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Factor is near 1 or equal to 1

Cuong Le Van (CNRS-CERMSEM)∗
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Abstract

The aim of this paper is to fill the gap between intertemporal growth
models when the discount factor is close to one and when it equals one.
We show that the value function and the policy function are continuous
with respect both to the discount factor β and the initial stock of capital
x0. We prove that the optimal policy gβ(x0) is differentiable and that
Dgβ(x0) is continuous with respect to (β, x0). As a by-product, a global
turnpike result is proved.
Keywords. Optimal growth, discount factor, value function, policy func-
tion, differentiability, turnpike.
JEL Classification. C61, O41.

1 Introduction

A large part of the litterature on intertemporal models of consumption and cap-
ital accumulation has focused on the existence and dynamical properties of op-
timal solutions to optimization problems. Dynamic programming gives an at-
tractive methodology for studying the behavior of optimal paths as long as the
information about optimal solutions is summarized in the policy function g. The
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properties of the optimal policy and the value function are well-known in the
case when the discount factor β is strictly less than one.

Benveniste and Scheinkman[3] have proved the differentiability of the value
function. Araujo and Scheinkman[2] under usual conditions and a very strong
condition(the so-called ”dominant diagonal blocks” conditions) show the equiva-
lence between smoothness with respect to the initial capital stock of the optimal
policy and turnpike property of the optimal path. Blot and Crettez[4] have given
some alternative sufficient conditions (different from ”dominant diagonal blocks”
conditions) to have the Ck- differentiability vis-à-vis the initial stock of capital,
the discount factor β < 1, and a parameter which lies in a Banach space. For
one-sector models, Araujo has given some conditions for the monotonically in-
creasing policy function to be differentiable and (what is the same) for the value
function to be twice differentiable with respect to the initial capital stock. He
has also shown that if the return function u is C3, the value function is not nec-
essarily C2. Although Santos[13], [15] has shown the differentiability of policy
functions, his analysis does not include the case where the discount factor equals
one. In particular, the proof in Santos [15] is crucially based on the fact that
the discount factor is strictly less than one. The same author (see [14]) proves
that the policy function could be C1 with respect to the initial capital stock and
the discount factor. In a stochastic setting, Santos and Vigo-Agular (see [16])
prove that the optimal policy could be C1 with respect to capital stock and the
initial shocks. Another proof of Santos’s [13], [15] theorem has been given by
Montrucchio[12]. Note that Santos[13] uses results from Boldrin and Montruc-
chio [5]. Scheinkman[17] and Mc Kenzie[9] have shown for β close to 1, that
the turnpike property holds: the optimal path converges to the stationary state.
Note also that Yano[19] is concerned with similar issues.

When β = 1, we know by Gale[7] that the optimal path converges. But we
do not know anything about the continuity with respect to β of the value and
policy functions at β = 1, and about whether the policy function is differentiable
or not when β = 1. Here, we show that the value function and policy function
are continuous with respect both to the discount factor β and the initial stock of
capital x. Moreover, we show that the optimal policy gβ(.) is differentiable and
that Dgβ(x) is continuous with respect to (β, x), whereas Santos[13], on the case
when β < 1 has shown the C0-differentiability with respect to x, or jointly C1

with respect to the capital stock and the discount factor.

Dana and Le Van [6] have introduced the value function for the case β = 1:

V 1(x0) = max{
+∞∑
t=0

(u(xt, xt+1)− u(x, x)); xt+1 ∈ D(xt),∀t, x0 is given }
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where x is defined by u(x, x) = max
x∈D(x)

u(x, x) and D is the technology correspon-

dence.
They have shown that under usual assumptions the value function is an upper
semi-continuous function that satisfies the Bellman equation and that it is the
only upper semi-continuous solution to the Bellman equation.

Obviously, it is clear that if the problem V β(x0) = max{
+∞∑
t=0

βtu(xt, xt+1); xt+1 ∈
D(xt),∀t, x0 is given } is considered, it can not converge to V 1 when β converges
to one. But it can be shown that for β near one, there exists a stationary state
xβ for this problem. In order to have a consistent formalization, we write the
problem in the following way:

V β(x0) = max{
+∞∑
t=0

βt(u(xt, xt+1)− u(xβ, xβ)); xt+1 ∈ D(xt),∀t, x0 is given }

for β in a neighborhood [β0, 1] of 1 such that the stationary state xβ exists.

The goal of this paper is to fill the gap between β < 1 and β = 1. We show
that:

• V β(x0) is continuous with respect to (β, x0) ∈ [β0, 1]×X, where X is the
compact space of states.

• gβ(x0) is continuous with respect to (β, x0) ∈ [β0, 1]×X.

• Under certain assumptions as α−concavity, gβ(x0) is differentiable and
continuous with respect to (β, x0) ∈ [β0, 1] ×X. To obtain this result, we
combine and extend results of Santos[13] and Montrucchio[12]. But the
extension requires the continuity in (β, x) of the value function when β is
close or equal to 1. It also requires the existence of a sequence of functions,
continuous in (β, x), C2 and concave in x, which converges uniformly in
(β, x) to the value-function V β(x) (see Lemma 1).

• As a by-product, we finally obtain a turnpike result for β close to 1. The
idea is, as soon as we now know that Dgβ(xβ) converges to Dg1(x) and
that the turnpike result holds for β = 1, then it can be deduced that
the eigenvalues of Dg1(x) are of modulus strictly less than 1. Then, there
exists a neighborhood of 1, say [β′0, 1] such that ∀β ∈ [β′0, 1], the eigenvalues
of Dgβ(xβ) are also of modulus strictly less than 1. We then first show,
thanks to the continuity with respect to both β and x0, that there exists
an ε such that if ‖xβ − x0‖ ≤ ε, then the optimal path starting from
x0, {gβ,t(x0)}t, converges to xβ, for any β in [β′0, 1]. Now, if x0 does not
satisfy ‖xβ − x0‖ ≤ ε, then by Scheinkman’s Visit Lemma, there exists
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β(ε) such that for any β ≥ β(ε), there exists T such that gβ,T (x0) satisfies
‖xβ − gβ,T (x0)‖ ≤ ε. Then the sequence gβ,t(gβ,T (x0)) converges to xβ.
From the Mangasarian Lemma, the whole sequence {gβ,t(x0)}t is optimal.
Obviously, this one converges to xβ. Summing up, for any x0 ∈ X, for any
β ∈ [max(β0, β(ε)), 1], the turnpike property holds.

One can wonder why Santos[13] and Montrucchio[12] obtain their results only
when β < 1. The approach used by Santos [14], [15], and Montrucchio[12] is
based on the contraction property which holds only when β < 1. A careful
inspection of the proof in Santos[13] reveals that his approach does not require
contraction property. What is important is the continuity of the value function
and of the optimal policy. The properties hold when β < 1. But when β ≤ 1,
some more proofs are necessary. It will be done in Section 4 of our paper.

The paper is organized as follows: Section 2 deals with the model; in Section
3, we consider the no-discounting case; Section 4 deals with continuity of the
value function and the optimal policy with respect both to β and x; Section 5
gives the crucial results of existence and continuity of Dgβ(x) with both β and x;
In Remark 4 we finally give a very straightforward proof for the turnpike result
as a by-product of the differentiability of the policy function.

2 The Model

As in Dana and Le Van (1990), we consider a triplet (X, D, u) and make the
following assumptions:

(H1) X is a compact convex subset of IRn
+, n ≥ 1, with nonempty interior,

that contains 0.
(H2) D is a continuous set-valued correspondence from X into a compact set of
X, with nonempty convex compact images. Its graph is convex. 0 ∈ D(0).
(H3) ∀x0 ≥ 0, x0 6= 0,∃y0 >> 0, y0 ∈ D(x0).
(H4) (free disposal) If y ∈ D(x), x′ ≥ x, y′ ≤ y, then y′ ∈ D(x′).
(H5) (existence of an expansible stock) There exists (x, y), y ∈ D(x) such that
y >> x.
(H6) The utility function u : graphD → IR is a strictly concave C2 function,
u(x, y) is increasing in x, decreasing in y1.

Note that (H4) and (H5) ensure that intgraphD 2 is nonempty. Moreover,

1As in Santos [14], we say that the utility function is C2 in the graph of D if it has a C2

extension on an open set.
2We denote by intgraphD the interior of graphD with the induced topology.
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by (H2) and Kakutani’s theorem, the set of fixed-points of D is nonempty.

We define the following program:

u = Max u(x, x)
s.t. x ∈ D(x)

Then from (H5):
u = Max u(x, x)
s.t. y ∈ D(x)

y ≥ x

Throughout this paper, we denote by x̃ a sequence in X, i.e., x̃ = (x0, x1, ..., xt, ...)
with xt in X, for any t.

Definition 1 A program is a sequence x̃ ∈ XIN such that ∀t, xt+1 ∈ D(xt).
Γ(x0) is the set of programs with initial stock x0.

Observe that Γ is a continuous correspondence since D is continuous.

3 Optimal growth without discounting

Definition 2 Let x = argmax{u(x, x), x ∈ D(x)}. A program x̃ ∈ Γ(x0) is
good 3 if

lim
T→+∞

T∑
t=0

(u(xt, xt+1)− u(x, x)) exists in IR.

Let us denote by ΓG(x0) the set of good programs starting from x0.

Proposition 1 If x̃ is a good program, then lim
t

xt = x

Proof: See Gale[7] ut

3This is the definition in Le Van and Dana[8]. It can be checked that it is equiva-
lent to the definition given by Gale[7]: x̃ ∈ Γ(x0) is good if for any x̃′ ∈ Γ(x0), one has
lim inf
T→+∞

∑
(u(xt, xt+1)− u(x′t, x

′
t+1)) > −∞.
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Definition 3 A program x̃∗ ∈ Γ(x0) is optimal 4 if we have:

∀x̃ ∈ Γ(x0), lim
T→+∞

T∑
t=0

(u(x∗t , x
∗
t+1)− u(x, x)) ≥ lim

T→+∞

T∑
t=0

(u(xt, xt+1)− u(x, x)).

Proposition 2 The stationary program x̃ = (x, x, ...) is an optimal program
from x.

Proof: See Gale [7] or Le Van and Dana [8]. ut

Definition 4 Let us define γ(x̃) := lim
T→+∞

∑T
t=0[u(xt, xt+1)− u(x, x)].

Then the optimal growth problem becomes:

max
x̃∈Γ(x0)

γ(x̃);

Proposition 3 If ΓG(x0) 6= ∅ then there exists an optimal program from x0. It
is a good program.

Proof: See Dana and Le Van[6]. ut

Proposition 4 Assume ΓG(x0) 6= ∅. Let x̃∗ ∈ Γ(x0) satisfy ∀t, (x∗t , x∗t+1) ∈
intgraphD. Then x̃∗ is optimal if and only if it satisfies the Euler equation:

(E) ∀t, u2(x
∗
t , x

∗
t+1) + u1(x

∗
t+1, x

∗
t+2) = 0.

Proof: See Dana and Le Van[6]. ut

4 About the continuity of the value function

and the policy function when β is close to 1

or equals 1

Let us consider the following problem

4This is the definition of an optimal program in the sense of Le Van and Dana[8]. An
optimum in the sense of Gale is optimal in the sense of Le Van and Dana[8] and the two
definitions coincide when ΓG(x0) 6= ∅.
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Maximize

∑+∞
t=0 βtu(xt, xt+1)

s.t. ∀t, xt+1 ∈ D(xt)
x0 is given
β ∈ (0, 1).

Proposition 5 Assume the Hessian of u at (x, x) is negative definite. Then
there exists a neighborhood of 1, [β0, 1] such that ∀β ∈ [β0, 1] , there exists a
unique steady state xβ. Moreover ∀β ∈ [β0, 1], β → xβ is continuous. In partic-
ular, one has lim

β→1
xβ = x.

Proof: Consider the equation:

(E ′) u2(x
β, xβ) + βu1(x

β, xβ) = 0

Differentiate it and obtain:

(∗) [u21(x
β, xβ)+βu12(x

β, xβ)+u22(x
β, xβ)+βu11(x

β, xβ)]dxβ+u1(x
β, xβ)dβ = 0.

Consider z(2n) = (z(n), z(n)) 6= 0. For β = 1, one has xβ = x and since the Hessian
matrix H is negative definite:

tz(2n)Hz(2n) = tz(n)(2u21(x, x) + u22(x, x) + u11(x, x))z(n) < 0

The matrix [u21(x, x) + u12(x, x) + u22(x, x) + u11(x, x)] is invertible. Since for
β = 1, (E ′) has a unique solution x, then by the Implicit Function Theorem,
there exists a neighborhood of β ∈ [β′0, 1], and a neighborhood V(x) of x such
that there is a unique solution xβ, which is continuous with respect to β. That
is xβ → x when β converges to 1. We claim that there exists β0 ≥ β′0 such
that ∀β ∈ [β0, 1], xβ is unique. Indeed, suppose the contrary. There will be a
sequence βn → 1, with another steady state xβn

1 6∈ V(x),∀n. But xβn
1 → x, which

is a contradiction since there will be two steady states in V(x).

ut

In the remaining of the paper, we will add:

(H7) The Hessian D2u(x, x) is negative definite.

Then let us consider the following problems:

(P β) =


Maximize

∑+∞
t=0 βt(u(xt, xt+1)− u(xβ, xβ))

s.t. ∀t, xt+1 ∈ D(xt)
x0 is given
β ∈ [β0, 1[.
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where (xβ, xβ) is the only stationary program for (Pβ) and

(P 1) =


Maximize

∑+∞
t=0 (u(xt, xt+1)− u(x, x))

s.t. ∀t, xt+1 ∈ D(xt)
x0 is given .

when β = 1.
Let us denote respectively by V β(x0) and V 1(x0) the value function of problems
(P β) and (P 1), that is:

V β(x0) = max{
+∞∑
t=0

βt(u(xt, xt+1)− u(xβ, xβ)), xt+1 ∈ D(xt),∀t}

and

V 1(x0) = max{
+∞∑
t=0

(u(xt, xt+1)− u(x, x)), xt+1 ∈ D(xt),∀t} when β = 1.

Proposition 6 V β satisfies the Bellman equation:

(B) V β(x) = max{u(x, y)− u(xβ, xβ) + βV β(y); y ∈ D(x)}.

Proof: It is quite standard when β < 1. For β = 1, see Dana and Le Van[6].
ut

Dana and Le Van[6] have shown that (H3) implies ∀x0 ≥ 0, x0 6= 0, there
exists a good program from x0.

For β ∈ [β0, 1], since u is strictly concave, we denote by gβ the optimal policy,
i.e., for any x ∈ X, gβ(x) := argmax{u(x, y)− u(xβ, xβ) + βV β(y); y ∈ D(x)}

Let us introduce two assumptions:

(H8) ∀x0 ≥ 0, x0 6= 0, (x, g1(x)) ∈ intgraphD.
(H9) Either D(0) = {0} or D(0) contains a strictly positive vector.

Then one has :

Proposition 7 V β(x0) is continuous with respect to β and x0, for β ∈ [β0, 1]
and x ∈ X.

Proof:
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1) Let us first show that V β(x0) is upper semi-continuous with respect to
(β, x0).

Let x̃β := (x0, x
β
1 , x

β
2 , ..., x

β
t , ...) be the optimal solution from x0 to problem

(Pβ). Then by concavity of u, for any x̃ ∈ Π(x0):

∀t, u(xβ, xβ)− u(xt, xt+1) ≥ u1(x
β, xβ)(xβ − xt) + u2(x

β, xβ)(xβ − xt+1)

Then define δβ by:

u(xβ, xβ)−u(xt, xt+1) = u1(x
β, xβ)(xβ−xt)+u2(x

β, xβ)(xβ−xt+1)+δβ(xt, xt+1).

The function δβ is non-negative. Then, for any T , one has, since (xβ, xβ) satisfies
the Euler equation:∑T

t=0 βt(u(xβ, xβ)− u(xt, xt+1)) = u1(x
β, xβ)(xβ − x0) + βT u2(x

β, xβ)(xβ − xT+1)+∑T
t=0 βtδβ(xt, xt+1).

with
∑T

t=0 βtδβ(xt, xt+1) being continuous with respect to β and x̃.
We have, for T → +∞, as β < 1:

+∞∑
t=0

βt(u(xt, xt+1)− u(xβ, xβ)) = u1(x
β, xβ)(x0 − xβ)− lim

T→+∞

T∑
t=0

βtδβ(xt, xt+1).

The same way, we define δ1 by:

T∑
t=0

(u(xt, xt+1)−u(x, x)) = u1(x, x)(x0−x)+u2(x, x)(xT+1−x)+
T∑

t=0

−δ1(xt, xt+1).

Either x̃ is good, and lim
t

xt = x, and one has:

(1)
+∞∑
t=0

(u(xt, xt+1)− u(x, x)) = u1(x, x)(x0 − x) + lim
T→+∞

T∑
t=0

−δ1(xt, xt+1).

or x̃ is not good, since then lim
T→+∞

T∑
t=0

(u(xt, xt+1)− u(x, x)) = −∞ and

lim
T→+∞

u1(x, x)(x0 − x) + u2(x, x)(xT+1 − x) is bounded, (1) still holds.

Then define:

Φ(β, x̃) :=
+∞∑
t=0

βt(u(xt, xt+1)− u(xβ, xβ)),

Φ(1, x̃) :=
+∞∑
t=0

(u(xt, xt+1)− u(x, x)).

Since lim
T→+∞

∑T
t=0−βtδβ(xt, xt+1) is the decreasing limit of continuous functions
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with respect to β and x̃, it is an upper semi-continuous function with respect to
β and x̃. Hence, Φ(β, x̃) is also upper semi-continuous (u.s.c.) in (β, x̃).
Since V β(x0) = Maxx̃∈Γ(x0)Φ(β, x̃) and Γ is continuous then it follows from
Berge’s Maximum Theorem that V β(x0) is an u.s.c. function.

2) Let us now show that V β(x0) is lower semi-continuous.

Let us first show that for x0 ≥ 0, x0 6= 0, β → V β(x0) is lower semi-continuous
in 1.
Let us denote by (xβ

t )t the optimal solution of (P β), that is:

V β(x0) =
+∞∑
t=0

βt(u(xβ
t , xβ

t+1)− u(xβ, xβ))

and by (x∗t )t the optimal solution of (P 1), that is:

V 1(x0) =
+∞∑
t=0

(u(x∗t , x
∗
t+1)− u(x, x))

Then by proposition 6, as soon as ΓG(x0) 6= ∅ (which is true by (H3)), one has
lim

t→+∞
x∗t = x.

Moreover, as we have (x, x) ∈ intgraphD, there exists T0 such that ∀t ≥
T0, (x

∗
t , x) ∈ intgraphD. Let us then fix T ≥ T0 and define the sequence

x̃ = (x0, x
∗
1, ..., x

∗
T+1, x, x, ...). One has:

V β(x0) =
+∞∑
t=0

βt(u(xβ
t , xβ

t+1)− u(xβ, xβ))

≥
+∞∑
t=0

βt(u(xt, xt+1)− u(xβ, xβ)) since x̃ feasible for (Pβ)

=
+∞∑
t=0

βt(u(xt, xt+1)− u(x, x)) +
+∞∑
t=0

βt(u(x, x))− u(xβ, xβ))

≥
+∞∑
t=0

βt(u(xt, xt+1)− u(x, x)) by definition of x

=
T∑

t=0
βt(u(x∗t , x

∗
t+1)− u(x, x)) + βT (u(x∗T+1, x)− u(x, x))

then one has ∀T ≥ T0,∀β ∈ (0, 1):

V β(x0) ≥
T∑

t=0

βt(u(x∗t , x
∗
t+1)− u(x, x)) + βT (u(x∗T+1, x)− u(x, x))

Then, for β → 1:

lim inf
β→1

V β(x0) ≥
T∑

t=0

(u(x∗t , x
∗
t+1)− u(x, x)) + (u(x∗T+1, x)− u(x, x))

10



Then, for T → +∞, as lim
T→+∞

x∗T+1 = x, one has lim inf
β→1

V β(x0) ≥ V 1(x0).

Let us now show that ∀x0 ≥ 0, x0 6= 0, (β, x) → V β(x) is lower semi-continuous
in (1, x0). Indeed, by (H8), one has then (x0, g

1(x0)) ∈ intgraphD,
Since (x0, g

1(x0)) ∈ intgraphD, there exists V(x0) a neighborhood in X of x0,
such that ∀x′0 ∈ V(x0), (x

′
0, g

1(x0)) ∈ intgraphD. Then one has:

V β(x′0) ≥ u(x′0, g
1(x0))− u(xβ, xβ) + βV β(g1(x0))

Then one has:

lim inf
β→1

x′
0
→x0

V β(x′0) ≥ u(x0, g
1(x0))− u(x, x) + lim infβ→1 βV β(g1(x0))

≥ u(x0, g
1(x0))− u(x, x) + V (g1(x0)) = V 1(x0)

Moreover (β, x) → V β(x) is continuous in (1, 0). Indeed, from (H9), we have
two cases:
a) D(0) = 0.
One has lim sup

β→1
x→0

V β(x) ≤ V 1(0) = −∞. Then lim
β→1
x→0

V β(x) = −∞ = V 1(0).

b) D(0) contains a strictly positive vector.
Then there exists a good program from 0 (see Dana-Le Van[6]). Then the proof
is the same as previously (when x0 6= 0). Observe that in this case V 1(0) > −∞.

ut

Proposition 8 The optimal policy (β, x0) → gβ(x0) is continuous at (1, x0).

Proof: 1) If x0 6= 0. Consider the sequences xn → x0, βn → 1.
Since V βn(xn) satisfies the Bellman equation and the maximum is in gβn(xn) :

V βn(xn) = u(xn, g
βn(xn))− u(xβ, xβ) + βnV

βn(xn)

For βn → 1, xn → x0, gβn(xn) ∈ D(xn),∀n and since D is continuous, there exists
a subsequence, call it again gβn(xn), that converges to y ∈ D(x0). Moreover, by
proposition 7, lim

βn→1
xn→x0

V βn(gβn(xn)) = V 1(y). Then, since u is continuous, one has

V 1(x0) = u(x0, y)− u(x, x) + V 1(y). And since u is strictly concave, y is unique
and one has y = g1(x0). Hence lim

βn→1
xn→x0

(gβn(xn)) = g1(x0).

2) Now consider the case x0 = 0.
2a) D(0) = {0}.
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One has lim sup
β→1
x→0

V β(x) ≤ V 1(0) = −∞. Then lim
β→1
x→0

V β(x) = −∞ = V 1(0). More-

over, it is clear since D is u.s.c. that lim
β→1
x→0

gβ(x) = 0 = g1(0).

2b) D(0) contains a strictly positive vector.
Then there exists a good program from 0 and V 1(0) > −∞. Apply the proof in
case 1). ut

Hence:

Corollary 1 The optimal policy (β, x0) → gβ(x0) is continuous in [β0, 1]×X.

Proof: We already know that the optimal policy (β, x0) → gβ(x0) is continuous
in [β0, 1[×X. Proposition 8 ends the proof. ut

5 About the differentiability of the optimal pol-

icy

Definition 5 u is said to be (α, α′)-concave if u(x, y) + 1
2
α‖x‖2 + 1

2
α′‖y‖2 is

concave, where α > 0, α′ > 0.

We now introduce new assumptions:

(H10) u is (α, α′)-concave on graphD.

(H11) There exists a good program from any x0 ≥ 0.

Note that (H10) is satisfied if we assume that u is strongly concave (with neg-
ative definite Hessian) in the graph of D. Venditti [18] gives conditions on the
fundamentals to obtain strong concavity of the utility function.

Assumption (H11) ensures that the function V 1 is real-valued and continuous
on X (see Dana and Le Van [6]).

Remark 1 1. Santos [13] assumes only (0, α)− concavity. Here, to obtain the
differentiability of the optimal policy when β = 1, we use also the results given by
Montrucchio [12] which requires (α, 0)− concavity. Combining the assumptions
in Santos [13] and Montrucchio [12], we assume (α, α′)− concavity.

2. Assumption (H11), a priori, rules out the case D(0) = {0}. But Assumption
(H3) allows us to restrict to the set of x larger than some x0 > 0.

12



Since V β(x) is continuous in the compact set [β0, 1]×X, we now prove that
there exists a sequence of functions fβ

T , concave, twice differentiable in x, con-
tinuous in (β, x), which converges uniformly in (β, x) to V β(x). The following
lemma is crucial for the proof of the differentiability of the optimal policy.

Lemma 1 There exists a sequence of concave functions fβ
T (x), C2 in x, contin-

uous in (β, x), converging uniformly in [β0, 1]×X to V β(x) when T → +∞.

Proof:

Let T be a given integer. Let β ∈ [β0, 1]. There exists a C2 function hT,β, concave
in x, such that

sup
x∈X

|V β(x)− hT,β(x)| ≤ 1

2T

(see Boldrin and Montrucchio[5], Lemma 3.1 p.7-8). Since V β(x) is continuous
(hence, uniformly continuous) in (β, x) ∈ [β0, 1]×X, there exists η, independent
of β, such that, |β′ − β| < η implies

sup
x∈X

|V β(x)− V β′(x)| ≤ 1

2T
.

Thus, if B(β, η) denotes the open ball, we have:

sup
x∈X

sup
β′∈B(β,η)

|hT,β(x)− V β′(x)| ≤ 1

T
.

Let {B(βi, η)}, i = 1, ..., I be a finite covering of [β0, 1]. Consider a partition of
unity (ϕT

i )i=1,...,I dominated by {B(βi, η)}, i.e.

(1) ϕT
i : [β0, 1] → [0, 1],

(2) ϕT
i (β′) = 0 if β′ /∈ B(βi, η),

(3) and
∑I

i=1 ϕT
i (β′) = 1, ∀β′ ∈ [β0, 1].

Let

fβ
T (x) =

I∑
i=1

ϕT
i (β)hT,βi

(x).

one can easily check that

(1) fβ
T (x) is continuous in (β, x), concave, C2 in x,

(2) and supx∈X supβ∈[β0,1] |V β(x)− fβ
T (x)| ≤ 1

T
. ut
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Consider now the following sequence of optimal finite-horizon programs:

(P1)β
T =


Max

T−1∑
t=0

βt(u(xt, xt+1)− u(xβ, xβ)) + βT fβ
T (xT )

s.t. xt+1 ∈ D(xt),∀t = 0, ..., T − 1
x0 6= 0 is given , β ∈ [β0, 1].

Let us call gβ
T (x) the associated policy function, such that the optimal solution

of the problem is ∀t, xt = gβ,t
T (x).

Let us also associate with T the sequence of following problems:

(P2)β
n≤T : V β

0 = fβ
T

V β
n (x) = max

y∈D(x)
{u(x, y)− u(xβ, xβ)) + βV β

n−1(y)},∀n ≤ T

Lemma 2 ∀n ≤ T , one has V β
n (x) = max{

n−1∑
t=0

βt(u(xt, xt+1) − u(xβ, xβ)) +

βnfβ
T (xn); xt+1 ∈ D(xt),∀t}.

Proof:

Let us first show that V β
n (x) ≥ max{

n−1∑
t=0

βt(u(xt, xt+1)−u(xβ, xβ))+βnfβ
T (xn)}.

Let us consider (x∗1, ..., x
∗
n) optimal solution that is (x∗1, ..., x

∗
n) is such that

Wn(x0) :=
n−1∑
t=0

βt(u(x∗t , x
∗
t+1)− u(xβ, xβ)) + βnfβ

T (x∗n)

= max
xt+1∈D(xt),∀t

n−1∑
t=0

βt(u(xt, xt+1)− u(xβ, xβ)) + βnfβ
T (xn).

Then one has:

Wn(x0) ≤
n−2∑
t=0

βt(u(x∗t , x
∗
t+1)− u(xβ, xβ)) + βn−1V β

1 (x∗n−1)

≤
n−3∑
t=0

βt(u(x∗t , x
∗
t+1)− u(xβ, xβ)) + βn−2V β

2 (x∗n−2)

≤ ... ≤ u(x0, x
∗
1) + βV β

n−1(x
∗
1) ≤ V β

n (x0)

Let us now show that V β
n (x) ≤ max{

n−1∑
t=0

βt(u(xt, xt+1)−u(xβ, xβ))+βnfβ
T (xn)}.

14



There exists (x∗1, ..., x
∗
n) such that :

V β
n (x0) = u(x0, x

∗
1)− u(xβ, xβ)) + βV β

n−1(x
∗
1)

V β
n−1(x

∗
1) = u(x∗1, x

∗
2)− u(xβ, xβ)) + βV β

n−2(x
∗
2)

...

V β
1 (x∗n−1) = u(xn−1, x

∗
n)− u(xβ, xβ)) + βV β

0 (x∗n)
that is

V β
n (x0) =

n−1∑
t=0

βt(u(x∗t , x
∗
t+1)− u(xβ, xβ)) + βnfβ

T (x∗n) ≤ Wn(x0)

ut

Lemma 3 There exists β′0 ∈ [β0, 1[ , T0 such that ∀β ∈ [β′0, 1], ∀T ≥ T0, the
optimal path {gβ,t

T (x)}t of problem (P1)β
T is interior.

Proof: From (H8), for β close enough to one, ∀x0, g
β(x0) is interior. Then

(see Boldrin and Montrucchio[5], Lemma 3.1 p.7), there exists σ, such that if
supβ,x |f

β
T (x)−V β(x)| < σ, then gβ

T (x0) is interior. And if Tfβ
T (x) = Max{u(x, y)−

u(xβ, xβ) + βfβ
T (y); y ∈ D(x)}, then supβ,x |Tfβ

T (x) − V β(x)| < σ, and one has

also gβ,2
T (x) is interior. And so on by induction, ∀T, {gβ,t

T (x)}t is interior. ut

Lemma 4 For β ∈ [β′0, 1], recall that gβ is the optimal policy associated with
V β. Let gβ,t denote the t− th iterate of gβ. Then, ∀β ∈ [β′0, 1],∀T,∀t ≤ T , there
exists a constant k(t) such that:

‖gβ,t − gβ,t
T ‖ ≤ k(t) sup

β,x
|V β(x)− fβ

T (x)|
1

2t+1 .

Thus, ∀t, gβ,t
T converges uniformly with respect to (β, x) to gβ,t when fβ

T converges
to V β.

Proof: We show this by induction. Indeed, one has by lemma 2:

V β
T (x0) = max{

T−1∑
t=0

βt(u(xt, xt+1)− u(xβ, xβ)) + βT fβ
T (xT ); xt+1 ∈ D(xt),∀t}

=
T−1∑
t=0

βt(u(gβ,t
T (x0), g

β,t+1
T (x0))− u(xβ, xβ)) + βT fβ

T (gβ,T
T (x0))

= max{u(x0, y)− u(xβ, xβ) + βV β
T−1(y); y ∈ D(x0)}

= u(x0, g
β
T (x0))− u(xβ, xβ) + βV β

T−1(g
β
T (x0))

where
gβ

T (x) = argmax{u(x, y)− u(xβ, xβ) + βV β
T−1(y)}

15



In the following, ‖ ‖ will denote the sup-norm with respect to x. From (H10),
V β is (α, 0)-concave. Montrucchio’s Theorem 2 [12] applies and one has:

‖V β
T−1 − V β‖ ≤ ‖V β − fβ

T ‖ ≤ ‖V β − fβ
T ‖

1
2 (for T big enough).

‖gβ − gβ
T‖ ≤ 2α−1‖V β − fβ

T ‖
1
2 ,

where
gβ(x) = argmax{u(x, y)− u(xβ, xβ) + βV β(y)}.

Let
gβ,2(x) = argmax{u(gβ(x), y)− u(xβ, xβ) + βV β(y)}

gβ,2
T (x) = argmax{u(gβ

T (x), y)− u(xβ, xβ) + βV β
T−2(y)}

Since u is C1, there exists a constant a independent of x and T such that:

‖u(gβ(x), y) + βV β(y)− u(gβ
T (x), y)− βV β

T−2(y)‖ ≤ a‖gβ − gβ
T‖+ ‖V β − V β

T−2‖
≤ (2aα−1 + 1)‖V β − fβ

T ‖
1
2 ,

since Theorem 2 [12] implies that ‖V β − V β
T−2‖ ≤ ‖V β − fT‖. Then by Lemma

2 [12], one obtains:

‖gβ,2−gβ,2
T ‖ ≤ 2α−1(2aα−1+1)

1
2‖V β−fT‖

1
2 = k(2)‖V β−fT‖

1
4 ≤ k(2) sup

β,x
|V β(x)−fβ

T (x)|.

and so on. ut

Proposition 9 gβ
T (x) converges uniformly to gβ(x) with respect to (β, x), in

[β′0, 1]×X, and gβ
T (x) is C1.

Proof: That gβ
T (x0) converges uniformly to gβ(x0) with respect to (β, x) is an

immediate corollary of the previous lemma.

We now show that the functions V β
t are C2 in x for t = 1, ..., T . First, we

have:
V β

1 (x) = max{u(x, y)− u(xβ, xβ) + βfβ
T (y); y ∈ D(x)}.

Let ζβ
T (x) denote the argmax of this problem, i.e.:

V β
1 (x) = u(x, ζβ

T (x))− u(xβ, xβ) + βfβ
T (ζβ

T (x)).

Then ζβ
T (x) satisfies:

u2(x, ζβ
T (x)) + β(fβ

T )′(ζβ
T (x)) = 0.

16



Since fβ
T is C2, concave and u is (0, α′)-concave, the function ζβ is C1 and thus,

V β
1 is C2. By induction, V β

T−1 is C2.

Since gβ
T is defined by:

u(x, gβ
T (x)) + βV β

T−1(g
β
T (x)) = max

y∈D(x)
{u(x, y) + βV β

T−1(y)},

then gβ
T (x) must satisfy:

u2(x, gβ
T (x)) + β(V β

T−1)
′(gβ

T (x)) = 0.

That (β, x) → gβ
T (x) is C1 follows then from the implicit function theorem, since

V β
T−1 is C2, concave and u is (0, α′)-concave. Obviously, V β

T is C2. ut

We now prove that Dgβ
T (x) converges uniformly. Let us now show that the

sequence of derivatives of the policy function of the finite-horizon problems is
defined by the policy functions of a sequence of finite-horizon quadratic problems
as introduced in Santos[13]. Indeed, ∀β ∈ [β′0, 1], let us consider x̃ an optimal
solution for the finite-horizon optimization problem (P1)β

T . By lemma 3, it is
interior. Then let us consider the following sequence of finite-horizon quadratic
problems:

(Qβ
T ) =


Maximize

T−1∑
t=0

[1
2
βt(bt, bt+1)

′.D2u(xt, xt+1).(bt, bt+1)]

+βT [1
2
b′T .D2fβ

T (xT ).bT ]
s.t. b0 = a0 is fixed .

Lemma 5 If (xt, xt+1) is an interior solution for the finite-horizon optimization
problem (P1)β

T , then the sequence of vectors {at}T
t=0 defined by at = Dgβ,t

T (x0).a0

is an optimal solution to the problem (Qβ
T ).

Proof: The proof given by Santos[13] applies. Observe that we have the first
order conditions:

∀t = 1, ..., T − 1,

D21u(xt−1, xt).at−1+[D22u(xt−1, xt)+βD11u(xt, xt+1)].at+βD12u(xt, xt+1).at+1 = 0,

D21u(xT−1, xT ).aT−1 + [D22u(xT−1, xT ) + βD2fβ
T (xT )].aT = 0.

ut
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Lemma 6 Let a0 satisfy ‖a0‖ = 1. Then there exists a constant M > 0 such
that for any x0 in X, for all optimal sequences {xt}T

t=0 from x0, for any sequence
{at}T

t=0 defined as in lemma 5, for any β in [β′0, 1], for any T , one has:

T−1∑
t=0

βt[
1

2
(at, at+1)

′.D2u(xt, xt+1).(at, at+1)] ≥ −M.

Moreover, one has that ‖a1‖ ≤ (2M
α′

)
1
2 .

Proof: The proof given by Santos[13] applies. It relies on the (α, α′)-concavity
of u. ut

CONDITION Dβ: Let us consider an optimal solution to the infinite-horizon
problem (P β), β ∈ [β′0, 1]. Then a sequence of vectors {at}t with ‖a0‖ = 1 is said
to satisfy Condition Dβ if:

(Dβ1) ∀t ≥ 1, D21u(xt−1, xt).at−1 + [D22u(xt−1, xt) + βD11u(xt, xt+1)].at

+βD12u(xt, xt+1).at+1 = 0.

(D2) ∃M > 0 such that ∀β ∈ [β′0, 1],
+∞∑
t=0

βt[1
2
(at, at+1)

′.D2u(xt, xt+1).(at, at+1)] ≥ −M .

Remark 2 (Dβ1) corresponds to the first-order necessary condition of the quadratic

optimization problem, while (D2) implies ∀β ∈ [β′0, 1] that
+∞∑
t=0

βt‖at+1‖2 ≤ M
α′

.

Indeed, by (H10), D2u + 2α

(
I

0

)
+ 2α′

(
I

0

)
≤ 0, then (D2) implies

+∞∑
t=0

−1
2
βt(at, at+1)

′.[−2α

(
I

0

)
− 2α′

(
I

0

)
].(at, at+1) ≤ M , and

+∞∑
t=0

βtα‖at‖2 + βtα′‖at+1‖2 ≤ M and
+∞∑
t=0

βt‖at+1‖2 ≤ M
α′

.

Lemma 7 Let {xt}t≥0 be an interior optimal solution to the infinite-horizon
problem (P β). Then a sequence of vectors {at}t≥0 satisfies Condition Dβ if and
only if it is an optimal solution to the quadratic optimization problem:

(Qβ
∞) =

 Maximize
+∞∑
t=0

βt[1
2
(bt, bt+1)

′.D2u(xt, xt+1).(bt, bt+1)]

s.t. b0 = a0 is fixed , ‖a0‖ = 1.
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Proof: The proof given by Santos[13] applies. ut

Lemma 8 Let {xt}t be an interior optimal solution. Then the optimal solution
to the quadratic infinite-horizon problem (Qβ

∞) exists and is unique.

Proof:

As long as the objective is strictly concave, if there exists a solution, it is
unique.

Let us prove the existence of a solution.

Define the following finite-horizon quadratic program:

(Rβ
T ) =


Maximize

∑T−1
t=0 βt[1

2
(bT

t , bT
t+1)

′D2u(xt, xt+1)(b
T
t , bT

t+1)]
{bT

t }T
t=0

s.t. bT
0 = a0 is given

β ∈ [β′0, 1].

and the following set:

Gβ
T = { (bT

0 , ..., bT
T ) ∈ IR(T+1)n s.t. bT

0 = a0 and∑T−1
t=0 βt[1

2
(bT

t , bT
t+1)

′D2u(xt, xt+1)(b
T
t , bT

t+1)] ≥ −M}

Assumption (H10) implies that ∀β ∈ [β′0, 1], Gβ
T is a compact set. Then the

problem (Rβ
T ) has a unique optimal solution, let us call it {aT

t }T
t=0. This se-

quence must satisfy the equation: ∀t = 1, ..., T,

D21u(xt−1, xt).a
T
t−1 + [D22u(xt−1, xt) + βD11u(xt, xt+1)].a

T
t

+βD12u(xt, xt+1).a
T
t+1 = 0. (1)

Since ∀T, ãT = {aT
t }T

t=0 ∈ Gβ
T and u is (0, α′)-concave, there exists a uniform

constant Nt such that ∀T, ‖aT
t ‖ ≤ Nt. Then, ∀t, (aT

t )T belongs to a compact
set, and there exists a subsequence of {aT

t }T
t=0 that converges for the product

topology as T → +∞. Since {aT
t }T

t=0 ∈ Gβ
T ,∀T and by (1), one has that this

limit, call it {at}t, satisfies condition Dβ. Then by lemma 7, {at}t is optimal for
(Qβ

∞). ut

Now define the sets:

L(β, x0) = { (a0, a1) ∈ IR2n with ‖a0‖ = 1 s.t.
∃{at}t≥0 which satisfies Condition Dβ}
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Lemma 8 implies that ∀a0, there exists a unique a1 which satisfies this property.
That is, L(β, x0) is the graph of a linear function restricted to the unit sphere.
The goal is now to show that L(β, x0) is the graph of the derivative of g at x0.

Lemma 9 The correspondence L is continuous and compact-valued in [β′0, 1]×U .

Proof: The proof given by Santos[13] applies. See Appendix. ut

Lemma 10 The sequence of derivative functions {Dgβ
T (x)}T≥1 converges uni-

formly with respect to (β, x).

Proof: The proof is the same as in Santos[13]. The idea is to show that the
set

Gβ
T (x0) = {(a0, a1) ∈ IR2n with ‖a0‖ = 1 s.t. a1 = Dgβ

T (x0).a0}

converge uniformly in (β, x0) to L(β, x0) when T → +∞. Hence, by taking
a0 successively equal to the unit-vectors of the basis of IRn, we obtain that the
partial derivatives of gβ exist and are continuous with respect to (β, x0). For
more details of the proof, see the appendix. ut

To sum up, we have proved:

Theorem 1 The optimal policy gβ is differentiable in X for any β in [β′0, 1].
Moreover, the derivative Dgβ is continuous with respect to (β, x) in [β′0, 1]×X.

Remark 3 Santos[13] assumes that u is (0, α′)-concave and that the second-
order derivatives of u are uniformly bounded along every optimal path.
Montrucchio[12] assumes that ‖D2

11‖ and ‖D2
12‖ are bounded and another con-

dition which is satisfied by (α, 0)-concavity. It is straightforward to check that
their conditions are satisfied if u is C2 and (α, α′)- concave on graphD.

Remark 4 About the convergence of optimal paths to the steady state

We show that the differentiability of the policy function allows us to obtain
easily the turnpike property near 1. Here, the turnpike result becomes a by-product
of the differentiability of the policy function.

Claim 1 (The Visit Lemma) Let x̂ be expansible. Then we have: ∀ε > 0,∃β(ε) >
0 such that ∀x0 ≥ x̂, ∀β ∈ [β(ε), 1],∃t, ‖gβ,t(x0)− xβ‖ < ε.
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Proof: See Scheinkman[17]. ut

Claim 2 ‖Dg1(x)‖ < 1.

Proof: We know that when β = 1, the optimal path {g1,t(x0)}t, for any x0 >> 0,
converges to the steady state x. Let ‖Dg1(x)‖ denote the largest modulus of the
eigenvalues of Dg1(x). We must have ‖Dg1(x)‖ ≤ 1. But actually ‖Dg1(x)‖ < 1.
Indeed, let c0 be a non-null eigenvector associated with the largest eigenvalue in
modulus λ. Write c0 = a0 + ib0, where a0 and b0 are the real and imaginary parts
of c0 and i2 = −1. Let at := Dg1,t(x).a0 and bt := Dg1,t(x).b0. Then we have
(see the proof of Theorem 2.1 in Santos[13]):

−
+∞∑
t=0

(at, at+1)
′.D2u(x, x).(at, at+1) ≤ M‖a0‖ and

−
+∞∑
t=0

(bt, bt+1)
′.D2u(x, x).(bt, bt+1) ≤ M‖b0‖. Then it follows that:

−
T∑

t=0
(at − ibt, at+1 − ibt+1)

′.D2u(x, x).(at + ibt, at+1 + ibt+1) ≤ M(‖a0‖ + ‖b0‖).

But, at + ibt = Dg1,t(x).c0 = λtc0, and at − ibt = Dg1,t(x).c0 = λ
t
c0, and thus

−(c0, λc0)
′.D2u(x, x).(c0, λc0)

+∞∑
t=0

|λ|2t ≤ M(‖a0‖+ ‖b0‖), which implies |λ| < 1.

Claim 3 Let x̂ be expansible. Then there exists β1 such that ∀x0 ≥ x̂, ∀β ∈
[β1, 1], lim

t→+∞
gβ,t(x0) = xβ.

Proof: For β = 1, we know by proposition 1 that lim
t

xt = x, and by lemma

2 that ‖Dg1(x)‖ < ξ < 1. Since (β, x) → Dgβ(x) exists and is continuous with
respect to (β, x), ‖Dgβ(x)‖ is continuous with respect to (β, x) and there exists
β′2 such that for any β ∈ [β′2, 1], ‖Dgβ(xβ)‖ < ξ < 1. Then consider η > 0 such
that ξ + η < 1. Since ‖Dgβ(x)‖ is continuous with respect to (β, x) in the com-
pact set [β′2, 1] ×X, it is uniformly continuous with respect to (β, x) and there
exists ε > 0 such that:

∀β, β′ ∈ [β′2, 1], |β − β′| < ε, ‖x0 − xβ‖ < ε ⇒ |‖Dgβ′(x0)‖ − ‖Dgβ(xβ)‖| ≤ η.

In particular (take β = β′): ‖x0−xβ‖ < ε ⇒ ‖Dgβ(x0)‖ ≤ η+ξ < 1. That is, by
claim 2, ∃ε > 0 such that ∀β ∈ [β1, 1], ‖x0 − xβ‖ < ε ⇒ limt→+∞ gβ,t(x0) = xβ.

Remark 5 1. Scheinkman[17] and McKenzie[9] only assume that the Hes-
sian of u is negative definite at (x, x). But they did not prove that the
optimal policy is differentiable.

21



2. We obtain the turnpike result without assuming, as in McKenzie[9], that
detDu12(x, x) 6= 0 contrary to Scheinkman[17].

22



6 Appendix

6.1 Proof of lemma 9

We extend here the proof of lemma 9 given by Santos[13]:

1) Let us first show that L is u.s.c. and compact-valued.

Let (βn, xn
0 )n be a sequence that converges to (β, x0) ∈ [β0, 1]× U .

As (β, x) → gβ(x) is continuous on [β0, 1] × U , one has that gβn
(xn

0 ) → gβ(x0).
By lemma 8, for the optimal sequence {xn

t }t≥0 where xn
t = gβn,t(xn

0 ), there exists
{an

t }t≥0 optimal solution to:

(Rβn

∞ ) =


Maximize

∑+∞
t=0 (βn)t[1

2
(bn

t , b
n
t+1)

′D2u(xn
t , x

n
t+1)(b

n
t , b

n
t+1)]

{bn
t }t≥0

s.t. bn
0 = an

0 is given
βn ∈ [β0, 1].

One has ∀n, {an
t }∞t=0 satisfies Condition Dβn

(with (xn
t )t). Since the constant

M is independent of n, then, since u is (0, α′)-concave, ∀t,∃Nt > 0 such that
∀n, ‖an

t ‖ ≤ Nt. Then, since the sequence belongs to a compact set of the product
topology, there exists a subsequence of ({an

t }∞t=0)n that converges, say to {at}∞t=0.
As in the previous lemma, since βn → β and xn

0 → x0, one has, since the optimal
policy is continuous, xn

t → xt, and hence {at}∞t=0 satisfies condition Dβ and is
then optimal. Hence (βn, xn

0 )n converges to (β, x0) and (an
0 , a

n
1 )n converges to

(a0, a1) ∈ L(β, x0), with (an
0 , a

n
1 ) ∈ L(βn, xn

0 ): that is L is u.s.c. Moreover, since

one also has ‖a1‖ ≤ (2M
α

)
1
2 (cf lemma 6), L(β, x0) is a compact set.

2) Let us now show that L is l.s.c.

Pick (a0, a1) ∈ L(β, x0) and assume that (βn, xn
0 ) → (β, x0). Take (an

0 , a
n
1 )

with an
0 = a0 and (an

0 , a
n
1 ) ∈ L(βn, xn

0 ),∀n. Then the corresponding optimal se-
quence ({an

t }∞t=0)n has a subsequence that converges to, say, {at}∞t=0. In fact,
every subsequence converges to this limit, or else (Qβ

∞) would have several
solutions, which is impossible since the objective is strictly concave. That is
(an

0 , a
n
1 ) → (a0, a1).
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6.2 Proof of lemma 10

By proposition 9, {gT}T≥1 converges uniformly to g on [β0, 1]×X and ∀T,DgT

is well-defined on [β0, 1]×X.

Pick (β, x0) ∈ [β0, 1] × X. Define xt := gβ,t(x0),∀t and let LT (β, x0) be de-
fined by:

LT (β, x0) = {(a0, a1) ∈ IR2n with ‖a0‖ = 1 s.t. ∃{aT
t }t≥0 which satisfies:

D21u(xt−1, xt).a
T
t−1 + [D22u(xt−1, xt) + βD11u(xt, xt+1)].a

T
t +

βD12u(xt, xt+1).a
T
t+1 = 0,∀t = 1, ..., T − 1.

T−1∑
t=0

βt[1
2
(aT

t , aT
t+1)

′D2u(xt, xt+1)(a
T
t , aT

t+1) ≥ −M}

It is clear that ∀T, LT+1(β, x0) ⊂ LT (β, x0) and that, as in lemma 9, ∀T, LT (β, x0)
is u.s.c.. Moreover, L(β, x0) =

⋂
T≥1

LT (β, x0). Then, ∀(β, x0) ∈ [β0, 1]×X,

∀ε > 0,∃T0 such that ∀T ≥ T0, d(LT (β, x0), L(β, x0)) < ε
9
, where d denotes the

Hausdorff distance.

(i) Let us first show that LT (β, x0) converges uniformly to L(β, x0).

L(β, x0) depends continuously and LT (β, x0) depends upper semi-continously on
(β, x0), and L(β, x0) ⊂ LT (β, x0), the function (β, x0) → d(LT (β, x0), L(β, x0))
is u.s.c. on [β0, 1] × X. One also has ∀(β, x0), lim

T→+∞
d(LT (β, x0), L(β, x0)) =

0. Then, ∀x0,∀β, ∃T0 such that d(LT0(β, x0), L(β, x0)) < ε
9
. Moreover, since

(β, x0) → d(LT0(β, x0), L(β, x0)) is u.s.c., there exists a neighborhood V(β, x0) of
(β, x0) such that ∀(β ′

, x) ∈ V(β, x0), d(LT0(β
′, x), L(β′, x)) < ε

9
.

Since L(β, x0) ⊂ LT+1(β, x0) ⊂ LT (β, x0),∀T , then one finally has that ∀T ≥
T0,∀(β

′
, x) ∈ V(β, x0), d(LT (β

′
, x), L(β

′
, x)) < ε

9
. But, since [β0, 1]×X is a com-

pact set, T0 can be chosen independently of the neighborhood V(β, x0) and one
obtains ∀ε > 0,∃T0 such that ∀T ≥ T0,∀(β, x0) ∈ [β0, 1]×X, d(LT (β, x0), L(β, x0)) <
ε
9
.

(ii) Let us show that the sets LT (β, x0) are equicontinuous.

We already know that L(β, x0) is continuous and compact-valued. Let ε > 0.
Then the compact set [β0, 1]×X may be covered by a finite number of open neigh-
borhood (Vi)

m
i=1 such that ∀(β, x0), (β

i, xi
0) ∈ Vi, d(L(β, x0), L(βi, xi

0)) < ε
9
. Then

using the triangle inequality with (i), one obtains that ∀T ≥ T0, d(LT (β, x0), LT (βi, xi
0)) <

ε
3
.
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(iii) Uniform approximation of the sets Gβ
T (x0) to LT0(β, x0)

Let
Gβ

T (x0) = {(a0, a1) ∈ IR2n with ‖a0‖ = 1 s.t. a1 = Dgβ
T (x0).a0}.

Observe that

Gβ
T (x0) = {(a0, a1) ∈ IR2n with ‖a0‖ = 1 s.t. there exist a1, a2, ..., aT−1, aT

which satisfy the first-order conditions of lemma 5 }.

By lemma 4, {gβ,t
T }T converges uniformly to gβ,t, LT0 is an u.s.c. correspon-

dence, then by lemma 5, the first order conditions of this lemma and lemma 6,
∀(β, x0),∀ε > 0,∃T1 ≥ T0 such that ∀T ≥ T1, G

β
T (x0) is contained in the ball

centered in LT0(β, x0) of radius ε
3
.

Moreover, since gβ,t is continuous and {gβ,t
T }T converges uniformly to gβ,t, then

the upper semi-continuity of LT0 implies that ∀ε > 0,∀(β, x0),∃V(β, x0) a neigh-

borhood of (β, x0) and T1 such that ∀(β′, x) ∈ V(β, x0),∀T ≥ T1, G
β′

T (x) is con-
tained in the ball centered in LT0(β, x0) of radius ε

3
.

Then, using if necessary a finer finite open cover than (Vi)i=1,..,m, one has that

∀Vi,∃(βi, xi
0),∃T1 ≥ T0 such that ∀(β, x0) ∈ Vi,∀T ≥ T1, G

β
T (x0) is contained in

the ball centered in LT0(β
i, xi

0) of radius ε
3
.

Moreover, the compactness of [β0, 1] × X allows us to choose T1 independently
of Vi.

(iv) Gβ
T (x0) converge uniformly to L(β, x0).

Let (β, x0) be in [β0, 1]×X. Then there exists i such that (β, x0) ∈ Vi, and then
one has that ∀T ≥ T1, G

β
T (x0) is contained in the ball centered in LT0(β

i, xi
0)

of radius ε
3
. Moreover, by (i) and (ii), one has d(LT0(β, x0), L(β, x0)) < ε

9
and

d(LT0(β
i, xi

0), LT0(β, x0)) < ε
3
. Then, ∀T ≥ T1,∀(β, x0), G

β
T (x0) is contained in

the ball centered in L(β, x0) of radius ε.

(v) Define the matrix M as the following: its ith column is the unique vec-
tor bi ∈ IRn such that (ai, bi) ∈ L(β, x0) with ai = (0, 0, ..., 0, 1(i), 0, ..., 0). Then,

(iv) implies that the sequence of matrix {Dgβ
T (x0)}T≥1 converges uniformly to

the matrix M . Then, that is M = Dgβ(x0), and (β, x) → Dgβ(x) is continuous
in any β ∈ [β0, 1], x ∈ X.
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