Promoting reflective interactions in a computer-supported collaborative learning environment
Michael Baker, Kristine Lund

To cite this version:

HAL Id: halshs-00195341
https://halshs.archives-ouvertes.fr/halshs-00195341
Submitted on 10 Dec 2007

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Promoting reflective interactions in a computer-supported collaborative learning environment

M. J. Baker & K. Lund
CNRS & University of Lyon 2, UMR-GRIC, COAST research team

Abstract.
Engaging in reflective activities in interaction, such as explaining, justifying and evaluating problem solutions, has been shown to be potentially productive for learning. Here we address the problem of how these activities may be promoted in the context of computer-mediated communication with respect to a modelling task in physics. We present the design principles of two different communication interfaces. The first allows free text to be exchanged, and the second structures the interaction by providing a restricted set of communicative acts. Comparative analyses of interaction corpora produced with the two communication interfaces are then described. The analyses show that use of the second structured interface in performing the problem-solving task is feasible for students, and that it promotes a task-focused and reflective interaction. In conclusion we discuss the different resources provided by different media and the relative degrees of effort that their use requires.

Keywords: Collaborative problem-solving, reflection, computer-mediated communication, dialogue, speech act theory.

Introduction
Over the past decade there has been a shift of emphasis in research on collaborative learning (Dillenbourg et al., 1995). The study of the conditions under which pairs learn more effectively is now combined with a growing interest in more process-oriented studies of the dynamics of collaborative interactions themselves (e.g. Resnick, Levine and Teasley, 1991). Within this interactionist paradigm, the commonly shared hypothesis is that specific types of interaction may engender equally specific types of learning. For example, interactions in which verbal conflicts are cooperatively resolved (Maverech & Light, 1992; Baker, 1996) may lead to restructuring of knowledge, and those in which subjects verbalise task-related explanations may lead to deeper conceptual understanding (Chi & VanLehn, 1991). A common factor of many such types of interactions is that they involve metacognitive processes such as mutual regulation and reflection on the foundations or understanding of the problem-solving activity (Brown, 1987).

The design of Computer-Supported Collaborative Learning ("CSCL") environments - especially those where students work and communicate at a distance via a network - offers specific advantages for research on the cognitive effects of interactions. When students collaborate side-by-side at a computer, the usual approach is to study the verbal interactions that turn out to be produced under certain conditions and to attempt to relate features of them to possible learning effects. In the case of CSCL environments, we have the possibility of controlling or structuring the computer-mediated interaction itself, in the attempt to favour the incidence of certain forms of it rather than
others.

The latter approach is the one that has been adopted in the research described here. We examine the extent to which **reflective interactions** - those that involve explanation, justification and evaluation - are promoted by two different communication interfaces, used with the same CSCL environment. The first interface ("dialogue-box") allows free typewritten text to be exchanged between learners, whilst managing interaction control; the second ("structured") promotes an interaction of a certain form using interface buttons for specific speech acts. The CSCL environment is called "C-CHENE"1 (Lund, Baker & Baron, 1996; Baker & Lund, 1996), and is designed to support qualitative modelling of energy in physics.

In the rest of the paper we first describe our general approach to structuring interactions in a CSCL environment, then the environment itself, together with the two communication interfaces with which it may be used. We then present comparative analyses of interaction corpora generated with the two interfaces, with a view to identifying to what extent reflective interaction is promoted. We conclude with further work on interaction design in CSCL environments.

Structuring collaborative problem solving interactions

Previous research on structuring interactions

Two main approaches to constraining interactions towards forms that promote learning have already been described in the literature. The first is termed "scripting" (e.g. Webb, et al., 1991; see also Reinhard et al., this special issue), which involves requiring subjects on most or all occasions to make a particular type of speech act in a specific context. For example, all domain-related assertions must be followed by explanations of them. This has been shown to produce strong positive learning effects. Although this is effective in the context of experiments in educational psychology, it is not obvious that it constitutes a suitable pedagogical approach. Although explanation may promote learning it is possible that enforcing it on all occasions could be demotivating, it could interrupt the process of co-constructing solutions in interactions and lead to rather uneconomical communication (e.g. re-explaining what has already been explained). The decision as to when it will be preferable to request explanation, in a real-life learning situation, may thus be a complex matter that requires deeper understanding of interaction contexts.

The second approach that has been described involves constraining a particular space of 'legal' speech act sequences using a dialogue grammar. For example, Winograd (1988) has described a communication tool called "The Coordinator" that uses a set of augmented transition network grammars to constrain the different speech act sequences that may be performed in different types of "conversations" within work settings (for example, "conversations for action", "conversations for clarification", or "conversations for orientation"). Okamoto, et al., (1995) have described similar grammars for use in collaborative learning settings.

From a theoretical point of view, dialogue grammars are somewhat contentious. It now seems clear that there can be no such thing as a descriptive grammar of dialogue (see e.g. Good, 1989). Firstly, the lexical

1 "CHENE" = CHaîne ENErgétique = Energy Chain. "C-CHENE" = "Collaborative CHENE".
items used by such a grammar - speech acts - are inherently ambiguous, given the multifunctionality of utterances (Sadock 1994) and the fact that speech act status in interaction is open to negotiation and retrospective interpretation (Edmondson, 1981). Secondly, the notion of well-formedness, developed for the phrase level, can not be extended to the supra-sentential level of sequences of utterances produced by distinct speakers. There is nothing that is necessarily ill-formed about a dialogue in which assertions are not explained, or questions not answered, simply because other goals may take precedence, or because the topic of the initial speech act may no longer be the focus of the discussion. At best, one can establish a system of expectations. Since the links between successive utterances in dialogue are not wholly dependent on their grammatical structure they depend rather on attentional and intentional structures (Grosz & Sidner, 1986). This does not of course preclude the use of a dialogue grammar for hierarchically constructing dialogue histories.

A final possibility is that a dialogue grammar could be used in a normative way, i.e. as a model of how the dialogue should be structured if a given extra-interactional goal is to be achieved. In the case considered here, the aim would be to propose a "dialogue for learning" (Lund, Baker & Baron, 1996), i.e. one that constrains the dialogues to preferred forms that generally promote learning. Our research described here may be viewed as an intermediary step towards defining such a normative grammar.

Our theoretical approach: flexible structuring

Our main research goal is to determine how to design a system that structures the collaborative interaction between learners so as to favour the incidence of "preferred collaborative interaction patterns", i.e. those that have been shown to potentially favour learning, on the basis of previous research. Very few precise guidelines can be abstracted for defining such patterns from existing research, and these are relatively general when compared with the degree of specificity required for a computer implementation. The following are three plausible examples that are so prevalent in the literature that they hardly require supporting citation:

1. **Task-focussed**. Prefer an interaction that is oriented towards the problem-solving task (rather than on how to use the interface, controlling the interaction, off-task talk, …)
2. **Symmetrical Interaction**. Prefer an interaction in which both partners make relatively equal contributions to producing intermediary problem solutions (joint participation is required for learning)
3. **Reflective**. Prefer an interaction in which partners do not simply state problem solutions, but rather where they attempt to explain, evaluate and/or justify them.

In the subsequent sections of the paper we concentrate on possibilities 1 and 3: *to what extent do the communication interfaces promote interactions that are task-focussed and reflective?* By doing so, we explore a specific computer implementation that aims to support these types of examples of preferred collaborative interaction patterns.

The approach that we describe here, termed *flexible structuring* - involves attempting to steer a middle way between complete constraint on the interaction, and total absence of constraints. It involves the following two aspects:
1. providing a restricted set of communicative acts\(^2\) that can be used in
 the interaction, without necessarily enforcing their use in given
 contexts;
2. providing flexible constraints and guidance on the use of certain
 communicative act sequences in specific dialogue contexts.
Here we address only the first point (but see Lund, Baker & Baron,
op.cit.).

Flexible structuring has three main potential advantages:
1. the provision (explicit representation) of certain communicative acts
 (such as "Why?") could encourage the students to use them;
2. a specialised communication interface based on graphical interaction
 could lighten students' typing load and facilitate coordination, thus
 potentially allowing a more task-focussed and reflective interaction;
3. from the system’s point of view the specialised interface allows
 some natural language understanding problems to be avoided (the
 communicative act performed, together with its links to the dialogue
 history is rendered explicit by the students) and would facilitate an
 automated belief-modelling task.

Design approach

We adopted a standard approach to system development used in
human-computer interaction research, an approach characterised by iterations
of the cycle: (re)design, implementation, and evaluation. Following Hutchins, et al., (1986), system design is carried out with a mind to reducing
the Gulfs of Execution (from user's goals to system) and Evaluation (from
system to user's goals). Two development cycles are described here, with
respect to two communication interfaces. The theoretical principles of the
designs and implementations, derived from dialogue theory, are described in
subsequent sections of the paper.

Our approach to evaluating the C-CHENE CSCL system exploits the
fact that it is designed to facilitate computer-mediated interaction between
human learners. Our evaluation is therefore based on analysing the qualitative
aspects of the interaction that learners produced whilst using the system. The
interaction corpora were collected in situations that are relevant to educational
practice. It is therefore important to note that the results of these analyses,
presented later in the paper, are designed to enable us to appreciate the extent
to which our system is adapted to the users' needs in our specific
collaborative learning situation. Our results are intended to inform re-design
of the system, rather than to test hypotheses within a controlled experiment.

Within the first development cycle, we collected a corpus of face-to-
fame interactions between students working in pairs at a single computer on
the energy chain task, within the constraints of a physics classroom
(Megalakaki & Tiberghien, 1995, http://). Clearly, many phenomena of such
verbal interactions can not be directly transferred to the Computer-Mediated
Communication (CMC) situation (see e.g. Cohen, 1984). We rather viewed
the corpus as a rich source of phenomena from which we could transpose the
basic communicative and collaborative problem-solving functions to the
CMC situation (see subsequent discussion). On the basis of analysis of
collaborative interaction patterns and communicative functions (see Baker,
1994, 1995), together with existing dialogue theory, we designed,
implemented and evaluated a first "dialogue-box" CMC interface. The

\(^2\) With Bunt (1989), we use the term "communicative" rather than "speech" act in order to avoid the association of
the latter with exclusively spoken language.
different constraints of this medium obliged us to transpose and modify the instantiation of interaction management functions such as turn-taking and interruptions. Analysis of the dialogue-box interaction corpus revealed, for example, that a restricted set of collaborative interaction patterns were used (the students mostly adopted a "you construct then I'll comment" pattern, and the interactions displayed few reflective activities).

A second development cycle was therefore put into effect, based on the idea that structuring the interface might alleviate coordination and written utterance production problems, thus allowing the emergence of richer collaboration patterns and a more reflective interaction. Analysis of the set of communicative acts used in the dialogue-box corpus thus led to design, implementation and evaluation of the second structured interface.

To recapitulate, we began from interaction forms that have been shown to relate to collaborative learning (i.e. reflective and task focussed interaction), attempted to design and implement communication interfaces that promote the generation of such forms, and evaluated the extent to which such forms are in fact generated in the interaction corpus.

We chose to design and implement our own communication interfaces, rather than use existing CMC technologies in conjunction with the energy-chain construction interface, for a number of reasons. Firstly, we want to be able to experiment with as many aspects of the communication interface as possible. Secondly, we designed and implemented our own interfaces with a view to implementing an underlying automatic modelling and guidance system. Finally, within the implementation we were able to make a strong integration between the problem-solving and collaboration/communication tasks at the interface level. Although this approach makes the communication interface less generic, we made the hypothesis that with such an integration learners would view communication as intrinsic to the collaborative problem-solving task.

C-CHENE - a CSCL for modelling energy in physics

C-CHENE was developed within a long-term research project on the teaching and (collaborative) learning of the activity of modelling in physics (see e.g. Tiberghien, 1994; Bental & Brna, 1995; Baker & Bielaczyc, 1995; Devi et al., 1996). The specific task studied requires students to (co-)construct qualitative models for energy storage, transfer and transformation ("energy chains") for simple experiments, using a specially designed graphical interface. The students are also provided with real experimental apparatus (e.g. a bulb connected to a battery via two wires), and a text that gives basic definitions of energy, together with a set of syntactic rules to which energy chains must conform (e.g. "A complete energy chain must start and end with a reservoir")3.

Figure 1 shows an example energy chain that was drawn by two students using a dialogue-box communication interface, for a real experiment where a bulb was connected to a battery by two wires. For reference, a correct energy chain for this experiment is shown below the students’ solution.

3 See Tiberghien & de Vries, this issue for more details on the task and teaching sequence.
Students’ energy chain:

![Energy Chain Diagram]

A correct solution:

![Correct Energy Chain Diagram]

Figure 1. An energy chain for the battery-wires-bulb experiment, drawn by two students using a dialogue-box communication interface (correct solution shown below for reference).

The errors in the students’ solution illustrate several important difficulties that they experience with this task. Firstly, there is not always a one-to-one matching between model elements and entities in the experimental field. Thus, the students have (wrongly) assumed that the two wires must correspond to two energy transfers. Secondly, the students have confused electrical current with energy (the conducting wire transfers go round as if in an electrical circuit). Finally, elements of the model may correspond to entities that have no determinate physical location, such as the environment. The students thus spontaneously invented other determinate physical objects (eyes, body) to correspond with the final reservoirs.

In the problem-solving situation studied, students worked in pairs at a distance in a network, each having their own real physics experiment available, as well as text describing the problems to be solved. Each student in a given pair had the same graphical interface and the same communication interface, both developed in Hypercard™. These interfaces were projected simultaneously onto the students' computer screens using MAE™ and ShowMe™ on SUN Sparc stations. The students (16-17 years old) constructed their energy chains together in this graphical interface and all of their discussion took place via specially designed communication interfaces.

Designing the collaborative problem-solving interaction

The students using C-CHENE have to perform two main interdependent cognitive tasks: solve the problem (modelling in physics), and collaborate.
The latter requires that they communicate in order to exchange domain-related information, coordinate actions and reach agreement. In this section we describe the communicative possibilities that the system offers to the students to enable them to perform these tasks, together with the underlying model of collaborative dialogue.

The dialogue-box communication interface

Figure 2 shows a screen dump of the dialogue-box interface in C-CHENE. The full screen is divided into two parts from top to bottom, by two buttons for shifting mode between "construct" ("construire") energy chains and "communicate" ("communiquer").

In "construct" mode, menus appear which contain items for graphically constructing energy chains ("create", "name", "delete", "move", ...), and use of the lower "communicate" area is blocked. The "communicate" area is activated by the button "communiquer" (communicate), which blocks construction above by hiding the menus. The "communicate" screen area contains three windows (in addition to a button for terminating the exercise) : one dialogue-box for each of the two students (below left and right) and a dynamically updated dialogue history trace (above, middle). Students type their messages in their respective dialogue-boxes, then 'send' them by hitting the tabkey, which clears the message in their box, adding it to the end of the
dialogue history. It also closes their own dialogue-box and opens that of the other student. The students can observe all actions on screen (construction or communicate) of each other, in real time.

The possibility of interruption is provided in all situations, and is performed by clicking on the "communiquer" or "construire" buttons in the middle of the screen. For example, if student1 is typing in his/her dialogue-box, student2 can interrupt in order to communicate by clicking the "communiquer" button, or interrupt to construct by clicking on the "construire" button, and so on for other cases (e.g., construct -> construct, construct -> communicate,…). On interruption, a dialogue-box appears saying "May I interrupt?", providing "yes" or "no" as alternative buttons for the initial speaker/constructor. If the interruption is not accepted, control remains with the initial speaker, otherwise it is given to the interruptor.

The design of this interface was based on the fact that whereas in face-to-face/side-by-side collaborative activity it is possible to speak and act in parallel (e.g., speaking whilst demonstrating an action, overlapping speech, …), in the CMC situation studied here this is not possible. The main goal was therefore to alleviate additional coordination problems. Thus, the rendering explicit (and enforcement) of construct / communicate mode switching was intended to remind students that it is not possible to communicate and construct at the same time. Similarly, the flipping between dialogue-boxes was intended to enforce strict turn-taking (with possibility of interruption), i.e., it would always be clear who was communicating at any given moment.

The dialogue history is viewed here as an important resource in collaborative dialogue since it provides a common objective reference to previous activity (unlike most spoken dialogues) that may encourage reflection and more effective collaboration (Collins & Brown, 1988; Katz & Lesgold, 1993). This is one way of exploiting an advantage of this communication medium in comparison with spoken interactions.

The structured communication interface

Figure 3 shows the communication window of the second structured communication interface (redrawn since the original is in French). It shows the set of communicative act buttons that replace the dialogue-boxes of the first interface.
As with the dialogue-box interface, the full screen is divided into construction and communication areas. The lower part of the latter contains a set of communicative acts (hereafter, CA) for each student to use, and the upper part the ongoing dialogue history, displayed for the students as before.

The CA buttons are grouped according to their function with respect to the collaborative interaction, in order to impose a more easily understandable structure on what would otherwise be a (long) heterogenous list of buttons.

Once the student has clicked on a specific button, one of three things happens:

1. for certain buttons, relating directly to the energy chain construction task, a set of hierarchical menu choices is presented. For example, after clicking [I propose to …] the student is given choices that correspond to menu choices in the construction screen area, such as <Create a reservoir>;

2. some buttons, relating to interaction management (e.g. [Ok]) simply send the corresponding message into the visible dialogue history;

3. finally, some buttons (such as "I think that …") allow the student to type free text in a small dialogue-box window (as before, the text is sent to the dialogue history).

As with the dialogue-box interface, all actions are added, numbered and time-stamped, to the end of the dynamic dialogue history.

The set of CA buttons provided was designed on the basis of analysis of a corpus of dialogue-box interactions with C-CHENE, existing models for information dialogues (Moeschler, 1985; Bunt, 1995) and for collaborative problem-solving interactions (Baker, 1994).

Bunt (op.cit.) makes a distinction between task-oriented CAs, whose primary function is to accomplish the task external to the dialogue (e.g. transfer of information, problem-solving), and dialogue control CAs, the function of which is to keep the dialogue itself 'on track'. The latter category includes classes of acts for giving feedback on attitudes (agreement, disagreement), perception and understanding, and others for structuring the dialogue (e.g. opening and closing, time management, etc.). This fundamental
A second important distinction is between *initiative* and *reactive* CAs (Moeschler, op.cit.). This is reflected in the different types of *semantic content* of CAs. Firstly, initiative acts, such as [I propose to...] generally have a *propositional* content, that is determined by selection on a hierarchical set of menus that are displayed once the button is clicked. For example, following [I propose to...], the student can select one of {<create a reservoir>, <create a transformer>,...}. Other acts refer either to the *dialogue itself* (e.g. [Are we done?]) or to propositions stated in previous CAs (e.g. [Why?] refers to a previously asserted proposition). Finally, some CAs will have a content that is a (presently unanalysed) free text string (e.g. [I think that...] ”the battery should be a reservoir”).

Finally, a third distinction is made in terms of the type of *communicative act* concerned (e.g. QUESTION, REQUEST, ASSERTION). In terms of these three distinctions, [I propose to...] is, for example, *task-oriented* (it is designed to achieve the problem-solving task), *initiative* (it does not necessarily react to a previous CA), and has an OFFER communicative function (see Baker, 1994).

An empirical study of the interfaces

The situation studied

We performed empirical studies, in the laboratory, with pairs of students using both interfaces (dialogue-box and structured). The main aim was to study the extent to which the two interfaces led to generation of different CAs. The subjects were secondary school students (16-17 years old) for whom participation in the experiment constituted an extra-curricular instruction on energy and modelling. Within these constraints we were initially able to work with sixteen students (eight pairs), where four pairs used the dialogue-box interface and four pairs the structured one.

The students were asked to study a short text describing the elements of the energy chain model, together with the principle of conservation of energy and a set of rules to be respected in constructing energy chains (e.g. “a complete chain must start and end with a different reservoir”). Once assigned to ”friendship pairs”, students then were each seated at separate computers (SUNS linked by ShowMe™) where visual and auditory contact was prevented. The students carried out three experiments and constructed three energy chains successively, during a session that lasted 3 hours. Automatic traces of their interactions were recorded for analysis (around 24 hours of automatically transcribed interaction in all).

Analysis approach

The analysis categories were designed to enable us to provide preliminary answers to the following types of questions with respect to the corpus :

Comparing dialogue-box and structured interface interactions

- What was the relative proportion of graphics actions vs communicative acts (CAs) ?
- What was the relative proportion of interaction control vs task-focussed vs social acts ?
- What was the relative proportion of CAs that express intermediary problem-solution vs those that express reflective activities ?
We developed a simple and operational set of analysis categories and subcategories, as shown in Figure 4 (see also Table 1 for examples of utterances within categories).

1. interface actions
2. graphical construction
3. communicative acts
4. "social" (off task)
5. collaborative problem-solving oriented
6. interaction control
7. task-focussed
8. intermediary problem solutions
9. reflective
10. evaluations
11. explanations
12. reasons (for / against)

Figure 4. Analysis categories and subcategories.
Table 1
Analysis categories with examples.

<table>
<thead>
<tr>
<th>Category Number and Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. graphical construction</td>
<td>"transformer created : transformer1"</td>
</tr>
<tr>
<td>4. CA: "social" (off-task)</td>
<td>"You should stop drinking and smoking!"</td>
</tr>
<tr>
<td>6. CA: interaction control</td>
<td>"Are you there?"</td>
</tr>
<tr>
<td>8. CA: intermediary problem-solutions</td>
<td>"I propose to create a reservoir."</td>
</tr>
<tr>
<td>10. CA: reflective : evaluations</td>
<td>"I think that we weren't far from the right solution."</td>
</tr>
<tr>
<td>11. CA: reflective : explanations</td>
<td>"Because the current goes from the battery to the bulb."</td>
</tr>
<tr>
<td>12. CA: reflective : reasons</td>
<td>"Yes, but in the experiment there's only one battery."</td>
</tr>
</tbody>
</table>

In the following, we briefly explain the categories shown in Figure 4. Category 1 contains all of the interaction. It is subdivided into categories 2 and 3 that refer to use of the interface's construction and communication modes, respectively.

Category 3 (communicative acts, hereafter CAs) is separated into category 4 ("social") and category 5 (collaborative problem-solving oriented). The former includes jokes, chatting about everyday life, etc. while the latter is directly related to collaborative problem solving.

Collaborative problem solving breaks down into category 6 (interaction control) and category 7 (task-focussed). Category 6 contains CAs whose function is to control some aspect of the problem-solving or communicative activities themselves (e.g. controlling who will speak or perform an action, feedback on agreement, perception, …). Category 7 contains CAs that refer directly to some aspect of the energy chain construction task.

Category 7 is divided in turn into category 8 (intermediary problem-solution) and category 9 (reflective). Problem solution utterances contain CAs that refer directly to problem solutions. And finally, reflective utterances contain task-focussed statements that do not fall into category 8.

In effect, category 9 was initially defined by process of elimination. It contains a number of different phenomena, relating to reflection on the task. We identified three main categories. Category 10 (evaluations) contains statements about the acceptability, plausibility or degree of certainty of the solution as well as statements about understanding. Category 11 contains explanations and category 12 contains reasons for and against within an argumentative context. Categories 11 and 12 contain some overlapping utterances (see next paragraph) but were in general distinguished in the following way: a reason has the object of modifying a belief value regarding a statement while an explanation deals with the "why" of the statement (Grize, 1996). The part in italics of the example statement "I think we should create another reservoir, like the energy model says at the end.", is classified as a reason since it is to be viewed as support for creating a reservoir. On the other hand, the utterances in italics of the following example dialogue A) "What do you call a reservoir of energy?" B) "The falling weight makes the thing turn and then it's transformed into energy and goes to the motor." are classified as explanations because student B is attempting to clarify for student A what he means by a reservoir of energy.

Applying the categories required segmenting utterances into CAs based on separable semantic contents and sentence forms markers (eg ":?"). The CAs were subsequently classified in terms of both problem-solving task domain and communicative intention. Some categories are necessarily
partially overlapping (multifunctionality of utterances). For example, an utterance such as "You go ahead and construct a reservoir for the battery" is clearly task-focussed[7] / intermediary problem-solution[8] since it makes some statement about what the solution is, but it is also interaction control[6] since it is proposing who should actually perform that interface action. In these cases the communicative act was counted twice, i.e. for each communicative function, in 8 and in 6 (Bunt, 1989).

Results and Interpretation

The main results of our analyses of the data are shown in Figures 5, 6 and 7 below, comparing the two interfaces described above. The bar charts show average numbers of actions and CAs for four dialogue-box interactions compared with four structured interface interactions.

There were no major differences in the quality of the energy chain solutions produced between pairs and interfaces; our work in fact concentrates on understanding qualitative differences in the nature of the interactions in the compared situations.

Figure 5. Average numbers of communicative acts and graphical actions with the two interfaces.

Figure 6. Average numbers of task-focussed, interaction control and social communicative acts with the two interfaces.
Bearing in mind the restricted nature of the data, the following points arise from the above figures.

1. the balance between communication and graphical action remained approximately the same with the two interfaces;
2. the amounts of interaction control acts and social acts produced with both interfaces were approximately the same;
3. the amount of task-focussed CAs and intermediary problem-solution CAs produced with the structured (hereafter, S) interface was higher (around twice as much) than with the dialogue-box (hereafter, DB) interface, i.e. the structured interface promoted a more task-focussed interaction;
4. the number of reflective CAs produced with the S interface was higher than that produced with the DB interface, although in both cases the number was quite small, i.e. the structured interface promoted a (slightly) more reflective interaction;

Although the first two points might indicate that there was no real difference in the relative ease of interaction management between the two interfaces, this may in fact be due to the fact that - paradoxically - it is easier to perform a control act with the DB interface (simply clicking on a button).

The third and fourth points indicate that, in comparison with the DB interface, the S interface appears to allow an interaction that is based to a greater extent on task-focussed and reflective communication, i.e. proposing problem solutions and thinking about them.

Discussion

The main outcome of our empirical study is that the structured interface is able to promote an interaction that enables learners to effectively collaborate in problem-solving, using flexibly structured CMC. The interactions produced with the structured interface are more task-focussed and reflective than those produced with the dialogue-box one. Such an outcome was not at all obvious to us at the outset of designing the structured interface, largely because it was not clear to what extent learners would be able to auto-classify their communicative action. Although this outcome must be considered with
caution, given the relatively small size of the interaction corpora, it is nevertheless encouraging for future re-design of the C-CHENE system.

There seem to be two main possible (and related) lines of explanation for the outcome of our study: "production costs", and "explicitness" in communication (and cognition). Clark & Brennan (1991) point out that different media bring different resources and constraints on "grounding" (the process of attaining mutual understanding in communication), as well as having different associated "costs" (i.e. the amount of effort required). Clearly, the hypothesis is that the greater the "cost", given limited human cognitive resources, the less likely an action will be performed. The following types of costs may be important for explaining our results here:

1. production costs (how easy is it to articulate the message?)
2. asynchrony costs (to what extent is it easy to tell what is being responded to?)
3. speaker change costs (what effort is required to change speaker?)

One possibility would therefore be that the structured interface reduces costs along some or all of these dimensions, thus quite simply leaving more time and energy for engaging in task-focused and reflective activities. However, whilst it is plausible that production costs may be reduced in most cases with the structured interface, it is possible that the following cost, relating to explicitness in communication, may work against this factor:

4. formulation costs (how easy is it to decide exactly what to say?).

Thus, the fact that the students using the structured interface have to auto-classify their communicative action (which button to use now to say what I want to say?), may in fact increase the general effort required to use the interface. Alternatively, this auto-classification may itself trigger task-focused reflection ("What do I really want to say?"). We leave the attempt to decide between these possible explanations for future research.

Finally, there are important theoretical and deontological problems associated with the approach of constraining communication between social actors, and attempting to base this on a fixed set of speech acts. Suchman (1994) has argued against the pernicious effects of controlling computer-mediated communication in organisations, and against the notion of fixed categories of speech acts. We have two main general responses to these complex issues.

The first response is that given the varieties of speech act theory that exist, the one we adopt does not assume fixed and unidimensional categories. Speech acts are multidimensional. Every speech act, in context, operates at least on the three following dimensions: social commitment, expression of psychological states and representation of the world in a certain way (Sadock, 1994). For example, clicking on an "are you there?" button could, in a given context, express commitment to continuing the interaction, psychological frustration, and a representation of the interaction itself as 'stagnating'.

The second response concerns the interesting possibility for future research that students who really use a CSCL system over a long period of time, could be given the flexibility to partially structure their own interaction. Clearly, this would not be likely to occur with respect to specific learning tasks since they are usually only performed a few times. It would appear to be more likely for aspects of collaborative interaction that are common across tasks. For example, if for several tasks students discover that they frequently type requests for criticism of their proposals, then they may want to specialise.
a generic request button. The study of such a possibility would require large-scale integration of computer-based synchronous communication into educational practices.

Conclusions and further work

Our research suggests that it is feasible to flexibly structure interactions in CSCL environments in a sufficiently fine-grained way so as to favour certain forms of interaction, and in particular those that are task-focussed and concentrate on the reflective activities of evaluation, explanation and giving reasons. Clearly, such a project relies on existing research results on the relationships between interaction and learning. However, in future research it appears feasible to use CSCL environments as tools or "test-beds" for identifying other interaction structures that may relate to learning, in conjunction with experimental evaluation of associated learning effects.

For the present, our results are nevertheless restricted to a single task, and a restricted corpus. In future work we intend to extend the interface, and the CSCL environment, to support a wider range of tasks, and to continue our work on designing an automatic guidance model for collaborative activity. Such a model will be based on studies of teacher-student-student trilogues.

References

Acknowledgements

An earlier version of this paper was presented at the EuroAIED conference, in Lisbon (Baker & Lund, 1996). We would like to thank members of the COAST research team for assistance in carrying out experiments, and the director of the team, Andrée Tiberghien, for her remarks on this paper. This research is financed by the Centre National de la Recherche Scientifique, and has been partly carried out within the LERANT European Laboratory.