Coreference Resolution for French Oral Data: Machine Learning Experiments with ANCOR

Abstract : We present CROC (Coreference Resolution for Oral Corpus), the first machine learning system for coreference resolution in French. One specific aspect of the system is that it has been trained on data that come exclusively from transcribed speech, namely ANCOR (ANaphora and Coreference in ORal corpus), the first large-scale French corpus with anaphorical relation annotations. In its current state, the CROC system requires pre-annotated mentions. We detail the features used for the learning algorithms, and we present a set of experiments with these features. The scores we obtain are close to those of state-of-the-art systems for written English.
Type de document :
Communication dans un congrès
17th International Conference on Intelligent Text Processing and Computational Linguistics (CICLing'2016), Apr 2016, Konya, Turkey. 〈http://www.cicling.org/2016/〉
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01344977
Contributeur : Jean-Yves Antoine <>
Soumis le : mercredi 13 juillet 2016 - 03:29:10
Dernière modification le : mardi 11 octobre 2016 - 15:00:54

Fichier

Coreference_Resolution_for_Fre...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01344977, version 1

Collections

Citation

Adèle Désoyer, Frédéric Landragin, Isabelle Tellier, Anaïs Lefeuvre, Jean-Yves Antoine, et al.. Coreference Resolution for French Oral Data: Machine Learning Experiments with ANCOR. 17th International Conference on Intelligent Text Processing and Computational Linguistics (CICLing'2016), Apr 2016, Konya, Turkey. 〈http://www.cicling.org/2016/〉. 〈hal-01344977〉

Partager

Métriques

Consultations de
la notice

269

Téléchargements du document

126