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Hierarchy in lexical organisation of natural languages 

Bruno Gaume, Fabienne Venant, Bernard Victorri
 

 

Introduction 

Words have often been compared to living organisms. One of the first authors to develop this 

idea was the French linguist Arsène Darmesteter who wrote in 1887 a book entitled La vie des 

mots étudiée dans leurs significations (Darmesteter 1887). He described the evolution of the 

meanings of words as a 'struggle for life' (concurrence vitale in his own words). To stay alive, 

words need to occupy as much 'semantic ground' as possible, particularly by taking over 

'territories' in new semantic domains, creating thus the important phenomenon of polysemy 

(see also Bréal, 1897). Some words enjoy real 'success stories', expanding their meanings in 

many different directions, in a rather monopolistic way, while others decline and eventually 

die.  

Even though Darmesteter was more concerned by the analogy with biology rather than with 

social sciences, it is interesting to notice that his conception of interactions between words as 

a 'struggle for life' could also be applied to many social, political and economical human 

interactions. As a matter of fact, words are organized in the lexicon as a complex network of 

evolving semantic relations. It is not surprising that such a system shares many important 

properties with complex systems of social relations as well as complex systems of biological 

relations. 

In this paper, we focus on the comparison between lexical systems and social structures. It has 

been discovered very recently that several graphs of semantic relationships between words 

belonged to the class of what is called 'small world' graphs, i.e. they first characterized graphs 

of social relationships. This result opens new perspectives in lexical semantics. It suggests 

that lexical graphs contain a rich amount of information concerning the semantic structure of 

the lexicon. In particular, we can expect that analyzing these graphs will enable a better 

understanding of its hierarchical organization.  

We present here a mathematical model in which each word is associated with a region in a 

global semantic space. In this representation, polysemy is taken into account by the size of the 

regions: words with many different meanings are represented by very large regions, while 

words with unique precise meaning are represented by very small (point-like) regions. If the 

regions associated with two words intersect, these two words share one or several meanings. 

Said differently, overlaps of regions in the semantic space correspond to (partial) synonymy 

between words. 

Thus this model brings an interesting light to the similarity between graphs of lexical and 

social relationships. The semantic space plays the same role for words that the geographical 

space does for humans. Words meet in the semantic space like people meet in the world. Each 

meeting between two words means that there is a place in the semantic space, i.e. a precise 

meaning, that is common to both of them, exactly as a meeting between two persons shows 

that there is a place which belongs to the geographical fields of activity of both people.  

As we know, fields of activity are not homogenously distributed on the map. There is a 

scaling structure from big cities to small villages corresponding to a scaling distribution of the 

density of fields of activity on the geographical map. Small world properties of many social 

networks are clearly related to the scaling structure of the underlying geographical space. 



Since lexical graphs are also small world graphs, we assume that the same holds for their 

underlying space. Meanings must have a scaling distribution in the semantic space, from 

places of high density (covered by many words) to the equivalent of villages, i.e. meanings 

that are poorly covered by the lexicon.  

To test this hypothesis, we designed several methods to build a semantic space from a graph 

of synonymy. We present here these methods, illustrating them with the example of the 

French verb lexicon. As we will see, the different methods lead to rather similar results, 

showing that they reveal intrinsic properties of the semantic structure of the lexicon. 

Small world graphs 

Watts and Strogatz (1998) defined small world graphs as graphs combining two features: a 

high 'clustering coefficient' and a short 'characteristic path length'.  

The clustering coefficient is a measure of how tightly the neighbors of a node in the graph are 

connected to each other. Numerically, it is defined as the proportion of pairs of nodes linked 

with one another among all the neighbors of a node
1
. In social terms, it measures how many 

of one's acquaintances know each other. So, it is not surprising that social networks have a 

high clustering coefficient (most of my friends are friends of each other). 

The characteristic path length is a measure of how far two nodes are situated one from the 

other in the graph. The distance between two nodes is defined as the minimum number of 

edges traversed to get from one of them to the other. The characteristic path length is the 

average of the distance over all pairs of nodes. In the social context, a short characteristic path 

length means that there is generally a small number of go-betweens in the smallest chain 

which connects two people. This is the popular notion of "6-degrees of separation" (Guare 

1990) resulting from the famous experiments devised by Stanley Milgram who introduced the 

term of "small world" (Milgram 1967). 

A third property of small world graphs was put forward after Watts and Strogatz's work. It 

concerns the distribution of the number of edges among the nodes. It was discovered that the 

degree of a randomly selected node (the number of its neighbors) follows a power-law 

distribution
2
. The power-law was first verified on the Web network, which is also a small 

world graph (Barabási et al. 2000, Huberman & Adamic 1999, Kleinberg et al. 1999), but it 

also holds for social networks (Newman 2001, Barabási et al. 2002). An important 

consequence is that small world graphs have a "scale-free" topology. Roughly speaking, it 

means that the ratio of very connected nodes to the number of nodes in the rest of the network 

remains constant as the network changes in size. 

As shown by Ravasz & Barabási (2003), the two features, high clustering coefficient and 

scale-free topology, determine an original combination of modularity and hierarchical 

organization. As the authors put it, "we should not think of modularity as the coexistence of 

relatively independent groups of nodes. Instead, we have many small clusters, which are 

densely interconnected. These combine to form larger, but less cohesive groups, which 

combine again to form even larger and even less interconnected clusters. This self-similar 

                                                 
1
 More precisely, it is computed as follows. Let p be a node, k its degree (number of its neighbors) and n the 

number of edges among them. The clustering coefficient at node p is c(p) = 2n/k(k-1). It is easy to check that 

c(p) lies between 0 and 1. It equals 0 if there is no edge linking any pair of neighbors of p, and 1 if all neighbors 

are connected with one another. Then the clustering coefficient C of the graph is the average of c(p) over all 

nodes. 

2
 The probability P(k) that a randomly selected node has k links follows the law P(k) ~ k 

–λ
 where λ is a constant 

for the given graph.   



nesting of different groups or modules into each other forces a strict fine structure on real 

networks".  

So, hierarchy appears as an emergent feature of the network. It is not a simple pyramidal 

organization. No node can be viewed as dominating other nodes. The hierarchy is made of 

groups of nodes, with small clusters at the bottom and very large groups at the top. Moreover, 

groups of nodes may overlap at any level. A group (or a part of a group) of the lower level 

can be included in more than one group at the higher level, since it can belong to several 

different groupings having approximately the same clustering coefficient. 

As far as social networks are concerned, such a hierarchical structure can, in many cases, be 

related with the underlying geographical space. For instance, acquaintance relationship is 

highly correlated with geographical proximity. So we can expect a duality relation between 

the hierarchical organization of a graph of acquaintance and the hierarchical structure of the 

geographical distribution of humans. Each person (node of the graph) is associated with her 

spatial zone of activity, which may be a very large area for some individuals. Then, small 

clusters of strongly interconnected people correspond to relatively small areas where few 

people often meet, such as villages and districts in cities (notice that the same individual can 

belong to several different clusters, corresponding for instance to his home and his 

workplace). As we climb up the hierarchy on the graph by considering larger and larger 

groups (less and less interconnected), we obtain a smaller number of more densely occupied 

places. At the top level, the largest groups correspond to the centres of the largest cities. 

Now if we consider other types of small world graphs, we can assume that there is always an 

underlying space with a dual hierarchical structure, even though most of the time the nature of 

this space is more abstract than a geographical map. This is the main idea that we will develop 

here to study the semantic structure of the lexicon. But before focusing on lexical graphs, we 

have to remark that the approach could be applied to any 'semantic' graph. For instance, let‟s 

consider, in the Internet universe, the small world graph whose nodes are all the web pages 

and whose edges indicate the presence of a hypertext link. Clearly the geographical factor is 

not relevant. But if we build an abstract semantic space whose dimensions are the different 

topics that a website may deal with, every website can be conceived as occupying a region of 

the space. Generalist sites will be represented by rather large areas, whereas more specialized 

ones will occupy smaller regions. We can expect that some places of the space will play the 

role of big cities in being densely covered by many sites, and others the role of countryside in 

being rarely broached on the web. Studying the hierarchical organization of the semantic 

space and its evolution could bring interesting insights of what is going on on the web: what 

are the hottest topics, which ones are growing up and which ones are declining. Of course, the 

two most important problems with this approach is first to design the abstract semantic space 

(how to choose the relevant dimensions and the relevant metric on the space), and second to 

compute automatically the region associated with each website. The methods we present here 

provide the beginnings of a solution to both problems since they allow to derive the whole 

geometrical representation from computations on the initial graph, which is (relatively) easy 

to obtain. 

Lexical graphs 

Lexical graphs have been a more and more important topic for the last few years, following 

the tremendous development of electronic linguistic resources (dictionaries and large 

corpora). The most famous example is WordNet, a very rich lexical database for English (cf. 

Fellbaum 1998) comprising more than 150 000 words and many different relations between 

them. There are different types of lexical graphs, depending on the semantic relation used to 



build the graph. This relation can be a paradigmatic relation such as synonymy, hyperonymy 

or translation (when more than one language is involved). It also can be a syntagmatic one, 

when, for instance, two words are linked if they appear in a same sentence in a given corpus. 

It can also be a more general semantic proximity relation, mixing syntagmatic and 

paradigmatic dimensions, as is the case when two words are linked if one appears in the 

definition of the other in a given general dictionary (cf. Gaume et al., 2002). 

The structures of many lexical graphs of all sorts have been studied (see, among others, Ferrer 

& Solé 2001, Sigman & Cecchi 2002, Ravasz & Barabási 2003, Gaume et al. 2001, Gaume 

2003). All the studies lead to the same conclusion. It seems that every lexical graphs have a 

small world structure, whatever the nature of the semantic relation involved. This result is 

important, since it shows that what is at stake is an intrinsic property of the semantic 

organization of the lexicon in natural languages. It sustains the idea of an underlying semantic 

space whose hierarchical topological organization could explain why different semantic 

relations share a same small world graph structure.  

The graph we worked on for the present study, Synoverbe, is typical of these lexical graphs. It 

is a synonymy graph of French verbs which has been extracted from a general dictionary of 

French synonyms
3
 by one of us (Bruno Gaume). Synoverbe has roughly 9000 nodes and 

50,000 links. It has the three characteristic features of small world graphs. Its characteristic 

path length is small, around 4, which is the order of magnitude that can be expected from a 

random graph with the same number of nodes and links. Its clustering coefficient is very 

large, around 0.3, five hundred times higher than a random graph
4
. As shown Figure 1, the 

distribution of the degree of the nodes follows a power-law distribution. 

                                                 
3
 The general dictionary of French synonyms is managed by J.L. Manguin at the CRISCO research laboratory in 

linguistics, at the University of Caen. It is available on the Web (http://www.crisco.unicaen.fr/).  

4
 For a random graph of n nodes and p links, the characteristic path length is L = log(n)/(log(p)-log(n)) on 

average, and the clustering coefficient is C = p/n
2
 on average. In our case (n = 9000, p = 50,000), the 

computation gives L = 5.31 and C = 0.0006. The precise figures for Synoverbe are L = 4.17 and C = 0.318. 

http://www.crisco.unicaen.fr/


 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Synoverbe : Log-log plot of the distribution of the degrees (number of links by node). 

A more detailed description would give a more concrete idea of what this distribution means. 

While the average degree is less than 12 among the 9000 nodes, about 1000 nodes have more 

than 30 links and about 100 more than 80 links. Furthermore, nearly 90% of the nodes are 

directly linked to at least one of the 1000 most connected nodes, and nearly 50% are directly 

linked to at least one of the 100 most connected ones. In other words, among the nearly 

10,000 French verbs, we can extract a subset of 1000 verbs which covers virtually all the 

meanings covered by the entire set, since nearly all the French verbs are synonyms of verbs of 

the subset. Moreover, a subset of only a hundred verbs covers half of the verb meanings. 

These verbs are of course the most highly polysemic ones, since each of them has a hundred 

or so synonyms. The most connected ones, like faire (translations: make, do …) and prendre 

(translations: take, get …) have even more than 200 synonyms. They have two other 

interesting properties: (1) they are the most frequently used by French speakers, and (2) they 

are the first to be acquired by children. No doubt that they are the winners in the 'struggle of 

life' evoked by Darmesteter ! It is also worth noticing that they are rather tightly 

interconnected. In fact, the subgraph composed by these 100 verbs has basically the same 

properties as the whole graph: an average of 6 links by node, a characteristic path length of 

the same order of magnitude as the one of a random graph of the same size and connectivity, 

and a clustering coefficient markedly higher than the one of a random graph. 

Thus we can then describe the structure of the French verb lexicon as a hierarchical structure 

with three levels: 

- at the top, a first subset of 100 verbs, each with several general meanings. It represents the 

basic vocabulary for the verb semantic domain. With these 100 verbs, one can express most 

actions and events, but vaguely and without accuracy. 

- at the second level, a subset of 1000 verbs presenting a rather important degree of polysemy 

(more than 30 synonyms each) cover all verb semantics, quite sufficient to describe any 



action or event in everyday life. In fact, the verb lexicon used by most people in production is 

only a part of this subset. 

- at the third level, the entire set of nearly 10,000 verbs, permitting very precise descriptions, 

subtle uses of qualifications, and different styles and levels of language (formal, technical, 

poetic, slang, etc.). 

Even though it gives a first idea of the structure of the French verb lexicon, the above 

description is neither accurate nor satisfying enough. The problem comes from the arbitrary 

nature of the choice of our levels. Why three levels, rather than four or five? As a matter of 

fact, the hierarchy is not discrete, with well identified intrinsic levels: it is a continuous 

scaling. Therefore, we need mathematical tools suited to continuous representations in order 

to model the lexical hierarchy in a more appropriate way. Here is the main reason why we 

turned to geometrical tools and quantitative measures such as the notion of proxemy, that we 

introduce in the following paragraphs.  

Proxemy: a measure of semantic nearness 

Bruno Gaume, defined a new measure of the nearness of nodes in a graph that takes into 

account the density of the graph along the different paths linking them. This measure, that he 

called proxemy (Gaume 2002, 2003, 2004), is well suited for small world graphs because it 

relies on the structural properties of the graph. We know that somehow two nodes are never 

far from one another in a small world graph, since the characteristic path length is small. But 

for the same minimal path length, two nodes may be very loosely related by only one path 

linking two separate dense regions, or they may belong to the same dense region with many 

different paths of minimal length connecting them. Obviously, the nodes must be qualified as 

"closer" in the latter case than in the former one: this is exactly what the measure of proxemy 

does. 

A good idea of the notion of proxemy can be given by considering a particle wandering 

randomly on the graph, going from one node to any of its neighbors with equal probability. 

Let the particle be at node A at the beginning of the process. After the first time step, the only 

nodes that can be reached by the particle are the direct neighbors of A
5
, each with a 

probability of 1/n, where n is the degree of A. After k time steps, any node B located at a 

distance of k links or less can be reached, the probability of this event depending on the 

number of paths between A and B, and the structure of the graph around the intermediary 

nodes along those paths. The more interconnections between these nodes, the higher the 

probability of reaching B from A will be. In other words the probability for a random particle 

to go from A to B is a good candidate for the measure we were looking for: we call it the 

k-proxemy of B with respect to A. 

More generally, we define the k-proxemy of a node with respect to a given subset of nodes as 

the probability for a particle to reach it after k time steps if the particle were at time 0 on one 

of the nodes of the subset (if the subset contains p nodes, each of them is endowed with a 

probability of 1/p to be the starting point of the particle)
6
. When the subset includes all the 

nodes of the graph, we will speak of global k-proxemy.  

                                                 
5
 Including A itself: for technical reasons (property of ergodicity, see note below), it is preferable to consider that 

the graph is reflexive, i.e. that each node is its own neighbor. 

6
 From a mathematical point of view, it is easy to show that the random process we described is a markovian 

process. If we call A = (aij) the matrix of adjacency of the graph (aij = 1 if nodes i and j are connected, else 

aij = 0), the markovian matrix M = (mij) associated with the random walk of the particle is given by mij = aij/si 

where si is the sum of the row i of the matrix A. The k-proxemy of a node n with respect to a subset S can be 



It must be emphasized that the value of k plays a crucial role in the definition of proxemy. For 

very small k, the k-proxemy fails to catch the structural properties of the graph because it is 

too local: the proxemy of most nodes of the graph is zero with respect to any given node. On 

the other hand, if k is too large, the k-proxemy of a given node with respect to any subset does 

not depend on the subset any longer: it tends towards a value that only depends on the degree 

of the given node
7
. Thus interesting values of k lie between the two extremes. Empirically, it 

seems that the best results are obtained with values belonging to the interval (L, 2L) where L 

is the characteristic path length of the graph. For instance, in the case of Synoverbe 

(L = 4.17), the value k = 6 proved to be the best one. From now on, we drop the "k" prefix in 

the term k-proxemy, assuming a choice of k in the right interval (and a value of 6 for the 

examples from Synoverbe).   

Using proxemy, a geometrical representation of the graph can be built, which preserves its 

structural properties (Gaume 2004). To each node A of the graph is associated its proxemic 

representation, a vector whose n
th

 component is the proxemy of the n
th

 node of the graph with 

respect to the node A. In other words, the proxemic representation of a node gives the 

probability distribution over the whole graph for the random walk of a particle originating 

from this node
8
. This means that the proxemic representation takes into account the relations 

of a node with all the others: it is characteristic of the structural position of the node in the 

whole graph.  

When dealing with a lexical graph, the proxemic representation could be qualified as 

'Saussurian', since it fits exactly Saussure's structuralist theory according to which the 

semantic value of a lexical unit cannot be defined in absolute terms, but only by its relative 

position in the entire system. As a matter of fact, Karine Duvignau and Bruno Gaume have 

shown that proxemy is also relevant for psycholinguistic considerations, in particular in 

studying lexical acquisition and children production (Duvignau 2002, Duvignau & Gaume 

2003, 2004) as well as in modeling disambiguation processing.  

Here we will focus on the use of proxemy for visualizing the hierarchical organization of the 

lexicon. To begin with, we must notice that the global proxemy of a node (its proxemy with 

respect to the entire set of nodes) is a better indicator of its semantic extent than its degree. 

Whereas the degree of a node only indicates the number of its synonyms, its global proxemy 

gives more precise information about the more or less central role played by the node in the 

whole graph. Moreover, the nodes can be located in the same geometrical space thanks to 

their proxemic representation. Of course, the geometrical space cannot be faithfully visualized 

because of its high dimensionality, but the use of a classical method of dimension reduction 

(principal component analysis) allows to obtain a two or three dimensional representation 

preserving the main geometrical relations between the nodes we choose to visualize. We show 

figure 2 the proxemic representation of the 200 highest-ranked French verbs according to 

                                                                                                                                                         
computed as follows. Let U=(ui) be the vector associated with the uniform probability density over S (ui=1/s if 

the node i belongs to S, else ui=0, s being the number of elements of S). Then the k-proxemy of n with respect to 

S is given by the n
th

 component of the vector V obtained by applying k times the transformation M to the vector 

U (in matrix notation: V = U.M
k
 where U and V are row vectors).  

7
 When the graph is reflexive, it can be shown (Gaume 2004) that the markovian process is ergodic. Then, a 

corollary of the theorem of Perron Froebenius implies that there is a unique stationary probability and that the 

process converges towards this stationary probability for any initial conditions (see for instance Semata 1981 and 

Bermann & Plemons 1994). In our case, it is easy to verify that the stationary probability is the vector 

W = (di/2p) where di where di is the degree of the node i and p is the number of links in the whole graph. 

8
 Computationally speaking, the proxemic representation of the node i is the i

th
 row of the matrix M

k
, where M is 

the markovian matrix defined above (see note 6).  



their global proxemy (computed from Synoverbe)
9
. Each verb is represented by a sphere 

whose size is proportional to its global proxemy. As can be seen on the figure, the most 

general French verbs (the top of the hierarchy) are organized along four semantic axes 

structuring the whole lexicon as a sort of conceptual tetrahedron. Around the first vertex 

(labeled A on the figure) can be found verbs expressing escaping and rejecting actions (partir, 

fuir, disparaître, abandonner, sortir… Interestingly, quitter is located between disparaître 

and abandonner).  The zone around vertex B is composed by verbs expressing productive and 

enhancing actions like exciter, enflammer, exalter, animer, soulever, transporter, soulever, 

provoquer, agiter, augmenter (and entraîner between attirer and provoquer). The third vertex 

C is characterized by the ideas of connecting and communicating (assembler, joindre, 

accorder, fixer, établir, indiquer, montrer, révéler, exposer, marquer, dire, composer…, 

réunir between  attacher and joindre, and reveler between montrer and indiquer). At last, 

vertex D corresponds to destructive and damaging actions such as briser, détruire, anéantir, 

abattre, affaiblir, ruiner, épuiser, écraser, casser, dégrader… The verb tuer is located there, 

between altérer, dégrader and supprimer. 

It must be noticed that we can observe gradual semantic changes as we move from one vertex 

to another. For instance, moving from A to B we find successively s’enfuir, fuir, partir, sortir, 

passer, courir, venir, marcher, aller, suivre, avancer, revenir, introduire, faire. From A to D 

the gradation involves s’enfuir, fuir, disparaître, quitter, abandonner, mourir, cesser, perdre, 

diminuer, supprimer, casser, anéantir, détruire. Between B and D can be found the series 

exciter, enflammer, agiter, tourmenter, troubler, ennuyer, bouleverser, fatiguer, ruiner, 

détruire, anéantir, briser, whereas one passes from B to C through exciter, exalter, animer, 

soulever, provoquer, entraîner, augmenter, élever, conduire, déterminer, produire, former, 

dire, établir, exposer, indiquer, montrer, révéler. Last example, here is the series from C to D: 

fixer, assembler, joindre, réunir, arranger, attacher, retenir, serrer, fermer, arrêter, cesser, 

rompre, séparer, couper, étouffer, supprimer, diminuer, casser, affaiblir, abattre, anéantir, 

briser. 

Three important comments are worth emphazising: 

- First, as shown by these examples, the geometrical distance between spheres presents a very 

good correlation with the semantic distance between lexical units: close verbs on the figure 

are also close by their meanings. This proves that proxemic representation actually catches 

semantic properties of the lexical units.  

- Second, the global structure, sort of tetrahedron with its four vertices, is relatively 

independent of the precise number of top-ranked verbs used to build it: a very similar form is 

obtained with the first 100 or 300 verbs instead of the first 200. This means that the method is 

well suited to the continuous aspect of the hierarchical structure of the lexicon. Thanks to our 

geometrical representation, we do not need to define any 'levels' of hierarchy. The choice of 

the number of verbs taken into account is not a crucial decision, but a question of 

convenience: taking more verbs leads to a more accurate representation, but at the same time 

a less readable figure.  

 

                                                 
9
 Proxemic representations of different lexical graphs are available on the Web: http://dilan.irit.fr. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Representation of the first 200 French verbs with highest global proxemy 

- The third remark is also a consequence of the continuous aspect of the geometrical tools. 

Once the representation has been built with a small number of top-ranked node, we can 

represent any of the remaining nodes in the same figure. In other words, the geometrical 

representation is a global referential frame in which we can locate all the nodes of the graph. 

As regards our example of Synoverbe, it follows that any French verb can be characterized by 

its location in the tetrahedron. For instance, if we add the verb accabler, which is not among 

the 200 top-ranked nodes, to the representation, we find that it is located in the D region, 

between écraser, fatiguer and bouleverser, as could be expected from its meaning. Far from 

being restricted to the 200 verbs used to build them, the four vertices correspond to four 

semantic dimensions whose relevance is general all over the French verb lexicon
10

. 

We can also use the proxemic representation of the nodes to visualize more local parts of the 

graph. Instead of using global proxemy to choose the nodes to be represented, we can choose 

to study any subset of nodes of particular interest by representing the verbs having the highest 

proxemy with respect to the selected subset. We will call such a representation a proxemic 

zoom onto the given subset. Actually, since all the nodes can theoretically be represented in 

the same high dimensional space, we can consider that we really zoom into a part of this 

representation when we select some nodes to visualize the relative positions of these nodes in 

the high dimensional space. Of course, we practically need to use principal component 

                                                 
10

 An important question is whether these dimensions are universal, i.e. shared by all human languages. This is 

one of the issues that we intend to explore in the near future. 
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B   

C   

D   



analysis to reduce the dimensionality of the space, exactly as we proceeded when we 

visualized the global structure.  

Figures 3 to 5 show such proxemic zooms. In each case, we have chosen a couple of 

antonyms as subsets defining the proxemy: {monter, descendre}, {commencer, finir} and 

{aimer, haïr} (respectively go up/go down, begin/end and love/hate). Each time, one of the 

two verbs is on the 'positive' axis and the other on the 'negative' one. It is interesting to see 

how the antonyms are connected by relatively short paths through their semantic domain, with 

semantically very relevant intermediary verbs: sauter (to jump) between monter and 

descendre, partir (to depart) between commencer and finir, envier (to envy) between aimer et 

haïr. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Proxemic zoom onto {monter, descendre} 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Proxemic zoom onto {commencer, finir} 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Proxemic zoom onto {aimer, haïr} 

Proxemic zooms can also be used to study the polysemic organization of a single verb. We 

just have to zoom with respect to the subset reduced to this verb. For instance, figure 7 shows 

the representation around the verb jouer (to play). As can be seen on the figure, four specific 

meanings of the verb emerge: s'amuser (have fun), risquer (jouer de l'argent: to gamble), 

tromper (se jouer de quelqu'un: to deceive somebody), and imiter (jouer les victimes: to play 

the victim), the center of the representation corresponding to the more general meaning 

pratiquer (jouer aux cartes, au tennis, du piano: to play cards, tennis, piano).  

 

 

 

 

 

 

 

 

 

 

Figure 6. Proxemic zoom onto jouer 

Thus, proxemy offers an interesting method to study a lexical graph at different scales, from 

the most global structure to the most detailed meanings of a word. 



Semantic spaces 

Can the geometrical figure obtained by the proxemic method be considered as the abstract 

semantic space we were looking for? As we said at the beginning of the paper, lexical units 

must be represented by regions rather than points in the semantic space, if we want to take 

into account their polysemy and the overlap of meanings characterizing partial synonymy 

between several units. In order to maintain coherence in our model, we must consider that the 

different meanings of a lexical unit are scattered over an area surrounding the proxemic vector 

representing the unit. As a matter of fact, this is exactly what we just did when we looked at 

the proxemic zoom onto the verb jouer. In the figure 6, the sphere labeled by jouer is located 

in the middle of the representation, where we found the more general meaning pratiquer, but 

all the other meanings are spread and situated relatively far from the sphere of jouer, which 

plays a role similar to a center of gravity. This can be better visualized in the figure 7, where 

jouer and its proxemic neighbors are represented in the global conceptual tetrahedron of the 

French verbs. 

  

 

Figure 7 : Localisation of jouer and its proxemic neighbors in the global representation of 

French verbs (hue indicates the proxemy with respect to jouer). 

 

Therefore, we shall define the semantic area associated with a given unit as the region 

containing all the units having a high proxemy with respect to it. With this definition, we can 

assume that proxemic representation gives a good approximation of the semantic space 

needed in our model. 

In order to check this assumption, we used a completely different method of construction of a 

global semantic space. This method has been used for several years by one of us, Bernard 

Victorri, to build local semantic spaces associated with polysemic lexical units (Ploux & 
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Victorri1998). Fabienne Venant (2004) and Nabil Abdellaoui (2004) have extended very 

recently this method so as to apply it to the building of global semantic spaces.  

The main idea of the method consists in associating points of the semantic space with the 

cliques of the lexical graph. The cliques of a graph are its maximal completely interconnected 

subsets of nodes, i.e., in our case, maximal sets of lexical units that are all synonyms for one 

another. The cliques define very precise meanings that can be considered as the intersection of 

the meanings of all the units belonging to the clique
11

. It is worth noticing that the “synsets” 

of WordNet (Fellbaum 1998) are analogous to the cliques in that they are also sets of words 

designed to represent the different meanings of a lexical unit. 

Let us take an example to illustrate this point. As we saw, the French verb jouer displays a 

rather extended polysemy, with a large number of synonyms (precisely 94). Of course, most 

of its synonyms are far from being synonyms for one another. For instance, if we look at the 

synonyms that we presented above to characterize the different parts of the proxemic zoom of 

figure 6 (s'amuser, risquer, tromper, imiter, pratiquer), they convey very different meanings. 

On the opposite, the cliques containing jouer evoke a unique nuance of meaning of jouer. For 

instance, we find, among others, the three following cliques: 

{jouer, aventurer, compromettre, exposer, hasarder, risquer} 

{jouer, miser, boursicoter} 

{jouer, miser, parier, ponter} 

All of them can be considered as instances of the 'risquer' meaning of jouer, but each of them 

enhances a precise determination of this meaning (the first one evokes venturing and 

hazarding, the second speculating, and the third gambling and betting). It is then sensible to 

assume that each clique has to be represented by a point in the semantic space. As the number 

of cliques containing jouer is also rather large (precisely 98), we have enough points to design 

what we called the semantic space associated to jouer  

In order to build the semantic space of a given unit, we compute a distance between the 

cliques containing the unit. We use the chi-square distance, a metric which is well known in 

statistical analysis, intensely used to compute correspondences between subsets of individuals 

and subsets of qualitative characteristics
12

. As usual, principal component analysis is applied 

to reduce the dimensionality of the space (for all the technical details and a thorough 

discussion of the model, see Ploux & Victorri 1998). 

As can be seen in figure 8, the semantic space of jouer obtained by this method is strikingly 

similar to the proxemic zoom we presented above, as far as structure is concerned: four 

branches for the same specific meanings (s'amuser, risquer, tromper, imiter), with the general 

'pratiquer' meaning in the center. It must be emphasized that a synonym can appear in 

different regions of the semantic space. For instance, one can see figure 8 that the verb rouler, 

                                                 

11. The algorithm used to compute the cliques can be found in Reingold et al, 1977. For a similar approach 

using also a graph of synonymy, see Warnesson, 1985.  

12 More precisely, let u1, u2, …, un be the synonyms of the given unit, c1, c2, …, cp the cliques containing the 

unit, and  xki the coordinates of the cliques over the synonyms: xki = 1 if ui  ck  and xki = 0 si ui  ck. Then the 

distance d(ck, cl) between two cliques is given by the following formula : 

d2(ck, cl) =
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a highly polysemic French verb, is present in two regions: in the center, with the meaning „to 

swing‟, „to oscillate‟, and in the tromper branch, with the meaning „to deceive‟, „to trick‟. 

This is one of the main qualities of the model: as expected (cf. introduction), words meet in 

the semantic space at different places, each place corresponding to a precise meaning. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. The semantic space associated with jouer 

 

Thus, it is interesting to see if this method also gives the same general semantic dimensions as 

the proxemy method, when applied at the global level. Using the same method, we can obtain 

all the cliques of the complete graph Synoverbe (there are more than 25,000 cliques for less 

than 10,000 nodes) and compute the distance between any couple of them. Obviously, we 

cannot visualize a so large semantic space with the simple technique we used for local 

semantic spaces.  

To solve this problem, we first build all the balls of a given radius centered on a clique, and 

we select the first hundred ones that have the highest density. In other words, we select the 

largest groups of strongly interconnected units, analogically corresponding to the centers of 

the largest cities (see the first part of this paper). Each high-density ball is assimilated to its 

center, which is associated with the whole set of synonyms corresponding to the union of the 

cliques included in the ball. Principal component analysis is then applied to the centers. 
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The results can be visualized on figure 9 and figure 10. Once again, the similarity with the 

results obtained with global proxemy is striking. We observe the same four main semantic 

axes structuring the meanings of French verbs. Figure 9 shows the projection of the global 

semantic space onto the first two dimensions. Three semantic zones appear, corresponding to 

three semantic axes that can be called 'positive' (exciter, provoquer, produire), 'negative' 

(détruire, enlever, affaiblir), and 'expressive' (dire, montrer). Figure 10 is a three-dimensional 

representation of the same space. It reveals the fourth semantic axis that can be called 

'repulsive' (disparaître, quitter, partir, sortir).  

On each figure, some information is given for a few representative balls, namely the content 

of the clique which is at the center of the ball, and the number of cliques and synonyms 

belonging to the ball. It can be observed that high density of cliques is not necessarily 

correlated with high density of synonyms. It means that this method actually brings out 

semantic zones where lexical units are highly interconnected. Moreover, as we already saw 

for the local semantic space of jouer, highly polysemic units cover very large regions of the 

global space. For instance the verb sortir extends over a large part of the „expressive‟ zone 

and a large part of the „repulsive‟ zone. Thus, this model gives a method to classify polysemic 

units, depending on the size of the associated region in the global representation: the most 

highly polysemic unit is not the most connected one (i.e. the node of highest degree in the 

graph), but rather the most extended one in the global semantic space.   

 

Figure 8. Two-dimensional representation of the global semantic space of Synoverbe 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 9. Three-dimensional representation of the global semantic space of Synoverbe 

 

A xe R E PU L SIF

Plan négatif-positif-expressif

C entre: céder;passer; 

quitter; tom ber. 1539 
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C entre: dire ; faire; publier; 

sortir. 2120 cliques 39 unités

C entre: abandonner; lâcher;  

quitter; srtir 2596 cliques 20 
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C entre:affaiblir;alt érer;dim inuer;d étruire; 2205 C liques 48 U nités 

C entre:arrêter;attacher;

attirer;fixer;prendre; 

2890 C liques 79 U nités 

C entre:dire;donner;exposer;indiquer

;m ontrer;révéler; 240 C liques 94 

U nités 

C entre: 

partir;prendre;so

rtir;tirer 2109 
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The convergence of two independent methods seems to prove that the features revealed by 

both of them are really intrinsic to the structural properties of the French verb lexicon. We 

have then at our disposal two tools to explore the hierarchical structure of small world graphs. 

As we said, the construction of 'semantic spaces' is not only interesting for lexical systems: it 

can prove very valuable for other 'semantic' graphs like the Web, as well as social graphs 

where the involved relationship depends more on conceptual factors than on geographical 

ones.  
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