
of the model (i.e., the severity of the population size change
and its age) on a wide range of contraction scenarios. In the
second study, we compared the accuracy of our IS implemen-
tation with the Monte Carlo Markov Chain (MCMC) ap-
proach implemented in MSVAR. The third study tests the
robustness of our method against misspecification of the mu-
tation model, and against the existence of a population struc-
ture not considered in the model. Finally, we have applied our
methodology on the orangutan data set of Goossens et al.
(2006) and compared our results with those obtained with
MSVAR. All analyses in these studies were performed using the
latest implementation of the MIGRAINE software package,
available at http://kimura.univ-montp2.fr/~rousset/Migraine.
htm (last accessed July 28, 2014).

New Approaches
Our goal is to obtain maximum-likelihood (ML) estimates for
single population models with a past variation in population
size as described in the next section. To this end, we describe
hereafter the successive steps of the inference algorithm.

Demographic Model

We consider a single isolated population with a unique past
size change (fig. 1). The method and our implementation in

MIGRAINE are quite general, in the sense that discrete (i.e.,
sudden), linear or exponential population size contractions or
expansions can be considered. However, in agreement with
Girod et al. (2011), we found in preliminary tests that param-
eter inference is less precise for expansions, especially for the
time parameter. For this reason, we focused on contraction
scenarios to test our method on smallish data sets with rea-
sonable computation times (but see the Discussion section
and supplementary fig. S5, Supplementary Material online,
for the analysis of an expansion scenario). We denote by
N(t) the population size, expressed as the number of genes,
t generations away from the sampling time t = 0. Population
size at sampling time is N � Nð0Þ. Then, going backward
in time, the population size changes according to a deter-
ministic function until reaching an ancestral population size
Nanc at time t = T. Then, NðtÞ ¼ Nanc for all t 4 T. More
precisely,

NðtÞ ¼ NðNanc

N
Þ

t

T; if 0 < t < T;

Nanc; if t � T:

8>><
>>:

ð1Þ

To ensure identifiability, the parameters of interest are scaled
as � � 2N�; �anc � 2�Nanc, and D � T=2N, where � is the
mutation rate per locus per generation. We are often inter-
ested in an extra composite parameter Nratio ¼ �=�anc, which
is useful to characterize the strength of the contraction.
Finally, we also consider an alternative parametrization
of the model using �, �anc, and D0 � �T in a few situations,
for comparison between these two possible
parameterizations.

Computation of Coalescent-Based Likelihood with IS

Because the precise genetic history of the sample is not ob-
served, the coalescent-based likelihood at a given point of the
parameter space is an integral over all possible histories, that
is, genealogies with mutations, leading to the current genetic
data. Following Stephens and Donnelly (2000) and de Iorio
and Griffiths (2004a), the Monte Carlo scheme computing
this integral is based here on IS. The set of possible past

FIG. 1. Representation of the demographic model used in the study. N is
the current population size, Nanc is the ancestral population size (before
the demographic change), T is the time measured in generation since
present, and � is the mutation rate of the marker used. Those four
parameters are the canonical parameters of the model. �, D, and �anc are
the inferred scaled parameters.
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histories is explored through an importance distribution de-
pending on the demographical scenario and the parameter
values. The best proposal distribution to sample from is the
importance distribution leading to a zero variance estimate of
the likelihood. Here this distribution would be the distribution
of gene history conditional on the current genetic data, which
corresponds to all backward transition rates between succes-
sive states of the histories. As computation of these backward
transition rates is often too difficult, we substitute this con-
ditional distribution with an importance distribution, and
introduce a weight to correct the discrepancy. Like the best
proposal distribution, the actual importance distribution is a
process describing changes in the ancestral sample configu-
ration backward in time using absorbing Markov chains.
However, it does not lead to a zero variance estimate of the
likelihood. Better efficiency of the IS proposals allows to ac-
curately estimate likelihoods by considering fewer histories for
a given parameter value. Stephens and Donnelly (2000), de
Iorio and Griffiths (2004a, 2004b), and de Iorio et al. (2005)
suggested efficient approximations that are easily comput-
able. However, the efficiency of the importance distribution
depends heavily on the demographic model and the current
parameter value.

The first main difference between our algorithm and those
described in de Iorio and Griffiths (2004a, 2004b) is the time
inhomogeneity induced by the disequilibrium of our demo-
graphic model. Demographic models considered in de Iorio
and Griffiths (2004a, 2004b) and in Rousset and Leblois (2007,
2012) suppose equilibrium and do not include indeed any
change in population sizes. To relax the assumption of time
homogeneity in de Iorio and Griffiths (2004b), we modify
their equations (see tables 1 and 2 of de Iorio and Griffiths
2004b), so that all quantities depending on the relative pop-
ulation sizes now vary over time because of the population
size changes. Thus, we must keep track of time in the algo-
rithm to assign the adequate value to all time-dependent
quantities. To see how this is done, consider that the geneal-
ogy has been constructed until time Tk, the time of occur-
rence of the kth event, and that, at this date, n ancestral
lineages remain. Under the coalescent with mutations, the ex-
pected rate of a mutation event is then n�=2, and nðn� 1Þ
�ðtÞ=2 for a coalescence, where �ðtÞ ¼ N=NðtÞ is the relative
population size function describing demographic disequilib-
rium. �ðtÞ corresponds to parameter 1=q in de Iorio and
Griffiths (2004b). The total jump rate (i.e., occurrence rate
of some event) at time t � Tk is then

GðtÞ ¼ n
�
ðn� 1Þ�ðtÞ þ �

�
=2

and the next event in the genealogy occurs at time Tkþ1

whose distribution has density

P̂ðTkþ1 2 ½t; tþ dt�Þ ¼ GðtÞexp �

Z t

Tk

GðuÞdu

� �
dt for

t � Tk:

Apart from these modifications that follow from the work of
Griffiths and Tavar�e (1994b), the outline of the IS scheme

from de Iorio and Griffiths (2004b) is preserved (see section
A1 in the supplementary material, Supplementary Material
online, for more details).

We also develop specific algorithms to analyze data under
the GSM, with infinite or finite number of alleles. This more
realistic mutation model considers that multistep mutations
occur and the number of steps involved for each mutation
can be modeled using a geometric distribution with param-
eter p. The original algorithm of Stephens and Donnelly
(2000) covers any finite mutation model but requires numer-
ical matrix inversions to solve a system of linear equations,
(see, e.g., eqs. 18 and 19 in Stephens and Donnelly 2000). Time
inhomogeneity requires matrix inversions each time the ge-
nealogy is updated by the IS algorithm. To bypass this diffi-
culty, de Iorio et al. (2005) have successfully replaced the
matrix inversions with Fourier analysis when considering an
SMM with an infinite allele range. We extended this Fourier
analysis in the case of a GSM with an infinite allele range.
However, contrarily to the SMM, the result of the Fourier
analysis for the GSM is a very poor approximation if the
range of allelic state is finite as soon as p is not very small
(e.g., <0.1). To consider a more realistic GSM with allele
ranges of finite size, we propose to compute the relevant
matrix inversions using a numerical decomposition in eigen-
vectors and eigenvalues of the mutation process matrix,
P. Because the mutation model is not time-dependent,
this last decomposition is performed only once for a given
matrix P. See section A4 in the supplementary material,
Supplementary Material online, for details about the GSM
implementation.

Finally, several approximations of the likelihood, using
products of approximate conditional likelihoods (Cornuet
and Beaumont 2007) once the ancestral stable population
is reached, and analytical computation of the probability of
the last pair of genes, have been successfully tested to speed
up computation times (see section A2 in the supplementary
material, Supplementary Material online). In what follows, all
analyses considering a GSM use these approximations, unless
otherwise specified.

Inference Method

Following Rousset and Leblois (2007, 2012), we first define
a set of parameter points through a stratified random
sample on the range of parameters provided by the user.
Then, at each parameter point, the multilocus likelihood is
the product of the likelihoods for each locus, which are
estimated through the IS algorithm described above. The
likelihood inferred at the different parameter point is then
smoothed by a Kriging scheme (Cressie 1993). After a first
analysis of the smoothed likelihood surface, the algorithm
can be repeated a second time to increase the density of
the grid in the neighborhood of a first ML estimate. Finally,
one- and two-dimensional profile likelihood ratios are com-
puted, to obtain confidence intervals (CI) and graphical
outputs (e.g., fig. 2). Section A3 in the supplementary ma-
terial, Supplementary Material online, explains how we
tuned the parameters of the algorithm, namely the range
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of parameters, the size of parameter points, and the
number of genealogical histories explored by the IS
algorithm.

A genuine issue, when facing genetic data, is to test
whether the sampled population has undergone size changes
or not. Thus, we derived a statistical test from the method-
ology presented above. It aims at testing between the null
hypothesis that no size change occurred (i.e., N ¼ Nanc) and
alternatives such as a population decline or expansion (i.e.,
N 6¼ Nanc). At level �, our test rejects the null hypothesis if
and only if 1 lies outside the 1� � CI of the ratio
Nratio ¼ N=Nanc.

All those developments are implemented in the
MIGRAINE software package. A detailed presentation of
the simulation settings and validation procedures used to
test the precision and robustness of the method is given in
the Materials and Methods section.

Results

Two Contrasting Examples

We first draw a contrast between two typical simulation out-
puts (figs. 2a and b), which must be kept in mind to under-
stand further simulation results. The first one (case [0]),
corresponding to our baseline simulation (� ¼ 0:4, D = 1.25,
and �anc ¼ 40:0), is an ideal situation in which the inference
algorithm performs well due to the large amount of informa-
tion in the genetic data, resulting in a likelihood surface with
clear peaks for all parameters around the ML values. The
contraction signal is highly significant and is clearly seen in
the (�, �anc) plot on figure 2a, as the ML peak is above the 1:1
diagonal. The second example (case [10]) is a more difficult
situation, where the population has undergone a much
weaker contraction (� ¼ 0:4, D = 1.25, and �anc ¼ 2:0) that
does not leave a clear signal in the genetic data. In such a

Table 1. Effects of the Number of Loci and Mutation Processes on the Performance of Estimations for Our Baseline Simulation with h ¼ 0:4,
D = 1.25, and hanc ¼ 40:0 under an SMM, a GSM with p = 0.22 and p = 0.74, a KAM and Two Situations with Variable Mutation Processes as
Described in the Materials and Methods Section.

Case n‘ p h D hanc CDR (FEDR)

Rel. Bias RRMSE KS Rel. Bias RRMSE KS Rel. Bias RRMSE KS Rel. Bias RRMSE KS

SMM

[0] 10 NA NA NA 0.035 0.56 0.056 0.062 0.27 0.068 0.046 0.47 0.46 1 (0)

[A] 25 NA NA NA 0.0066 0.31 0.35 0.0079 0.16 0.73 0.0055 0.30 0.84 0.986 (0)

[B] 50 NA NA NA 0.015 0.23 0.62 0.0016 0.12 0.69 �0.0071 0.22 0.51 0.982 (0)

GSM 0.22

[C] 10 0.26 0.91 0.16 0.033 0.51 0.12 0.16 0.66 0.14 0.22 1.33 0.657 0.990 (0)

[D] 50 0.17 0.47 0.12 0.059 0.25 0.44 0.012 0.14 0.75 �0.085 0.39 0.082 1.0 (0)

GSM 0.74

[E] 10 0.016 0.14 0.0.094 0.137 0.52 0.11 0.42 0.67 <10�12 2.46 3.4 <10�12 0.965 (0)

[F] 50 0.045 0.081 3:8� 10�5 0.34 0.44 <10�12 0.40 0.49 <10�12 1.6 2.4 <10�12 1.0 (0)

KAM

[G] 10 NA NA NA �0.070 0.64 0.011 0.14 0.71 0.000034 2.11 4.8 0.012 0.84 (0)

[H] 25 NA NA NA �0.027 0.49 0.54 �0.058 0.69 0.54 0.61 2.6 0.041 0.97 (0)

[I] 50 NA NA NA �0.084 0.32 0.085 �0.22 0.51 0.19 0.402 2.74 0.0675 1.0 (0)

var. mut. processes

[J] 10 0.18 0.91 0.00070 0.12 0.65 9:8� 10�5 0.31 0.92 0.020 0.67 2.3 0.014 0.96 (0)

[K] 50 0.097 0.49 0.020 0.083 0.27 0.0055 0.040 0.18 0.99 �0.22 0.45 4:3� 10�7 0.97 (0)

NOTE.—n‘ , number of loci; Rel. Bias, relative bias; KS, P value of the Kolmogorov–Smirnov test for departure of ECDF of LRT P values from uniformity; CDR, contraction detection
rate; FEDR, false expansion detection rate; RRMSE, relative root mean square.

Table 2. Effects of Scaling the Time by the Mutation Rate Instead of Population Size for Different Timings, h ¼ 0:4 and hanc ¼ 40:0.

True D or D0 Case Scaling h D or D0 hanc

Rel. Bias RRMSE KS Rel. Bias RRMSE KS Rel. Bias RRMSE KS

0.125 (0.05) [3] D ¼ T=2N 2.6 5.7 < 10�12 0.30 0.65 2:3� 10�4 0.040 0.24 0.21
[17] D0 = Tl 2.3 4.5 1:4� 10�9 2.6 5.61 3:6� 10�10 0.0045 0.26 0.016

1.25 (0.5) [0] D ¼ T=2N 0.035 0.56 0.056 0.062 0.27 0.068 0.046 0.47 0.46
[18] D0 ¼ Tl 0.053 0.54 0.056 0.14 0.82 0.127 �0.0026 0.46 0.857

3.5 (1.4) [7] D ¼ T=2N �0.026 0.38 0.82 0.0038 0.50 0.51 0.32 1.7 0.098
[19] D0 ¼ Tl �0.013 0.37 0.91 0.020 0.71 0.12 0.389 2.11 0.40

5.0 (2.0) [8] D ¼ T=2N �0.107 0.36 0.33 �0.11 0.42 0.58 0.46 2.4 0.46
[20] D0 ¼ Tl �0.088 0.31 0.50 �0.16 0.52 0.68 0.49 2.5 0.60

NOTE.—Computations are done considering only data sets with a significant contraction detection. No effect of such scaling is detected on CDRs nor on FEDRs. Rel. Bias, relative
bias; KS, P value of the Kolmogorov–Smirnov test for departure of ECDF of LRT P values from uniformity.
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situation, there is not much information on any of the three
parameters, resulting in much flatter funnel- or cross-shaped
two-dimensional likelihood surfaces. A contraction signal is
visible on the cross-shaped (�, �anc) plot on figure 2b, but is
not significant.

Implementation and Efficiency of IS on Time-
Inhomogeneous Models

Simulation tests show that our implementation of de Iorio–
Griffiths’ IS algorithm for a model of a single population with
past changes in population size and stepwise mutations is

(a) Profile likelihood ratio Profile likelihood ratio(b)

FIG. 2. Examples of typical two-dimensional profile likelihood ratios for two data sets generated with (a) � ¼ 0:4, D = 1.25, �anc ¼ 40:0 (case [0]) and
(b) � ¼ 0:4, D = 1.25, �anc ¼ 2:0 (case [10]). The likelihood surface is inferred from 1,240 points in two iterative steps (a), and 3,720 points in three
iterative steps (b) as described in section A3 in the supplementary material, Supplementary Material online. The likelihood surface is restricted to the
region of the parameter space where the likelihood was actually estimated.
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very efficient under most demographic situations tested here.
Similar results are obtained for two different approximations
of the likelihood (see section A2 in the supplementary mate-
rial, Supplementary Material online). First, computation times
are reasonably short: For a single data set with hundred gene
copies and ten loci, analyses are carried out within few hours
to 3 days on a single processor, even for the longest analyses
with four parameters under the GSM. Second, likelihood ratio
test (LRT) P value distributions generally indicate good
CI coverage properties (see the Materials and Methods sec-
tion). Empirical cumulative distribution functions (ECDF) of
LRT P values for all scenarios, shown in section F in the sup-
plementary material, Supplementary Material online, are
most of the time close to the 1:1 diagonal as shown in
figure 3a for our baseline scenario.

Exceptions to those global trends are of two types: 1) For
scenarios in which there is not much information on one or
more parameters, such as the example of a weak contraction
described in the previous section, likelihood surfaces are flat
on the corresponding axes (fig. 2b). Such scenarios with very
few information on one or more parameters are discussed in
the next section. In such situations, asymptotic LRT P value
properties were not always reached (e.g., fig. 3b) because of
the small number of loci (i.e., 10) considered. Analyzing more
loci should improve CI coverage properties in those situa-
tions. 2) The more recent and the stronger contractions are,
the less efficient are the IS proposals, because they are com-
puted under equilibrium assumptions as detailed in the New
Approaches section and section A1 in the supplementary
material, Supplementary Material online. Contrarily to the
first situation, likelihood surfaces are then too much peaked,
and MLs are located in the wrong parameter region. The
main defect we observed is thus a positive bias minimizing
the contraction strength and bad CI coverage properties for
�, when the number of explored ancestral histories is too
small (results not shown). Consideration of 2,000 ancestral
histories per parameter point (as for most simulations in this
study, see section A1 in the supplementary material,
Supplementary Material online) ensures good CI coverage
properties, except for some extreme situations. For a very
recent and strong past contraction (� ¼ 0:4, D = 0.25, and
�anc ¼ 400:0), increasing the number of ancestral histories
sampled for each point up to 200,000 decreases relative bias
and relative root mean square error (RRMSE) on � but does
not provide satisfactory CI coverage properties (supplemen-
tary fig. S64, Supplementary Material online). Increasing the
number of loci decreases the bias and RRMSE for D and �anc

but not for �. Such results have however only been observed
in those few extreme situations with �=�anc 4 0:001 and
D40:25. Figure 3c illustrates a more realistic situation of a
very recent but not too strong population size contraction
where the two defects described above are cumulated (case
[3], with � ¼ 0:4, D = 0.125, and �anc ¼ 40:0).

ECDF of LRT P values for all parameters also more often
depart from the 1:1 diagonal when the mutation model
moves away from a strict stepwise model and when a low
number of loci (i.e., 10 or 25) is used for inference (e.g., for a
GSM with p = 0.74, where p is the parameter of the geometric

distribution of mutation step sizes, and for a K-allele model
[KAM]: See table 1, cases [E], [G], and [H]). In those situations,
ECDF of LRT P values (supplementary figs. S10, S12, and S13,
Supplementary Material online) indicate slightly too narrow
CI, especially for parameters for which there is not much
information (e.g., �anc and D). Considering a larger number
of loci (i.e., 50) restores good CI coverage properties for the
KAM but not for the GSM with p = 0.74 (cf. perfect LRT P-
value distributions for case [I] but not for [F]: See table 1 and
supplementary figs. S11 and S14, Supplementary Material
online). This suggests that the above incorrect ECDF of LRT
P values are partly due to the small amount of information
carried by a low number of loci but also due to slight mis-
specifications of the mutation model (i.e., the number of
possible allelic states in the GSM, see section A2 in the sup-
plementary material, Supplementary Material online).

Power and Precision under Ideal Conditions

Results for the power of the contraction detection test and
for the precision of the estimates under ideal conditions (i.e.,
same model used for simulations and analyses) with ten loci
are presented in figures 4 and 5.

Contraction detection rates (CDRs) are highest when con-
tractions are not too recent, nor too old or too weak: A
contraction is detected at a 5% level in more than 95% of
the data sets when the contraction occurred more than 25
generations ago but less than 1,400 generations ago
(0:0625 < D < 3:5, fig. 5) and when the ancestral popula-
tion size is at least 20 times the actual size. Detection rates are
then decreasing for more recent, older or weaker contrac-
tions, but stay high (450%) in many of those situations.
In this first simulation set, only extremely weak (�anc ¼ 5�,
case [10], fig. 4) or extremely old (D = 7.5, case [9], fig. 5)
contractions show CDRs below 50%.

Precision of parameter inference is highly dependent on
the scenario considered. First, global precision on all param-
eters increases with the strength of the contraction.
Reasonable precision, for example, a relative bias between
�20% and 100% and RRMSE below 100%, is only obtained
when the ancestral population size is larger than 20 times the
actual population size (fig. 4). However, for weaker contrac-
tions, estimates of the order of magnitude for some but not
all parameters can often be obtained. Second, precision of the
inference of each parameter is strongly dependent on the
timing of the population size change and this is well repre-
sented on figure 5. Parameter � is inferred with good precision
when the contraction is not too recent, for example, older
than 200 generations in our simulation (D 4 0.5). For more
recent contractions, relative biases are at least 130% and
RRMSE larger than 300%. On the other hand, �anc is well
estimated for recent and intermediate contractions. For old
contraction, for example, older than 1,000 generations
(D 4 2.5), relative bias and RRMSE are often greater than
100%. Inference of D shows an intermediate pattern, with
more precise inferences for intermediate timings. Relative
bias and RRMSE on D first decrease with time for contractions
that occurred from 10 to 500 generations ago
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FIG. 3. ECDF of P values of LRTs for (a) the baseline scenario (case [0]), with � ¼ 2N� ¼ 0:4; D ¼ T=2N ¼ 1:25 and �anc ¼ 2Nanc� ¼ 40:0; (b) a
very weak contraction scenario (case [10]), with � ¼ 0:4, D = 1.25 and �anc ¼ 2:0; and (c) a recent contraction scenario (case [3]), with � ¼ 0:4,
D = 0.125 and �anc ¼ 40:0. Mean relative bias (rel. bias, computed as

P
ðobserved value� expected valueÞ=expected value) and relative root mean

square error (rel. RMSE, computed as
P
½ðobserved value� expected slopeÞ=expected value�2) are reported as well as the contraction detection rate

(DR) and FEDR in parentheses after DR. KS indicate the P value of the Kolmogorov–Smirnov test for departure of LRT P values distributions from
uniformity.
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(0:025 < D < 1:25), and then increase with time for older
contractions.

Our baseline scenario (case [0]) with D = 1.25, thus seems
to be the most favorable situation, for which inference of all
parameters is relatively good given the small number of loci
considered (ten loci; figs. 3a, 4, and 5). Relative biases are only
about a few percent, but RRMSE values vary from 20% to 60%
indicating different precision levels for the different parame-
ters. D is the most precisely inferred parameter, followed by
�anc and then by �. The large RRMSE values are expectedly
reduced when considering a larger number of loci, and reach
10–22% for all parameters when 50 loci are used (table 1).

A few simulations have been analyzed by inferring the
parameter D0 ¼ T� instead of D ¼ T=2N. For those simu-
lations, we considered � ¼ 0:4 and �anc ¼ 40:0 as in the
baseline situation and four different timings
(D ¼ f0:0125; 1:25; 3:5; 5:0g, cases [17]–[20]). Our results
show that scaling time by the mutation rate globally de-
creases the precision of the estimation of the time parameter
and does not have much effect on the other parameters � and
�anc (table 2). Relative bias and RRMSE are always higher, and
sometimes much higher, on D0 than on D. No effect of such
scaling is detected on CDRs nor on the false expansion de-
tection rate (FEDR, results not shown).

Effect of Mutational Processes

To test the robustness to mutational processes, we first an-
alyzed under a strict SMM samples simulated under a stable
population model with � ¼ 2:0 and a GSM with p = 0.22 and
0.74 for the ten loci considered (cases [21] and [22]). For
p = 0.22, 67% of the data sets show significant signals of
false contraction. This false contraction detection rate
(FCDR) increases up to 100% for p = 0.74. Among all simula-
tions analyzed for these two situations, a false expansion is
detected in a single data set, out of 200, with p = 0.22. The
same simulations analyzed under a GSM show detection of
false contractions in 6% and 5% of the data sets, as well as
detection of false expansion in 7.5% and 6% of the data sets,
for p = 0.22 and 0.74, respectively (cases [23] and [24]).

Next, we simulated and analyzed data under a GSM or a
KAM with a past contraction corresponding to our baseline
scenario with � ¼ 0:4, D = 1.25, and �anc ¼ 40:0, and with
p ¼0.22 and 0.74 for the GSM (with ten loci: Cases [C], [E] for
the GSM and [G] for the KAM; with 50 loci: Cases [D], [F] for
the GSM and [I] for the KAM, table 1). Compared with anal-
yses under an SMM, CDRs slightly decrease when p increases
but still remain very high (e.g., 5 95% with ten loci) for
p4 0:74. On the other hand, precision of the estimations
strongly differs between different parameters. Inference of
p globally shows large relative bias and RRMSE for p = 0.22
but is very precise for p = 0.74. For �, using different mutation
models does not change much the precision of the estima-
tions. For D and �anc, the mutation model has much stronger
effects, showing less precise estimations for increasing p
values, as well as more departure from the diagonal of the
ECDF of LRT P values. However, increasing the number of loci
from 10 to 50 restores good precision for the estimation of all

parameters, except for the KAM, as well as good LRT P value
distributions. Finally, unaccounted variation in mutation pro-
cesses and mutation rates across loci slightly increases biases
and RRMSE, and induces poor CI coverage properties for the
mutation parameters � and �anc (cases [J] and [K] in table 1,
mutation processes detailed in the Materials and Methods
section). The effect is similar but weaker for D, for which
good precision and good CI coverage are observed with 50
loci.

Effect of Population Structure

We first considered the presence of a local population struc-
ture by analyzing samples generated under stable continuous
populations with various levels of dispersal and different spa-
tial scale of sampling (table 3). All data sets were simulated
under a GSM with p = 0.22. Our results show that isolation-
by-distance (IBD) structure induces high FCDRs, strongly de-
pending on the strength of IBD as well as the spatial scale of
sampling (cases [25]–[29], table 4). The stronger the IBD
structure is, the higher FCDR is, varying from 15% for weak
IBD with �2 ¼ 100 to almost 70% for strong IBD with �2 ¼ 1,
for a small sampling scale (�2 is the mean squared parent–
offspring dispersal distance and is inversely related to the
strength of IBD). Considering larger sampling scales by sam-
pling on the whole population area not only strongly de-
creases FCDRs to values less than or equal to 16% for all
levels of IBD but also induces false expansion detection in
4%, at most, of the data sets.

Using a second set of simulations under IBD with past
reductions in population size, we mimic a reduction in habitat
area for organisms with limited dispersal (table 3). We show in
table 5 that the presence of IBD slightly decreases CDRs, for
example, from 99.5% down to 90% for very strong IBD. Strong
IBD associated with small scale sampling also induces negative
relative bias on �, large positive biases on p, D, and �anc, as well
as bad CI coverage properties as shown by KS values (table 5)
and ECDF of LRT P values (supplementary figs. S46 and S48,
Supplementary Material online). Weaker IBD structure shows
similar but weaker effects (supplementary figs. S50 and S52,
Supplementary Material online). Increasing sample scale in-
creases CDRs for situations under very strong IBD only, but
strongly decreases relative biases and RRMSE on all parame-
ters except �anc. For all situations and all parameters, consid-
ering a large sample scale allows better CI coverage properties
(table 5 and supplementary figs. S47, S49, S51, and S53,
Supplementary Material online).

We finally tested the influence of an island population
structure with varying levels of migration and population
sizes (tables 6 and 7 and supplementary tables S3 and S4,
Supplementary Material online). Our results first show that
sampling a single island from a stable-structured population
induces high FCDRs, from 11% to 52% depending on the level
of population structure. With such local sampling scheme,
the relationship between FCDRs and the level of population
structure is complex. Increasing sampling scale by sampling
three to ten populations instead of a single one has two major
antagonistic effects: It strongly increases FCDRs up to 100%
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for highly structured situations (i.e., M4 1:0, with
M � 2Ndm); but it also reduces FCDRs for less structured
populations, down to values around 10% for the larger sam-
pling scale. Interestingly, sampling a single gene per deme
strongly reduces the effect of population structure and de-
creases FCDR values to 2% in a situation with intermediate
migration rates (i.e., M = 1.0, supplementary table S3,
Supplementary Material online). Note that a few false expan-
sions are also detected among all those simulations but
always in less than 10% of the data sets. Finally, we can also
note that, as shown in table 6 and supplementary table S3,
Supplementary Material online, increasing the total diversity �
or considering an SMM also modifies the effect of population
structure but more simulations are needed to find global
trends for effect of genetic diversity and mutational processes.

Our last set of simulations under an island model with past
reduction of population sizes shows an extremely strong
effect of the sampling scale and the level of population struc-
ture (table 7 and supplementary table S4, Supplementary
Material online). Compared with unstructured situations
with CDR = 99% (case [G]), sampling a single deme strongly
reduces CDRs to values from 88% for weak population struc-
ture with M = 100.0 down to 0.5% for highly structured pop-
ulations with M = 0.01. Intermediate structure with M = 1.0
also leads to small CDR of 7% in our simulations. With such a
small sampling scale, parameter estimation is clearly inaccu-
rate when population structure is not very weak (e.g.,
M� 100:0), showing strong bias, large RMSE, and bad cov-
erage properties of CI (table 7 and supplementary figs.
S54–S57, Supplementary Material online). This is observed
whether the parameters considered are local values for one
deme or global values for the whole population (results not
shown). The effect however decreases with higher levels of
migration, and parameter inference is relatively accurate with
M = 100.0 for all parameters except p, and shows reasonable
CI coverage properties (supplementary figs. S58 and S59,
Supplementary Material online). With a single exception con-
cerning samples with a single gene per deme (supplementary
table S4, Supplementary Material online), increasing sampling
scale generally increases CDRs. However, contrarily to the re-
sults obtained for IBD, sampling at a large scale, even with a
single gene per deme, does not improve all parameter infer-
ences nor all CI coverage properties. Sampling at a larger scale
seems to often allow better estimation of �anc, but the effect
on all other parameters is highly dependent on the demo-
graphic scenario considered, and no clear conclusion can thus
be drawn from our simulations.

Table 3. Simulated Data Sets with Population Structure.

Local Population Structure

The simulated IBD populations are composed of individuals set at the nodes of a regular lattice, whose size can vary. A past reduction in
population size is thus modeled as a reduction of the habitat area keeping a constant density of individuals. Various levels of localized
dispersal were simulated through truncated Pareto distributions with mean squared parent-offspring dispersal distance, say r2, varying in
f1; 4; 10; 20; 100g.

Parameters of the IBD Populations: Simulated Sampling Schemes:

100 genes sampled� At equilibrium: h ¼ 4:0 with a 32� 31
lattice (hence N = 1,984 genes)

� Including an habitat contraction:
ðD; h; hancÞ ¼ ð1:25; 0:4; 40:0Þ with lattices
of sizes from 10� 10 (N = 200) to 100� 100
(Nanc ¼ 20;000) backward in time

� on a 5� 10 lattice in the center of the population [small sample scale], or
� regularly on the whole area (i.e., one individual every four nodes) [large sample scale].

Island Population Structure

We considered models with d = 10 demes of equal size Nd genes, varying in f20; 200; 1;000; 2;000g, and exchanging migrants at rate m
between pairs of demes, varying in f0:000025; 0:00025; 0:0025; 0:005; 0:025; 0:075; 0:25g. The model is fully characterized by the scaled
parameters h ¼ 2dNdl and M ¼ 2Ndm. When past contractions occurred, deme sizes Nd decreased forward in time but migration rates
m are kept constant in time. Values of M reported below correspond to scaled migration rates at sampling time t = 0.

Parameters of the Island Populations: Simulated Sampling Schemes:

Samples of 100 genes picked at random� h 2 f4:0; 20:0g and
M 2 f0:01; 0:1; 1:0; 10:0; 30:0; 100:0g
without population size changes

� h ¼ 0:4; M 2 f0:01; 1:0; 100:0g
and a contraction with parameters
D = 1.25, hanc ¼ 40:0

� from a single deme [small sample scale], or
� from three demes [large sample scale], or
� from all demes [very large sample scale].

Table 4. Effects of IBD on the Detection of False Contraction and
Expansion Signals in Constant-Size Populations with h ¼ 4:0.

IBD Strength (r2) Case Sampling Scale

Small ð10� 5Þ Large ð28� 28Þ
FCDR/FEDR FCDR/FEDR

1 [25] 0.67/0.0 0.16/0.005

4 [26] 0.54/0.0 0.095/0.010

10 [27] 0.49/0.0 0.080/0.010

20 [28] 0.41/0.005 0.090/0.020

100 [29] 0.145/0.005 0.11/0.040

NOTE.—Sample scales correspond to the area (expressed as the number of lattice
nodes) from which a spatially homogeneous sample is taken. �2 is the mean
squared parent–offspring dispersal distance and is inversely related to the strength
of IBD. See the Materials and Methods section for details.
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Inferences on the Orangutan Data Set

The orangutan analyses with MIGRAINE show consistent
results for the three pooled samples RS1, RS2 and RS1+RS2
(table 8 and supplementary fig. S4, Supplementary Material
online), and for each subsample separately (supplementary
table S5, Supplementary Material online). With one exception
for subsample S9, all analyses detect a strong and recent past
contraction of population size and allow concordant estima-
tion of the model parameters. However, as expected due to
lower sample sizes, analyses of each subsample give less

precise inferences than for the pooled sampled, and we will
thus focus on the pooled sample results. First, �anc’s inference
is extremely consistent across analyses, and shows a high
precision level with point estimates around 7.5 and narrow
CI (i.e., around ½5� 12�). Second, the time when the contrac-
tion started in the past, D, is inferred with slightly less preci-
sion but all analyses support a relatively recent contraction
with upper bounds of CI below 1.0. Third, in agreement with
our simulation results, there is much less information about �
because the inferred contraction is recent. High � values are

Table 5. Effects of IBD Structure on the Detection and Characterization of a Past Contraction.

IBDLevel
(r2)

Case Sample
Scale

p h D hanc CDR(FEDR)

Rel.
Bias

RRMSE KS Rel.
Bias

RRMSE KS Rel.
Bias

RRMSE KS Rel.
Bias

RRMSE KS

1 [30] Small 0.71 1.2 6:6� 10�9 �0.30 0.43 1:4� 10�10 0.90 1.2 <10�12 0.25 1.2 0.061 0.9 (0)
[31] Large 0.20 0.88 0.14 �0.0577 0.46 0.057 0.46 0.79 <10�12 0.51 1.4 0.22 0.99 (0)

4 [32] Small 0.50 1.1 5:1� 10�9 �0.29 0.45 2:7� 10�7 0.43 0.78 6:3� 10�9 0.25 1.4 0.46 0.96 (0)
[33] Large 0.22 0.89 0.74 �0.12 0.49 0.020 0.27 0.54 4:4� 10�4 0.37 1.3 0.93 0.96 (0)

10 [34] Small 0.41 1.0 1:4� 10�5 �0.19 0.42 3:4� 10�6 0.39 0.72 1:9� 10�6 0.40 2.15 0.0031 0.98 (0)
[35] Large 0.23 0.89 0.12 �0.11 0.44 0.15 0.22 0.52 1:4� 10�4 0.31 1.2 0.33 0.97 (0)

100 [36] Small 0.35 0.96 1:6� 10�4 �0.094 0.41 0.11 0.26 0.55 6:0� 10�4 0.22 1.2 0.71 0.97 (0)
[37] Large 0.19 0.86 0.40 �0.017 0.48 0.67 0.13 0.46 0.14 0.26 1.3 0.52 0.96 (0)

NOTE.—Samples are simulated from a single continuous population under IBD that has undergone a past contraction with � ¼ 0:4, D = 1.25, and �anc ¼ 40:0. The small sampling
scale corresponds to 100 genes sampled on a 5� 10 area, expressed in lattice nodes, in the center of the population; the large sampling scale corresponds to a spatially
homogeneous sample of 100 genes taken on the whole population area (i.e., one individual every four nodes). See the Materials and Methods section for details.

Table 6. Effects of an Island Population Structure on the Detection of False Contraction or Expansion Signals in Constant-Size Populations.

Island Model Settings Case Sampling Scale

h M Small Large Very Large
One Island Three Islands All Ten Islands
FCDR/FEDR FCDR/FEDR FCDR/FEDR

4 0.01 [38] 0.11/0.025 1.0/0.0 1.0/0.0
0.1 [39] 0.32/0.02 1.0/0.0 1.0/0.0
1.0 [40] 0.21/0.0 0.84/0.0 0.76/0.0

10.0 [41] 0.52/0.0 0.32/0.0 0.10/0.010
30.0 [42] 0.38/0.0 0.18/0.01 0.10/0.015

100.0 [43] 0.19/0 0.085/0.015 0.11/0.026

20 1.0 [44] 0.78/0.0 0.91/0.0 0.64/0.0

NOTE.—Samples are simulated from a stable island model with nd demes, � ¼ 2ndNd� and scaled migration rate M � 2Ndm. Sampling scale corresponds to the number of
sampled demes. See the Materials and Methods section for details. FCDR, false contraction detection rate; FEDR, False expansion detection rate.

Table 7. Effects of an Island Population Structure on the Detection and Characterization of a Past Contraction.

Gene
Flow
Level (M)

Case Sampling
Scale

p h D hanc CDR (FEDR)

Rel.
Bias

RRMSE KS Rel.
Bias

RRMSE KS Rel.
Bias

RRMSE KS Rel.
Bias

RRMSE KS

0.01 [45] Small �0.081 1.0 0.026 �0.61 0.80 7:0� 10�10�0.24 1.2 0.060 �0.99 1.0 <10�12 0.005 (0.040)
[46] Very large 2.2 2.3 <10�12 �0.77 0.81 <10�12 �0.66 0.67 <10�12 �0.17 0.62 8:5� 10�4 1.0 (0)

1.0 [47] Small 1.6 1.9 <10�12 �0.32 0.83 1:7� 10�5 0.41 1.8 9:9� 10�8�0.94 0.96 <10�12 0.070 (0.070)
[48] Very large�0.0027 0.61 4:2� 10�8 �0.72 0.80 <10�12 �0.60 0.60 <10�12 �0.020 0.50 5:7� 10�5 1.0 (0)

100 [49] Small 0.69 1.2 4:2� 10�6�0.070 0.43 0.64 0.31 0.80 0.0085 0.043 1.1 0.25 0.88 (0)
[50] Very large 0.014 0.83 0.0085 0.13 0.55 0.013 0.041 0.39 0.033 0.24 1.1 0.78 0.99 (0)

NOTE.—Samples are simulated from a 10-island model in which each subpopulation has undergone a past contraction, with � � 2dNd� ¼ 0:4, D � T=ð2dNdÞ ¼ 1:25, and
�anc � 2dNd;anc� ¼ 40:0, and varying scaled migration rate M � 2Ndm. See the Materials and Methods section for details. Mean relative bias and RRMSE are reported as well as
the CDR and the FEDR. Sampling scale corresponds to the number of sampled demes: 1) Small for one sampled deme and 2) very large for ten sampled demes. KS indicate the
P value of the Kolmogorov–Smirnov test for departure of ECDF of LRT P values from uniformity.
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rejected, with upper bounds of CI between 0.4 and 0.7, but
the likelihood profile is always very flat for low � values (e.g.,
supplementary fig. S4, Supplementary Material online). As a
result, many ML estimates were inferred at the lower bound
of the explored parameter space for � in preliminary analyses.
Moreover, supplementary figure S4, Supplementary Material
online, shows a clear trade-off between � and D for high
likelihood with low � values associated with high values for
D. Unrealistically, low � values (e.g., 10�9) were thus associ-
ated with high D values (e.g., about 1.0) in the first preliminary
analyses. For the final analyses, we thus restricted the param-
eter space to biologically realistic � values (i.e., � � 10�5, as
the latter value corresponds to a population size of a single
individual when considering a very small mutation rate for
microsatellite markers of 2:5� 10�6 ). Because of this uncer-
tainty in the estimation of �, inference of Nratio clearly shows a
population size ratio below 1, but the CI are very large, even
when � values are constrained. Finally, the GSM parameter p
is also inferred with intermediate precision but, in all analyses,
its point estimates are relatively high, for example, around 0.4,
compared with values generally found in the literature.

Discussion
In this study, we adapted de Iorio–Griffiths’ IS algorithm to
consider a single population model with varying size and dif-
ferent mutation models. We investigated its performance in
detecting past contractions of population size as well as esti-
mating the model parameters. We did not explore expansion
scenarios because preliminary simulations showed that pa-
rameter inference is less precise for expansions than for con-
tractions (as shown in section E in the supplementary
material and fig. S5, Supplementary Material online, and in
Girod et al. 2011). For a majority of expansion scenarios, good
precision is only obtained when considering large sample
sizes, for example, 500 haploid individuals genotyped at 50
loci, which implies large computation times (results not
shown). Likewise, preliminary tests under a model with a

founder event followed by a demographic expansion
showed that correct parameter inference could not be ob-
tained with the current version of our IS algorithms within
reasonable computation times. This is so because the strong
disequilibrium of this model induces high variance of the
likelihood estimation, which therefore requires the computa-
tion of a very large number of ancestral histories. We thus
focused on a model with a single past contraction event to
test the effect of the timing and amplitude of the past de-
mographic change, and study the robustness of inferences to
misspecifications of the mutational and population structure
models. Our results allow us to illustrate both the strengths
and the imperfections of the method.

Performances under Ideal Conditions

First, over all simulations considered in this study, LRTs for CI
coverage indicate that our implementation is correct and
produces accurate estimates of the likelihood surface with
reasonable computation times, except in a few situations
with extremely strong demographic disequilibrium (i.e., for
recent, e.g., D 40:25, and strong contractions, e.g.,
Nanc=N5 1; 000). For the later situations, much longer
runs are needed to obtain good CI coverage. This shows
that the efficiency of de Iorio–Griffiths’ IS algorithm, based
on time-homogeneous demographic assumptions, strongly
depends on the extent of the demographic disequilibrium
considered, which can be roughly quantified by the ratio of
the amplitude of the population size change divided by its
duration. Our results also show that inference based on time-
homogeneous IS algorithms is practically intractable for the
most extreme situations.

Second, our simulations show very good performances in
terms of detection of past decreases in population size. CDRs
are larger than 95% for most demographic situations. Even
very recent (e.g., T = 10 generations, D = 0.025), relatively an-
cient (e.g., T = 2,000 generations, D = 5.0) or relatively weak

Table 8. Point estimates and 95% CI for All Model Parameters Obtained from the Analyses of the Orangutan Data Set.

Sample (size) p h D hanc Nratio

RS1 (106) 0.40 0.0048 0.30 7.7 0.00063
½0:15� 0:61� ½10�5 � 0:36� ½0:17� 0:80� ½5:2� 11:5� ½10�6 � 0:049�

RS2 (89) 0.42 0.00035 0.31 7.4 4:8� 10�5

½0:20� 0:65� ½10�5 � 0:41� ½0:19� 0:48� ½5:4� 9:9� ½1:2� 10�6 � 0:058�

RS1+RS2 (195) 0.37 0.013 0.14 7.8 0.0016
½0:15� 0:59� ½8� 10�5 � 0:67� ½0:045� 0:52� ½5:3� 11:8� ½10�8 � 0:090�

N=2 Tyears Nanc=2

RS1 3 90 3,850
½1� 180� ½17� 14;400� ½2; 600� 5;750�

RS2 1 31 3,700
½1� 205� ½19� 9;840� ½2; 700� 4;950�

RS1+RS2 7 98 3,900
½1� 335� ½5� 17;420� ½2;650� 5;900�

NOTE.—More detailed results and a figure showing profile likelihood ratios are available in section D in the supplementary material, Supplementary Material online. The lower part
of the table presents the estimates of population sizes expressed as numbers of diploid individuals (N=2 and Nanc=2) and times in years (Tyears) obtained after a conversion of
MIGRAINE results using a fixed mutation rate of 5� 10�4 mutation per locus per generation and a generation time of 25 years. The “confidence” intervals reported for
Tyears is likely to be much larger than the true 95% CI, because we used the 95% CI bounds of D and � successively to compute this interval. Sample sizes are given in number of
diploid individuals. See the Materials and Methods section for details.
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contractions (e.g., population size ratio of 10) are detected in
more than 50% of the data sets. Third, our results suggest
that using only ten microsatellite markers allows detecting
past contraction with a high power, but more markers are
required for precise inferences of scaled population sizes and
timing under a wide range of demographic situations. How-
ever, precision of the inference of the different parameters
strongly depends on the scenario considered (see also Girod
et al. 2011). This is not surprising because the ability of the
method to infer past demography depends on the genetic
information available in the data and this information varies
as a function of the timing of the past contraction. This can
easily be understood and predicted from the timing of
events in the ancestry of a sample. Recent contractions
result in more precise inference for the ancestral population
size than for the actual population size, because much of the
coalescent and mutation events occur in the ancestral pop-
ulation. The opposite is true for old contractions. Precise
inference of current and ancestral population sizes is thus
only expected for past contractions that occurred neither
too recently nor too far in the past because in such scenarios
coalescent and mutation events are more homogeneously
distributed over all demographic phases. Finally and for the
same reason, inference of contraction time is expected to be
more precise for intermediate timings. This is exactly what is
observed in figures 4 and 5. One important result of our
study is that high CDRs as well as good inference precision
for both the time and the actual population size parameters
are still expected for relatively ancient contraction (e.g.,
1:254D4 5:0).

Finally, many recent software packages that make demo-
graphic inferences from genetic data, such as MIGRATE

(Beerli and Felsenstein 2001), IM (Hey and Nielsen 2004,
2007; Hey 2010), or LAMARC (Kuhner 2006), do not use the
classical coalescent parameter scaling by population size (i.e.,
4Nm and T=2N) but rather use scaling by the mutation rate
(i.e., m=� and T�), or propose both options, as MIGRAINE
does. Our simulations show that there is not much interest to
scale time by mutation rate for inferences of past contrac-
tions. For the demographic scenarios considered here, such
scaling always reduces inference precision for the time param-
eter. Beside those scaling issues, independent information
about mutation rates of the markers can be incorporated
as prior information in the analyses to allow inference of
canonical parameters (i.e., N, T, and Nanc) instead of scaled
ones (e.g., as done in MSVAR). This is an attractive possibility
for practical inferences, however, it has been shown in Girod
et al. (2011) and Faurby and Pertoldi (2012) that such param-
etrization allows precise inference of canonical parameters
only if precise prior information on mutation rate is used.
This is so because single-locus population genetics models
in general (and Kingman’s coalescent model in particular)
depend upon scaled, not canonical, parameters.

Comparison with Previous Methods

In the past decade, the use of likelihood-based methods to
analyze genetic data under a single population model with

past variation in population size emerged with the release of
the MSVAR software (Beaumont 1999; Storz and Beaumont
2002). As expected, this coalescent-based MCMC method has
been shown to be much more powerful than using summary
statistics in detecting past contractions or expansions (Girod
et al. 2011; Peery et al. 2012). Moreover, model-based
approaches can also infer model parameters, such as current
and past population sizes, and the timing of the demographic
change. In this study, we compared performances in terms of
CDRs, parameter inference precision, and computation times
of MSVAR and our IS method. Our simulations globally show
similar behavior of the two methods, with slight but clear
advantages for MIGRAINE in terms of power of contraction
detection, parameter estimation, and computation times. For
example, both methods perform well for intermediate con-
traction strength and timing. On the contrary, they both are
inefficient when population size contraction is too strong and
too recent. The MCMC algorithm of MSVAR shows strong
convergence issues for very recent and strong contractions
(see fig. 1 in Girod et al. 2011) and gives biased point estimates
as well as bad CI for �anc (supplementary fig. S3,
Supplementary Material online). For the same demographic
scenarios, IS algorithms implemented in MIGRAINE are not
efficient and, even with large computation times, MIGRAINE
shows high relative biases and RRMSE, as well as bad coverage
properties of CI for � as discussed above. For both methods,
computation times thus greatly increase with the strength of
the contraction, and accurate parameter inference consider-
ing very recent and strong contractions may be difficult to
achieve. However, MIGRAINE appears 1) more adapted to
the analyses of microsatellite markers because of the imple-
mentation of the GSM, as detailed in the next section; 2)
slightly more powerful than MSVAR as our simulations
show higher CDRs (e.g., often more than 20% higher CDRs
depending on the demographic situation considered) and
fewer false expansion detections (i.e., 0 vs. 1 false expansion
detected among all simulations with MIGRAINE and MSVAR,
respectively); and 3) faster than MSVAR as computation times
were always higher for MSVAR than for MIGRAINE for equiv-
alent demographic scenarios (e.g., two to ten times faster).
Finally, a certain advantage of MIGRAINE over MSVAR is that
it can easily use parallel computation, thereby decreasing
computation times by the number of available cores.

Robustness to Mutational Processes

Although many models have been developed to describe
microsatellite mutation processes (Bhargava and Fuentes
2010), most programs that analyze microsatellite data use
the SMM (e.g., IM, MIGRATE, LAMARK, see references
above, but see DIYABC, Cornuet et al. 2008, and BEAST,
Drummond et al. 2012). However, it has been recognized
that violations of the SMM assumptions might induce
severe bias in the inference of demographic history (Gonser
et al. 2000). Indeed, mutations of more than one step of the
GSM can produce gaps in allele length distribution, which are
typically often observed after a population decline under an
SMM (Garza and Williamson 2001). Peery et al. (2012)
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recently showed that identification of past contractions using
the summary statistic-based BOTTLENECK (Cornuet and
Luikart 1996) and M-RATIO softwares (Garza and
Williamson 2001) is highly biased by deviations from the mu-
tation models implemented in those softwares, often leading
to significant contraction detection in samples simulated
under a stable population model. Faurby and Pertoldi
(2012) also showed that estimation of current and past pop-
ulation sizes with MSVAR is unreliable when realistic devia-
tions from the SMM occur. In the previous study of Girod
et al. (2011), it was also shown that MSVAR was moderately
robust to deviations from the SMM, which leads to false
contraction detections in samples simulated from stable pop-
ulations. However, this conclusion was presumably overopti-
mistic due to the small number of data sets analyzed. In this
study, we clearly show a strong impact of violations of the
SMM assumptions: Even small deviations from the SMM
induce large FCDRs in samples simulated under a stable de-
mography. We adapted our algorithm by implementing a
GSM in MIGRAINE to allow inference of past population
size variations under this more complex and more realistic
mutational model. Our simulations first show that, in samples
from stable populations, using a GSM successfully decreases
the rate of false contraction detections due to mutations of
more than one step. Second, for samples that effectively ex-
perienced a past contraction, our simulations show that using
a GSM leads to CDRs similar to the one observed under the
SMM, and also show that parameter inference precision is
only slightly affected by the additional parameter p.
Computation times are of course higher than for the SMM,
but are still reasonable, as all data sets with 100 genes geno-
typed at 50 loci or less can be analyzed in a few days on a
desktop computer with four cores. It is clear however that the
GSM is not a perfect description of microsatellite mutation
processes (Bhargava and Fuentes 2010). Many other factors
such as single nucleotide insertions/deletions, asymmetric
mutations, variation of the mutation rate with the length
of the alleles and/or constraints on allele sizes may often
occur (Sun et al. 2012), and potential additional biases in
the inference of past population size changes due to these
factors remain to be tested. However, the main cause of the
confounding effects between mutation processes and past
changes in population sizes is likely to be the presence of
gaps in the sample allelic distributions, and factors others
than multistep mutations should have less effects than
those described above. Finally, MIGRAINE considers that mu-
tation rates are constant across loci and we showed that
unaccounted variation in mutation processes across markers
1) increases estimation biases essentially when a low number
of loci are considered (i.e., 10 vs. 50 loci); but 2) also slightly
deteriorates CI coverage properties, principally for � and �anc

and regardless of the number of loci.

Robustness to Population Structure

In addition to the strong effect of mutational processes, we
also found that inferences of past population size changes can
be drastically affected by population structure. First, at small

spatial scales, IBD often occurs within populations due to
spatially limited dispersal (see Guillot et al. 2009 for a
review). Our simulations show that ignoring such local pop-
ulation structure induces large FCDRs when individuals are
sampled at a small spatial scale from stable populations, even
for relatively weak IBD. However, sampling individuals at a
larger scale, that is, over the whole population area, efficiently
reduces FCDRs. Parameter estimation, and to a lesser extent
CDRs, obtained from samples coming from a population that
effectively went through a contraction is also affected by IBD,
and again sampling individuals at a large geographical scale
efficiently reduces the impact of IBD. Parameter inference
thus appears robust unless IBD is very strong and sampling
scale is small.

Second, at larger spatial scales, population structure also
arises due to limited gene flow within a set of discrete demes
as described by the island model (Wright 1951). Such island
population structure has stronger and more complex effects
than IBD within populations. Our simulations show that sam-
ples coming from a single deme of stable island-structured
populations show large FCDRs unless gene flow is extremely
limited. Considering larger sampling scales by sampling indi-
viduals from all the demes of the total structured population
reduces FCDRs but only for situations with important levels of
gene flow (i.e., M5 10:0). Contrarily to IBD situations, en-
larging sampling scale when gene flow is more limited, that is,
M4 1:0, often increases FCDRs. Our simulations finally show
that, when a contraction did occur in the past, ignoring island
population structure also often strongly decreases CDRs and
greatly biases parameter estimation. Moreover, both contrac-
tion detection and parameter estimation are sensitive to sam-
pling scale. Unless gene flow is very high between demes
(M5 100:0), small scale samples show low CDRs below
10% and accurate CDRs are only obtained using large sam-
pling scales. Parameter inference appears highly biased for all
levels of gene flow considered in this study. As for CDRs, best
precision is also obtained when gene flow is high and sam-
pling scale is large. Nevertheless, for all other situations, rela-
tive biases and RRMSEs are high suggesting that in most
situations, limited gene flow between geographically distinct
demes will always lead to erroneous inferences of current and
past population sizes, and of the timing of the demographic
change. Moreover, our results show complex interactions be-
tween levels of population structure, total genetic diversity,
mutation processes, and sampling scales that strongly limit
practical recommendations for the detection and character-
ization of past changes in population size in the presence of
unaccounted population structure.

Such confounding effects of population structure and past
changes in population sizes have already been observed. First,
the effect of small-scale IBD population structure on CDRs
obtained with the BOTTLENECK and M-RATIO softwares has
been tested by simulations in Leblois et al. (2006). Our results
are globally in agreement with this previous study, except that
they found large FEDRs when using BOTTLENECK on IBD
samples and that considering large scale samples makes
FEDRs even larger. Such results showing that fine scale pop-
ulation structure induces false expansion signals has also been
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previously stressed by Ptak and Przeworski (2002) in the con-
text of sequence data analysis based on the Tajima’s D statis-
tics. Our simulations on the contrary show nonnull but small
FEDR in the presence of small scale IBD structure.

Second, the effect of island population structure on past
population size inference was first highlighted by simulation
in Nielsen and Beaumont (2009). More recently, Peter et al.
(2010), Chikhi et al. (2010), and Heller et al. (2013) also
showed that analyzing samples drawn from a single deme
of an island model with low to intermediate migration
rates (i.e., Nm< 5) leads to false signals of contraction. Such
erroneous imputations can be understood by considering the
genealogical processes in an island model and in a single
population with varying size. In a subdivided population
with relatively small deme sizes and small migration rates,
the genealogy of a sample taken from a single deme will
show 1) many short branches for genes that rapidly coalesce
within the deme in which they were sampled (i.e., before any
migration event), this corresponds to the “scattering phase”
described in Wakeley (1999); and 2) a few much longer
branches for genes that coalesce after any emigration or im-
migration event from the deme sampled, this is the “collect-
ing phase” of Wakeley (1999). The result is a genealogy with
an excess of short terminal branches, as expected after a
recent contraction in population size. However, if only one
individual is taken from different demes, and/or if deme size
or migration rates are large, the genealogical process becomes
closer to the one expected under a Wright–Fisher (WF) pop-
ulation. Similarly, when gene flow is very limited, the ancestry
of a sample coming from a single deme will also be very similar
to the one expected under the WF model. Thus, except for
limit cases, structured and declining population scenarios
may result in more or less similar genealogies, depending
on deme sizes, migration rates, and sampling scale. This ex-
pected influence of these three factors may strongly compli-
cate the study of the effect of population structure on the
inference of past population size. This can be noticed in the
heterogeneity of the results of the different simulation studies
available. All those comparisons based on different simula-
tions of structured populations show that the effect of pop-
ulation structure is generally complex and will be quite
difficult to predict except in a few simple cases. Those results
also show that verbal argumentation based on oversimplified
past genealogical processes may not always give the right
prediction. Nevertheless, two main points arise from those
simulation studies and can serve as guidelines for empirical
studies: 1) Using a large sample scale strongly limits the influ-
ence of population structure on the inference of past popu-
lation size variations, as advocated by Chikhi et al. (2010), but
allows correct inference of past demographic changes only
when migration rates are relatively high, that is, M5 10:0.
Sampling a single gene per deme efficiently prevents false
contraction detections in stable-structured populations but
does not allow precise characterization of past contractions in
the presence of intermediate to strong population structure;
2) for all other demographic situations, detection of past
population size changes and parameter inferences based on
panmictic models may often be misleading.

Such results finally imply that models themselves should
be improved. First, model choice procedures should be de-
veloped to evaluate whether observed patterns of genetic
diversity can be better explained by a model of population
size change or by a model of subdivided populations. For
example, Peter et al. (2010) used an Approximate Bayesian
Computation model choice approach to distinguish between
structured populations and panmictic population that un-
dergone past changes in size. However, they show by simula-
tion that their model choice procedure has relatively limited
power to assign simulated data sets to the correct evolution-
ary model, even with a relatively large number of loci (e.g.,
60–85.5% with 10–200 loci, respectively). An alternative is to
develop models accounting for both population structure
and population size changes that would probably be more
realistic for most species/populations but the only available
method (Hey and Nielsen 2007; Hey 2010) has never been
tested for scenarios with both structured populations and
past changes in population sizes.

Analysis of the Orangutan Data Set

Our analyses of the orangutan data set show that 1) all sam-
pled sites, except S9, exhibit a clear signal of a strong and
recent population size contraction; and 2) parameter infer-
ences are extremely consistent among sites, and among the
different pooled samples. Those results are in good agreement
with equivalent analyses using MSVAR published in Goossens
et al. (2006) and Sharma et al. (2012): All analyses indicate 1)
ancestral population sizes of about a few thousand individuals
(i.e., [2,600–5,900] for MIGRAINE and [3,100–13,400] for
MSVAR), 2) much smaller current population sizes (i.e., [1–
335] individuals for MIGRAINE and [22–1,400] with median
values between 60 and 200 individuals for MSVAR), and 3) a
relatively recent timing of the contraction (i.e., less than about
15,000 years ago for both MIGRAINE and MSVAR). However,
considering the same generation time of 25 years, MSVAR
results show less support for a very recent event (i.e., <200
years) than MIGRAINE ones. For this reason, Sharma et al.
(2012) conclude that MSVAR analyses suggest that the main
historical factor explaining the inferred contraction is habitat
destruction due to the arrival of farmers 4–5 ka, whereas we
cannot exclude from our MIGRAINE analyses that habitat
loss through more recent deforestation for the development
of massive agriculture and logging in the last 150–200 years is
also a likely cause of the decline of orangutan populations in
Borneo.

As discussed in the above sections, the two major prob-
lems with such inference of past changes in population size
are misspecification of the mutation processes and unac-
counted population structure. First, MIGRAINE analyses
used a combination of GSM and SMM models for di- and
tetranucleotide microsatellite loci, respectively, because mu-
tations at tetranucleotide loci have been shown to be princi-
pally single steps whereas dinucleotide markers show more
multistep mutations (Sun et al. 2012). Note that this adequa-
tion between marker types (di- vs. tetranucleotides) and mu-
tation models (GSM vs. SMM) was empirically validated in
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preliminary simulations using estimations of the parameter p
of the GSM for the different markers. As MSVAR only con-
siders a strict SMM, MIGRAINE analyses are thus expected to
give more accurate results. However, only three markers
among the 14 used are dinucleotide loci, which likely explains
the weak effect of mutation process misspecification on
MSVAR analyses and thus the observed good agreement be-
tween MIGRAINE and MSVAR results.

Second, despite the fact that Goossens et al. (2005) showed
a weak but significant population structure among sites, es-
pecially across the Kinabatangan River (e.g., between RS1 and
RS2 pooled samples, see the Materials and Methods section),
the strong similarity observed among all our results for site-
specific and pooled samples suggests that this factor does not
have a strong effect on the estimations. Sharma et al. (2012)
similarly conclude of no major effect of population structure
on their inferences.

Conclusion

This work shows that our new inference method seems very
competitive compared with alternative methods, such as
MSVAR. However, our simulation tests also showed some
limits, which most importantly are large computation times
for strong disequilibrium scenarios and a strong influence of
some form of unaccounted population structure. One first
major improvement would thus be to speed up the analyses.
Among the different possibilities, a relatively simple improve-
ment would be to more efficiently choose the number of
explored histories for each point of the parameter space. A
more attractive improvement would be to design more effi-
cient IS algorithms for time-inhomogeneous models.
However, various unsuccessful attempts suggest that it may
be a difficult task (not shown). A second major improvement
would be to include population structure in the demographic
model for simultaneous inference of migration rates and past
population size change or to develop model choice
procedures.

Finally, given the current revolution in genetic data pro-
duction due to next generation sequencing technologies
(NGS), it seems crucial to allow for the analysis of different
types of independent markers, such as small DNA sequences
without intralocus recombination, or single nucleotide poly-
morphisms (SNPs). The current version of MIGRAINE can
consider three mutation models for allelic data (KAM,
SMM, and GSM). It does not allow SNP data analysis,
except under a KAM model with K = 2 allelic states.
However, such a mutation model may not be adapted for
SNP data because of the possibility of recurrent and backward
mutations. For this reason, we did not test such analyses but a
mutation model for SNPs is currently being implemented in
MIGRAINE.

Given the relatively large computation times of our
method, all analyses will clearly only be tractable for a limited
number of markers (e.g., <10,000), but could nevertheless
give very precise inferences. However, considering only inde-
pendent markers is probably not the optimal approach as
NGS make it possible to apply new class of methods based on

the analyses of linkage disequilibrium for past demographic
inferences. Such methods are based on the computation of
the distribution of nonrecombining haplotype block length
(e.g., Meuwissen and Goddard 2007; Albrechtsen et al. 2009;
Gusev et al. 2012; Palamara et al. 2012; Theunert et al. 2012) or
explicitly model the spatial dependence of markers using
hidden Markov models (e.g., Dutheil et al. 2009; Mailund
et al. 2012). They will probably play a major role in the
future of population genetic demographic and historical
inferences.

Materials and Methods

Simulation Study

A first set of simulations aims at testing the power of the
algorithm to detect contractions and the accuracy of the
parameters estimates when the duration (D) or the strength
of the contraction (�anc) varies. The mutation process con-
sidered is an SMM over a range of 200 alleles. These experi-
ments are presented in table 9. We also reanalyzed the 60
simulated data sets from Girod et al. (2011) to compare the
results obtained with MSVAR and our own estimates. The
latter simulated data sets are described in supplementary
table S2, Supplementary Material online, and the comparison
results are presented in section B in the supplementary ma-
terial, Supplementary Material online.

A second set of simulations concerns robustness and ac-
curacy related to mutation processes of microsatellites that
are known to be highly complex (Ellegren 2000, 2004; Sun
et al. 2012). This second set of simulations is thus based on a
GSM with either p = 0.22 or p = 0.74, that are, respectively, the
value commonly considered as a realistic average value in the
literature (Dib et al. 1996; Ellegren 2000, 2004; Estoup et al.
2001), and the largest, ever reported value (Fitzsimmons 1998;
Peery et al. 2012). We have also added data sets drawn with
the KAM to those simulations, which might be seen as a GSM
with p = 1.0. A first set of analyses tests the robustness to

Table 9. Simulated Demographic Scenarios with an SMM.

Case D (T) h (N) hanc (Nanc)

[0] 1.25 (200) 0.4 (200) 40.0 (20,000)

[1] 0.025 (10) 0.4 (200) 40.0 (20,000)

[2] 0.0625 (25) 0.4 (200) 40.0 (20,000)

[3] 0.125 (50) 0.4 (200) 40.0 (20,000)

[4] 0.25 (100) 0.4 (200) 40.0 (20,000)

[5] 0.5 (200) 0.4 (200) 40.0 (20,000)

[6] 2.5 (1,000) 0.4 (200) 40.0 (20,000)

[7] 3.5 (1,400) 0.4 (200) 40.0 (20,000)

[8] 5 (2,000) 0.4 (200) 40.0 (20,000)

[9] 7.5 (3,000) 0.4 (200) 40.0 (20,000)

[10] 1.25 (200) 0.4 (200) 2.0 (1,000)

[11] 1.25 (200) 0.4 (200) 4.0 (2,000)

[12] 1.25 (200) 0.4 (200) 8.0 (4,000)

[13] 1.25 (200) 0.4 (200) 12.0 (6,000)

[14] 1.25 (200) 0.4 (200) 24.0 (16,000)

[15] 1.25 (200) 0.4 (200) 120.0 (60,000)

[16] 1.25 (200) 0.4 (200) 400.0 (200,000)
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misspecification of the mutation process. Indeed, we have
simulated under a GSM but inferred under an SMM. A
second set of analyses tests the accuracy of the estimates
when the inference algorithm is based on a GSM with un-
known value of p. Because mutation processes generally differ
between loci, we also considered a situation with a combina-
tion of loci with different mutation models and different mu-
tation rates: 80% of the loci are simulated under a GSM with
p = 0.22 and 20% under an SMM, and each locus has a mu-
tation rate drawn from a Gamma distribution with parame-
ters 2 and 0.0005, which gives a mean mutation rate of 0.001.
For this situation with variable mutation processes, inference
is also done using a GSM with unknown value of p.

The aim of the third set of simulations is to test robustness
against a population structure that is ignored by the inference
algorithm. All the data sets in this last series, described in table
3, were simulated under a GSM with p = 0.22. A first group of
data sets simulates local within-population structure accord-
ing to an IBD model. It thus aims at testing the robustness of
the inferences to the assumption of panmixia by considering
nonrandom mating due to spatially localized parent–off-
spring dispersal. The second group of data sets simulates
both within- and among-population structure at a larger spa-
tial scale according to an island model. Under the island
model of population structure, few additional simulations
were run to test 1) the influence of the mutation model
and 2) the effect of sampling a single gene per deme. Those
simulations are presented in section C in the supplementary
material, Supplementary Material online, and discussed in the
main text.

For each scenario, we simulated 200 multilocus data sets.
Each simulated data set is a sample of ng = 100 genes (or
haploid individuals), genotyped at nl ¼ 10 unlinked microsat-
ellite loci, except for a few situations where we indicate that 25
or 50 instead of ten loci are used. The mutation rate per gene
per generation, say �, is assumed to be constant for all loci,
equal to 10�3. All simulated samples, except data sets from
Girod et al. (2011) (see section B in the supplementary mate-
rial, Supplementary Material online), have been produced
with a new version of the IBDSIM software (Leblois et al.
2009) that considers continuous changes of population sizes.

Validation

In all simulation experiments, the true (simulated) values of
the parameters of interest are compared with the estimated
values. The estimation bias and error, assessed by the relative
mean bias and RRMSE, are reported, as well as the proportion
of data sets for which a contraction or a false expansion signal
is significantly detected (CDR and FEDR, respectively).
Furthermore, the accuracy of the inference methodology is
assessed by mean of profile LRTs (Cox and Hinkley 1974;
Severini 2000). The coverage properties of the CI computed
from the smoothed likelihood surface are tested through the
ECDF of LRT P values, which should be asymptotically uni-
form. The departure from uniformity is tested by
Kolmogorov–Smirnov tests, notably to check the validity of

the implementation of the inference method and to assess the
different factors that can affect likelihood surface inference.

Orangutan Data Set Analysis

Finally, we analyzed an orangutan (Pongo pygmaeus) data set
from Goossens et al. (2006), sampled in 2001 in the Lower
Kinabatangan food plain in Eastern Sabah, Malaysia from
feces and hairs, and genotyped at 14 microsatellite loci. Our
method was first applied on each subsamples S1–S6, S8, and
S9 as described in Goossens et al. (2005). Those samples cor-
respond to different more or less isolated sampling sites on
each side of the Kinabatangan River (see fig. 1 in Goossens
et al. 2005). Subsample S7 was not analyzed because it only
contains seven individuals, whereas all others contain be-
tween 16 and 33 individuals. Goossens et al. (2005) showed
a weak differentiation level within each side of the river
(0:014 FST 4 0:04, with a mean of 0.02) but a stronger
one between both sides of the river (0:034 FST 4 0:09
and a mean of 0.06). For this reason, and because our simu-
lation study shows an important effect of population struc-
ture on the detection and characterization of past population
size contractions, we also analyzed three larger data sets by
pooling some subsamples together: 1) RS1 is the pool of sub-
samples coming from the south side of the river (i.e.,
S1+S3+S6+S8); 2) RS2 the pool of subsamples from the
north of the river (S2+S4+S5+S9), and 3) RS1+RS2 is the
total sample from both sides of the river.

To compare our results with those from Goossens et al.
(2006) and Sharma et al. (2012) that used MSVAR on the same
data sets, we need to convert our estimates of scaled param-
eters �, D, and �anc into canonical parameters (i.e., N, T, and
Nanc), because only values of canonical parameters are re-
ported in these two publications. We did this conversion by
considering a fixed mutation rate of 5� 10�4 mutation per
locus per generation, a value commonly considered as a re-
alistic average value in the literature (Dib et al. 1996; Ellegren
2000; Sun et al. 2012). Furthermore, to express the timing of
the contraction in years, we used a generation time of 25 years
as in Sharma et al. (2012), a value in better agreement with
long-term field studies than 8 years, the value considered in
Goossens et al. (2006).

All sample sizes, results for all subsample analyses as well as
details about the parametrization used for the inferences are
given in section D in the supplementary material,
Supplementary Material online. Results for the pooled data
sets RS1, RS2, and RS1+RS2 are presented in the main text, in
the Results section and illustrated in supplementary figure S4,
Supplementary Material online.

The MIGRAINE software, with the implementation of the
above described methods, can be downloaded from the
web page http://kimura.univ-montp2.fr/~rousset/Migraine.
htm (last accessed July 28, 2014).

Supplementary Material
Supplementary material, figures S1–S65, and tables S1–S5 are
available at Molecular Biology and Evolution online (http://
www.mbe.oxfordjournals.org/).
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