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Fast Branch and Bound Algorithm
for the Travelling Salesman Problem

Grymin Rados law and Jagie l lo Szymon

Department of Control Systems and Mechatronics
Faculty of Electronics

Wroc law University of Science and Technology

Abstract. New strategies are proposed for implementing algorithms
based on Branch and Bound scheme. Those include two minimal span-
ning tree lower bound modifications, a design based on the fact that edges
in the optimal tour can never cross in the euclidean TSP and paralleliza-
tion of Branch and Bound scheme. Proposed approaches are compared
with primary algorithms.
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1 Introduction

Branch and bound (B&B, BnB, branch & bound) is an approach advised for de-
signing exact algorithms solving NP-hard combinatorial optimization and dis-
crete problems. B&B was introduced by Land and Doig in 1960 [10]. Until the
late 1970s, it was the state-of-the-art method for almost all big and complex
problems that could not be solved by other techniques known at that time. And
it is still used everywhere, where small improvement of solution leads to big rise
in profits. B&B uses a tree search strategy to implicitly enumerate all possible
solutions to a given problem, applying pruning rules to eliminate regions of the
search space that cannot lead to a better solution [11].

In this article we are considering a minimization problem and the whole used
terminology relates to it. In order to optimally solve the problem, B&B algorithm
divides the whole set of solutions X into mutually exclusive and exhaustive
subsets Xj , where j ∈ S = {1, 2, 3, . . . , s}. In every moment of its work, algorithm
stores the best found solution so far xub and its value called upper bound and
the set of subsets not yet analysed. B&B does not search these subsets to which
it is assured that they do not contain optimal solution x∗, so it is much more
effective than an exhaustive search. Decision, if some subset should be analysed
or not, is based on its bound and objective function value counted for currently
best found solution K(xub). For minimization problem, such bound is called
lower bound and it is lower or equal to all objective function values evaluated
for every element of related subset. It is marked as LB. If for a certain subset,
the lower bound is equal or greater than the value of the best solution found so
far, such subset is removed from the set of subsets not yet analysed and will be



no more considered. A good lower bound is a basic requirement for an efficient
B&B minimization procedure [12].

The idea of Travelling Salesman Problem, TSP for short,
relies in visiting every city by the sale representative from the given set of n
cities exactly once [9], starting from and returning to the home city. In this
article we are considering a symmetric TSP, where the distance between two
cities is the same in each opposite direction. We also assume that there is a
direct connection from each node to every other one. Formally, this problem is
described as a search for the shortest Hamiltonian cycle [7] in the complete and
symmetric graph Kn = (Vn, En) containing n = |Vn| nodes and m = |En| =

(
n
2

)
edges. Nodes are numbered from 1 to n. We assume without loss of generality
that the home city is the node with index number 1. Edge e, which connects
nodes i and j, is marked as {i, j} or {j, i} and their distances are stored in the
distance matrix Dn.

B&B algorithm for TSP constructs solutions by visiting cities. On each step
there may be more than one remaining city to visit. The process of constructing
solutions can be presented as a decision tree. Each node in such tree refers to
a subset of the solution set and a lower bound can be established for it. B&B
algorithm creates solutions by exploring such tree. It will not visit these nodes
of the decision tree, for which it has certainty that it will not lead to the optimal
solution.

The role of parallel algorithms in solving NP-hard problems significantly in-
creased in the last decade. Bożejko proposed an improvement for speeding up
the process of solving a single machine scheduling problem with total tardi-
ness cost function by parallelization of generation of paths [2], a parallel genetic
algorithm for the flow shop scheduling problem [4] and a method for solving per-
mutational routing problems by population-based metaheuristics [5]. The same
author designed new parallel objective function determination methods for the
job shop scheduling [3] and flow shop [1] problems. Jagie l lo and Żelazny proposed
a parallel cost function approach for the Distance Constrained Vehicle Routing
Problem which was designed to work on Graphics Processing Units (GPUs) [8].
In this paper we propose a parallel B&B design for the TSP problem.

2 Lower bounds

The lower bound LB(Xj) for a given node in the decision tree (that reflects to
a certain set of solutions Xj) is evaluated as a sum of the travelled distance
MIL(Xj) and the lower estimation of the remaining distance LE(Xj),

LB(Xj) = MIL(Xj) + LE(Xj). (1)

It should be noted, when the travelling salesman visited k cities, the remaining
way is a Hamiltonian path starting from the last visited city, that visits every
city not visited so far and returning to the home city. It is showed in Figure 1.

The lower estimation estimates from the bottom an overall length of such
shortest Hamiltonian path. This path is described by the following properties:
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Fig. 1. Searched Hamiltonian cycle. The tour that has to be passed is marked by
the dashed line.

a) it does not visit already visited k nodes,
b) each node of the considered graph is visited only once,
c) there exists a subpath linking every two nodes of the considered graph,
d) it assumes beginning and ending node,
e) if the number of not visited cities is greater than one and travelling salesman

is not currently in the home city, he cannot directly pass the way from
the current city to some not visited city and immediately return to the home
city,

f) it is built from n− k + 1 edges,
g) the first and the last city of the Hamiltonian path are connected with only

one city.

By the relaxation of above constraints, we get lower estimation of the remaining
distance LE(Xj). The weaker relaxation, the greater value of the lower estima-
tion and it leads to better lower estimation (that rejects more solutions).

The total length of the shortest feasible connections The weakest and the most
simple lower estimation LE of the remaining distance is obtained by counting
the total length of the shortest not visited edges. It satisfies the constraints (a)
and (b). Relaxation of constraints involves removal of constraints (b), (c), (d),
(e), (f) and (g).

In order to evaluate the lower estimation, the distances associated with the
inaccessible connections are removed from the weight matrix. Firstly, zeros from
the main diagonal are removed. If the travelling salesman comes out from the
city i, the numbers in the row with index i should be removed from the weight
matrix. Afterwards, if travelling salesman enters the city with index j and it
is not a home city, then from the weight matrix, values from the column j are
removed. Moreover, if city with index j is not a second last one (such city, after
which travelling salesman returns to the home city), value dj1 must be removed
from the weight matrix. We determine the number of the remaining connections
r that have to be passed as

r = n− k + 1, (2)



where n is the number of all cities and k is the number of visited cities.

Values that were not removed from the weight matrix are sorted in the non-
decreasing order and form a finite sequence (an). The sum of the first r values
is the lower estimation of the remaining distance. Then, the lower bound can be
computed from (1).

The weight of the minimum spanning tree In this case, the lower estimation
of the remaining distance LE and the lower bound is equal to the weight of
the minimum spanning tree for the complete sub-graph that consists of the
city where actually the travelling salesman is located xk, not having visited
cities so far {xk+1, xk+2, xk+3, . . . , xn} and the home city x1 = 1. It satisfies the
constraints (a), (c) and (f). Relaxation involves removal of the constraints (b),
(d), (e) and (g). In order to evaluate the minimum spanning tree weight, Prim’s
algorithm is used. When the weight of the minimum spanning tree is computed
(and it is also a value of the lower estimation LE ), (1) will be used to determine
the lower bound.

The weight of the minimum spanning tree — 1st modification Algorithm was
proposed by Mariusz Makuchowski from Department of Control Systems and
Mechatronics of Wroc law University of Science and Technology (personal com-
munication, November 3, 2014). The lower estimation of the remaining distance
is evaluated as a sum of minimum spanning tree weight for graph consisting of
the cities not having been visited so far {xk+1, xk+2, xk+3, . . . , xn} and the home
city x1 = 1 and the sum of weights of two shortest edges connecting the home
city with nearest not visited edge and the current city with nearest not visited
edge. If travelling salesman is currently in the home city, lower estimation is
counted as a sum of the weight of minimal spanning tree in the graph containing
not visited cities and doubled distance from the home city to the nearest not
visited node. It satisfies the constraints (a), (c), (f) and (g). Relaxation involves
removal of the constraints (b), (d) and (e).

The weight of the minimum spanning tree — 2nd modification It is the improved
version of the previous algorithm. The lower estimation of the remaining distance
is evaluated as a sum of minimum spanning tree weight for graph consisting of
not visited cities {xk+1, xk+2, xk+3, . . . , xn} and the sum of two weights of edges
connecting the home city and the current city with not visited cities (and these
cities must be different). If the travelling salesman is currently in the home
city, the lower estimation is a sum of weight of the minimum spanning tree
in graph containing not visited cities and the sum of two weights of shortest
edges connecting home city with different not visited cities so far. It satisfies
constraints (a), (c), (e), (f) and (g). Relaxation involves removal of constraints
(b) and (d).



3 Priority of analysed sets

The order in which the algorithm searches the decision tree is very important.
The size of the priority queue will grow fast if leaves are rarely visited and new
upper bounds will not be found. The algorithm must have a tendency to search
the graph towards leaves. By assigning a priority to sets stored in the priority
queue we control the way the algorithm will search the decision tree.

We chose the following way of counting priority that promotes subsets with
the lowest increase of lower bound

P =
1

AI
, (3)

AI =
LB

k
. (4)

where P , AI, LB and k denote the subsets priority in the queue, the mean
increase of the lower bound, the lower bound and the number of visited cities
accordingly.

4 Parallel Branch and Bound Algorithm

In the parallel algorithm we use a pool approach with arbitrary fixed number of
processes. It means that program executes in several processes and one of them
will be called supervisory process and the rest will be called worker processes
(see Figure 2). In the initialization phase, supervisory process reads the instance
data from the TSPLIB file, generates the weight matrix and distributes it to
all worker processes. It also establishes the best solution found so far and the
upper bound by running 2-opt algorithm on the result of the nearest neighbour
algorithm. It stores the priority queue of solution sets not analysed so far and
the best solution so far.

During computation phase, if some worker process notifies the supervisory
process about its idle state via WORKER FINISHED TASK message and if there are
still some solutions sets to be analysed in the priority queue, the supervisory
process pops the first solution set with the highest priority and sends it to the
worker process via PERFORM TASK REQ message and stores the information that
the process is performing task. Algorithm stops when there are no more sets in
the priority queue to analyse and if all worker processes informed supervisory
process that they finished analysing task by sending WORKER FINISHED TASK.

Each worker process stores the upper bound value. If some worker process
found a solution with the objective function value smaller than the upper bound,
it sends this solution with upper bound update proposal to the supervisory pro-
cess in UPPER BOUND message. The supervisory process checks if the proposed
upper bound value is better than the currently stored one. If it is true, the new
best solution so far and the new upper bound value are stored in the supervi-
sory process, the new upper bound value is distributed to all worker processes
in the UPPER BOUND message except one which found it and all subsets with the
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Fig. 2. Sequence diagram that describes solving TSP by the parallel Branch and Bound
algorithm. The initialization part of algorithm was omitted.

lower bound greater than the new upper bound are removed from the priority
queue. Otherwise, the new proposed upper bound value is discarded. Such check
is important in a situation when two workers find better solutions (with different
objective function values) than the best solution found so far and simultaneously
send proposal to the supervisory process for changing the best solution found so
far and the upper bound. If the supervisory process obtains upper bound with
smaller value first, it will update upper bound and when it obtains one with
greater value, second upper bound value change proposal will be discarded after
the check.

Worker processes divide set obtained in the PERFORM TASK REQ message into
subsets. If the subset has only one element it means that the worker found
a solution. Otherwise, if obtained subsets contains more than one element, it



calculates lower bounds for them. On the basis of the lower bound and the upper
bound it is established if the optimal solution can belong to the obtained subset.
If it is true, the subset is send back to the supervisory process via TASK PUSH REQ.

5 Intersections in Euclidean TSP

The edges in an optimal tour can never cross in an euclidean TSP. If edges
{i, k} and {j, l} did cross, they would constitute the diagonals of a quadrilateral
{i, j, k, l} and could profitably be replaced by a pair of opposite sides [6]. In-
stances for which all points are located on the same line are the only exceptions.
Based on that fact two algorithms were proposed. The first one is a modifica-
tion of the Brute force method the second is an adjustment of the Branch and
Bound (Branch and Cut) approach. Before adding an edge to the current sub-
tour it is probed for crossings with any of the edges of the current sub-tour. If
an intersection occurs, the edge will not be added, thus the whole branch will
be omitted.

6 Computational experiments

The experiments were performed on a machine equipped with an Intel X980
CPU (6 physical cores), 24GB of ram, gcc version 4.6.3 (Ubuntu/Linaro 4.6.3-
1ubuntu5) and mpich 1.4.1 (mpic++, mpirun). The execution time of the spec-
ified approaches was measured. The sequential algorithms put under test were:

– Branch and Bound (Branch and Cut) with four different lower bound ap-
proaches and without and with intersection checking:
• the shortest feasible connections (BB(sfc), BB(sfc,i)),
• the minimum spanning tree (BB(mst), BB(mst,i)),
• the minimum spanning tree - 1st modification (BB(mstm), BB(mstm,i)),
• the minimum spanning tree - 2st modification (BB(mstg), BB(mstg,i)).

– Bellman–Held–Karp dynamic algorithm (Bellman),
– Brute force without and with intersections checking (BF, BF(i)).

For the reason that the algorithms were compared with Brute force method
only small problem instances were used. TSPLIB contained only two bench-
marks, which fulfilled this requirement: burma14 and ulysses16. The results ob-
tained from working with those data sets are presented in Table 1.

It is quite interesting that the dynamic programming design performed so
well as it performed best out of all algorithms for the ulysses16 data set. A
single case is unfortunately not enough for accurate conclusions. Due to the
small number of available benchmarks 7 random instances of sizes from 10 to 17
were generated. Function rand (stdlib) initialized with the seed 734834 was used
to obtain x,y values from the range from 0 to 100. The results were presented in
Table 2 and in Figure 3.

The BF method was not tested against the rand17 instance for the reason
that the experiment would take too long (estimated 22 days). The results clearly



Time[s]

Instance BB(sfc) BB(sfc,i) BB(mst) BB(mst,i)

burma14 21.5 5.4 0.8 0.4
ulysses16 125930.3 4703.4 375.9 54.2

Time[s]

Instance BB(mstm) BB(mstm,i) BB(mstg) BB(mstg,i)

burma14 0.3 0.2 0.3 0.2
ulysses16 138.8 26.9 117.2 23.3

Time[s]

Instance Bellman BF BF(i)

burma14 0.5 500.6 18.6
ulysses16 7.9 109855.2 423.3

Table 1. Execution time for selected benchmarks

indicate that the BF and BB algorithms benefit from checking intersections. The
modified BB method was vastly faster than its basic version for each lower es-
timation. Even the BF(i) method has been proved to be working faster than
the BB(sfc) algorithm. Both mst lower bound adjustments (1-Makuchowski, 2-
Grymin) proved to be superior compared to the standard approach. As expected
the dynamic programming technique operated faster than BB(sfc), BB(sfc,i),
BF and BB(i) but slower than mst based BB designs (rand10 is the only excep-
tion). The BB(mstg,i) method turned out to be the leading solution resulting in
shortest execution times for each test instance. Instance size dependent speedup
obtained in comparison to the BF, Bellman and BB(mst) algorithms is presented
in Figure 4.

Parallel version of the leading approach was tested with the number of mpi
processes in the range 2-12 and with the burma14 benchmark. The results were
presented in Table 3. It is shown that the mpi implementation utilizes all physical
cores. Speedup is rising until the number of mpi processes equals 7 (1 supervisory
process and 6 worker processes). MPI processes count dependent speedup calcu-
lated in comparison to the sequential versions of the BF, Bellman and BB(mst)
algorithms is presented in Figure 5. The maximum obtained speedup in com-
parison to the selected approaches is 38.318, 20.545 and 22755.273 accordingly.



Time[s]

Instance BB(sfc) BB(sfc,i) BB(mst) BB(mst,i)

rand10 40 22 4 4
rand11 98 48 6 5
rand12 502 200 19 25
rand13 4730 1181 90 72
rand14 32429 6933 206 126
rand15 123877 25805 438 272
rand16 450761 107754 1197 734
rand17 2224033 467889 2693 1266

Time[s]

Instance BB(mstm) BB(mstm,i) BB(mstg) BB(mstg,i)

rand10 1 1 1 1
rand11 3 2 3 2
rand12 6 4 6 4
rand13 31 24 30 23
rand14 82 53 74 46
rand15 272 191 238 159
rand16 348 206 371 202
rand17 791 454 814 374

Time[s]

Instance Bellman BF BF(i)

rand10 2 26 11
rand11 7 270 55
rand12 27 3050 313
rand13 109 40627 1840
rand14 456 516886 8200
rand15 1895 7363261 49481
rand16 7912 111510649 308037
rand17 33052 ————— 1642004

Table 2. Execution time for random data

Time[s]

Instance 2 3 4 5 6 7 8 9 10 11 12

burma14 0.066 0.045 0.034 0.026 0.023 0.022 0.022 0.030 0.040 0.049 0.079

Table 3. Parallel BB(mstg,i)
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7 Conclusion

Both proposed minimal spanning tree modifications proved to perform greatly
faster than the base version. The intersections checking approach was successfully
combined with Branch And Bound and Brute force designs and provided addi-
tional improvements. The Branch and Bound used with 2nd minimum spanning
tree modification as lower estimation algorithm and combined with intersections
checking mechanism turned out to be the best solution and achieved a massive
speedup when compared to the Brute Force, Bellman, and Branch and Bound
used with standard minimal spanning tree algorithms. Additionally, its parallel
version appeared to scale well and provided a further rise in performance.
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