Analyse syntaxique de l'ancien français : quelles propriétés de la langue influent le plus sur la qualité de l'apprentissage ?

Abstract : Old French parsing : Which language properties have the greatest influence on learning quality ? This paper presents machine learning experiments for part-of-speech labelling and dependency parsing of Old French. Machine learning methods are used for the purpose of corpus exploration. The SRCMF Treebank is our reference data. The poorly standardised nature of the language used in this corpus implies that training data is heterogenous and quantitatively limited. We explore various strategies, based on different criteria (variability of the lexicon, Verse/Prose form, date of writing) to build training corpora leading to the best possible results.
Complete list of metadatas

Cited literature [10 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01251006
Contributor : Sophie Prevost <>
Submitted on : Tuesday, January 5, 2016 - 3:07:22 PM
Last modification on : Wednesday, May 22, 2019 - 3:46:02 PM
Long-term archiving on : Thursday, April 7, 2016 - 3:26:11 PM

File

guibon_al_TALN2015.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01251006, version 1

Collections

Citation

Gaël Guibon, Isabelle Tellier, Sophie Prévost, Mathieu Constant, Kim Gerdes. Analyse syntaxique de l'ancien français : quelles propriétés de la langue influent le plus sur la qualité de l'apprentissage ?. TALN 22, Jun 2015, Caen, France. . ⟨hal-01251006⟩

Share

Metrics

Record views

412

Files downloads

196