Earnings Dispersion, Risk Aversion and Education
Christian Belzil, Jörgen Hansen

To cite this version:

HAL Id: halshs-00180125
https://halshs.archives-ouvertes.fr/halshs-00180125
Submitted on 17 Oct 2007

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Earnings Dispersion, Risk Aversion and Education

Christian BELZIL
Jörgen HANSEN

Avril 2004
Earnings Dispersion, Risk Aversion and Education∗

Christian Belzil
Centre National de Recherche Scientifique (Gate),
93, chemin des mouilles, BP 167, 69131 Ecully,
France

Jörgen Hansen
Concordia University, Department of Economics,
1455 de Maisonneuve Blvd. W. Montreal, Quebec,
H3G 1M8, Canada
Phone: (514) 848-2424 ext. 3924
Fax: (514) 848-4536
February 12, 2004

∗We would like to thank Michael Sampson, Sol Polachek and two anonymous referees for helpful comments, suggestions and discussions. We also thank the Social Sciences and Humanities Research Council of Canada for generous support.
Abstract

We estimate a dynamic programming model of schooling decisions in which the degree of risk aversion can be inferred from schooling decisions. In our model, individuals are heterogeneous with respect to school and market abilities but homogeneous with respect to the degree of risk aversion. We allow endogenous schooling attainments to affect the level of risk experienced in labor market earnings through wage dispersion and employment rate dispersion. We find a low degree of relative risk aversion (0.93) and the estimates indicate that both wage and employment rate dispersions decrease significantly with schooling attainments. We find that a counterfactual increase in risk aversion will increase schooling attainments. Finally, the low degree of risk aversion implies that an increase in earnings dispersion would have little effect on schooling attainments.

Key Words: Dynamic Programming, Returns to Education, Risk Aversion, Human Capital, Earnings Dispersion

JEL Classification: J2-J3.
1 Introduction

The acquisition of general human capital through education is one of the most important activities by which young individuals increase their potential lifetime earnings. While enrolled in school, individuals typically receive parental support and give up current earnings in favor of potentially higher future earnings. Parental transfers can take the form of housing services and other living expenses (such as food and transportation) and are likely to be unaffected by those random elements affecting household income. As opposed to parental transfers, which are most likely non-stochastic from the perspective of young individuals, future earnings are usually unknown. Both wages and unemployment rates are random variables that may vary over the life cycle and their distributions are potentially affected by human capital. Indeed, it is well known that schooling can substantially reduce the incidence of unemployment over the life cycle and also increase lifetime earnings.

The effect of schooling on earnings dispersion (or wage and employment rate dispersion) is however more difficult to characterize. In stylized “implicit contract” frameworks, in which risk averse individuals are willing to trade wage rigidity against stable employment patterns, it is reasonable to assume that there is less need for risk sharing among low educated workers who benefit from a relatively high level of social insurance. However, at the same time, wage dispersion may also vary with factors such as union status, occupation type and the like. As a consequence, the link between education and wage/earnings dispersion is not trivial.

Modeling the level of risk involved in schooling decisions must however go beyond the effect of human capital on wages and employment and the difference in uncertainty between parental transfers and labor market wages. The possibility of interruption in the schooling accumulation process, due to various events such as health or personal problems, academic failure or other causes, can increase the risk associated with schooling as perceived by economic agents. This supplementary source of risk also needs to be taken into account when modeling schooling decisions.

Quantifying the effect of schooling on wage dispersion and employment dispersion is a complicated task. Indeed, a remarkably small number of authors have analyzed the impact of earnings uncertainty on schooling decisions. At the theoretical level, and in a standard two-period framework, Lehvari and Weiss (1974) find that income uncertainty will reduce schooling. Olson et al. (1979) specify and estimate a tractable model in which individuals may borrow and lend limited amount and must face a specific (and realistic) repayment scheme. They also stress the fact that earnings uncertainty may depress human capital investment. In the earlier literature, a few descriptive analyses of empirical age/earnings profiles have been carried out. Mincer (1974) investigates how the variance of earnings differs across schooling levels over the life cycle while Chiswick and Mincer (1972) use age earnings profile to investigate time series changes in income inequality.

As it stands now, there is no strong empirical evidence on the effect of ed-
ucation on wage/earnings dispersion. Most applied work has concentrated on the correlation between schooling and the first moment of the earnings distribution. In the literature devoted to the returns to schooling, the parameters of interest are often estimated from cross-section data. In such a framework, it is not possible to distinguish between unobserved individual ability and true wage dispersion and heteroskedasticity is usually ignored. Moreover, as schooling attainment is an endogenous variable, standard reduced-form techniques are ill-equipped to address wage heteroskedasticity. As a consequence, modeling schooling decisions and earnings dispersion in a context which allows for risk aversion requires the use of structural stochastic dynamic programming techniques.

Although the estimation of structural dynamic programming of schooling decisions has become increasingly popular (Keane and Wolpin, 1997; Eckstein and Wolpin, 1999; Belzil and Hansen, 2002; Sauer, 2003), very few economists have investigated schooling decisions in a framework which allows for risk aversion or consumption smoothing. Recently, labor economists (Cameron and Taber, 2001; Keane and Wolpin, 2001; Sauer, 2003) have investigated the links between education financing and consumption smoothing and, more particularly, the effects of borrowing constraints on schooling decisions. All of them present evidence suggesting that borrowing constraints have virtually no impact on schooling attainments. Empirical results reported in Cameron and Heckman (1998) also suggest that borrowing constraints (and parental income) have very little impact on schooling decisions as opposed to “long run factors”. However, as far as we know, the relationship between earnings dispersion (wage and employment rate volatility) and education has never been investigated.

Along with the subjective discount rate, the degree of risk aversion is one of the most fundamental preference parameters. For instance, knowledge of the degree of risk aversion can shed light on the welfare improvements of policies aimed at reducing income fluctuations over the business cycle. Until now, the empirical literature devoted to the measurement of the degree of risk aversion has been completely dominated by macroeconomists and financial economists. In financial economics, the degree of risk aversion and the discount rate are typically estimated in asset pricing frameworks using Euler equations. Usually, the estimates of the degree of relative risk aversion (within a power utility framework) range between 3 and 10 and represent a relatively mild degree of risk aversion. Indeed, these estimates are quite difficult to reconcile with actual data on long run average returns on risky and risk-free assets. Strangely enough, labor economists have been completely absent from the debate. This is surprising. In virtually all western countries, labor income accounts for a much larger share of total income than does investment income and, until very recently, macroeconomic policies have been aimed at reducing variations in labor income. As a consequence, measuring risk aversion from individual decisions affecting labor income appears a natural research agenda.

The main objectives of this paper are the following. First, it is to estimate the degree of risk aversion from a dynamic programming model of education choices in which individual preferences are set in an expected (non-linear) util-
ity framework and in which current schooling decisions affect lifetime earnings (wage and employment rate) dispersion. The model is based on the assumption that individual preferences are representable by an instantaneous power utility function and that individuals maximize the expected discounted value of lifetime utility over a finite horizon. Young individuals make optimal schooling decisions while taking into account that accumulated schooling affects both the first and the second moments of the lifetime distribution of earnings. As a consequence, the theoretical framework provides an opportunity to investigate both the degree of risk aversion and the rate of time preference as separate parameters.

The second objective is to evaluate how endogenous schooling attainments affect the variances of lifetime wages and employment rates. A third objective is to investigate the relationship between risk aversion and education (how does education change with a counterfactual change in risk aversion). Finally, our last objective is to evaluate how young individuals react to changes in the wage return to schooling, changes in school subsidies, changes in wage subsidies and changes in earnings dispersion.

The model is implemented on a panel of young individuals taken from the National Longitudinal Survey of Youth (NLSY). We find that young individuals have a low degree of risk aversion. The parameter estimate of the degree of relative risk aversion, 0.93, is just somewhat below the degree of risk aversion consistent with logarithmic preferences (objective 1). At the same time, our estimates of log wage and log employment rate regression functions indicate that, after conditioning on individual specific unobserved ability, wage dispersion and employment rate dispersion are highly heteroskedastic. More precisely, both wage and employment rate dispersions decrease with schooling (objective 2). This is consistent with the hypothesis that risk sharing agreements are more common among highly educated (high wage) workers. We also find that a counterfactual increase in the degree of risk aversion will increase schooling attainments (objective 3). Finally, the simulations indicate that schooling attainments are relatively more elastic with respect to school subsidies than to the return to schooling and, consistent with the low degree of risk aversion disclosed in the data, that an increase in earnings dispersion (an increase in the overall variance of wages and employment rates) will raise schooling by a relatively small number (objective 4).

The content of this paper is as follows. Section 2 is devoted to the presentation of the model while the empirical specification is discussed in Section 3. Section 4 contains a description of the data. After a discussion of the structural parameter estimates and the goodness of fit (Section 5), the links between risk aversion, risk and schooling are investigated in Section 6. In Section 7, we present some elasticities of schooling attainments with respect to the return to schooling, school subsidies, wage subsidies and earnings risk. Finally, conclusions are in Section 8.
2 A Stochastic Dynamic Programming Model

The theoretical structure of the model is presented in Section 2.1 while the solution is discussed in Section 2.2.

2.1 Theoretical Structure

Individuals are initially endowed with family human capital, innate ability and preference parameters. Given their endowments, young individuals decide sequentially whether it is optimal or not to enter the labor market or to continue accumulate human capital. The amount of schooling acquired by the beginning of date t is denoted S_t. When in school, individuals receive income support, denoted ξ_t. The income support should be interpreted as being net of learning and psychic costs and it is implicitly affected by individual abilities (ability in school). It is assumed to be non-stochastic. As argued before, this reflects the fact that parental transfers can take the form of housing services and other living expenses (such as food and transportation) and are typically unaffected by those random elements affecting household income.

We assume that individuals interrupt schooling with exogenous probability $\zeta(S_t)$. The interruption state is meant to capture events such as illness, injury, travel or simply academic failure and may vary with grade level. In practice, it is difficult to distinguish between a real interruption and an academic failure as some individuals may spend a portion of the year in school and a residual portion out of school, as a result of a very high failure probability. When an interruption occurs, the stock of human capital remains constant over the period. The NLSY does not contain data on parental transfers and, in particular, does not allow a distinction in income received according to the interruption status. As a consequence, we ignore the distinction between income support at school and income support when school is interrupted.

Each individual i is endowed with an instantaneous (per period) power utility function. The expressions for the instantaneous utility of being in school, $U^s(.)$, is as follows:

$$U^s(\xi_{it}) = \frac{\xi_{it}^{1-\alpha} - 1}{1-\alpha} \quad (1)$$

Once the individual has entered the labor market, he no longer receives parental support but receives a wage rate w_{it} and an employment rate e_{it} instead. The total income flow, while employed, is given by $Z_{it} = w_{it}e_{it}$.

The instantaneous utility of entering the labor market, $U^w(.)$, is given by

$$U^w(Z_{it}) = \frac{Z_{it}^{1-\alpha} - 1}{1-\alpha} \quad (2)$$

Individuals are risk averse (loving) when $\alpha > 0$ ($\alpha < 0$). Wage and employment rates are therefore perfect substitutes. Each individual maximize his expected discounted lifetime utility by choosing the optimal time to interrupt schooling and enter the labor market. The discount factor, β, is equal to $\frac{1}{1+\rho}$.
where \(\rho \) is the subjective discount rate. The time horizon, \(T \), is finite and is chosen to be when individuals turn 65 years old (a typical retirement age). Education affects both wage and employment rates and the wage regression equation is given as

\[
 w_{it} = \exp(\phi_0^w + \phi_1^w(S_{it}) + \phi_2^w \text{Exper}_{it} + \phi_3^w \text{Exper}_{it}^2 + \epsilon_{it}^w)
\]

(3)

where \(\phi_1(S_{it}) \) is a function that summarizes the local returns to schooling and

\[
 \epsilon_{it}^w \sim \text{i.i.d. } N(0, \sigma_w^2(S_{it}))
\]

is a stochastic shock that represents wage dispersion.

The employment rate equation is

\[
 e_{it} = \exp(\kappa_0 + \kappa_1 S_{it} + \kappa_2 \text{Exper}_{it} + \kappa_3 \text{Exper}_{it}^2 + \epsilon_{it}^e)
\]

with

\[
 \epsilon_{it}^e \sim \text{i.i.d. } N(0, \sigma_e^2(S_{it}))
\]

which represents employment rate dispersion. The dependence of both \(\sigma_e^2(S_{it}) \) and \(\sigma_w^2(S_{it}) \) on schooling attainment is crucial. It will allow us to measure how schooling decisions may be linked to wage and employment dispersion.

It is convenient to summarize the return to schooling in the following equation

\[
 \ln Z_{it} = \phi_0 + \phi_1(S_{it}) + \phi_2 \text{Exper}_{it} + \phi_3 \text{Exper}_{it}^2 + \epsilon_{it}
\]

where

\[
 \epsilon_{it} = \epsilon_{it}^w + \epsilon_{it}^e \sim \text{i.i.d. } N(0, \sigma^2(S_{it}))
\]

\[
 \phi_0 = \phi_0^w + \kappa_0
\]

\[
 \phi_1(S_{it}) = \phi_1^w(S_{it}) + \kappa_1 S_{it}
\]

\[
 \phi_2 = \phi_2^w + \kappa_2
\]

\[
 \phi_3 = \phi_3^w + \kappa_3
\]
2.2 The Solution

It is well known that the solution to the stochastic dynamic problem can be characterized using recursive methods. First, we must solve for the expected instantaneous (per period) utility and, secondly, we need to isolate the stochastic shocks (\(\varepsilon_{it} \)) in order to obtain a closed-form solution for the probability of choosing to continue school or to enter the labor market.

The value functions associated with the decision to remain in school, \(V_s^t(S_{it}) \), given that an individual has already acquired \(S_{it} \) years of schooling, can be expressed as

\[
V_s^t(S_{it}) = \frac{\zeta S_{it} - 1}{1 - \alpha} + \beta \left\{ (1 - \zeta(S_{it})) \max[V_w^t(S_{it} + 1), V_s^t(S_{it} + 1)] \right\}
\]

where \(d_{it} = 1 \) when the individual is in school at date \(t \) and \(E(V_{it+1} \mid d_{it} = 1) \) denotes the value of following the optimal policy in the next period (either remain at school or start working). The expectation is taken over the distribution of potential labor market wages and employment rates.

Given the absence of distinction between income during school interruption and income while at school, the value of entering a school interruption period, \(V_I^t(S_{it}) \), is expressed in a similar fashion as \(V_s^t(S_{it}) \).

The value of stopping schooling accumulation, which is the value of entering the labor market with \(S_{it} \) years of schooling and no labor market experience, is given by

\[
V_w^t(S_{it}) = \frac{\exp(\varphi_0 + \varphi_1(S_{it}) + \varepsilon_{it})}{1 - \alpha} - 1 + \beta E(V_{it+1} \mid d_{it} = 0)
\]

where \(E(V_{it+1} \mid d_{it} = 0) \) denotes the discounted expected value of lifetime earnings of starting to work in the labor market with \(t \) years of schooling, no labor market experience and \(T - t \) years of potential specific human capital accumulation ahead. Clearly,

\[
E(V_{it+1} \mid d_{it} = 0) = E \sum_{j=t+1}^{T} \beta^{j-(t+1)} \left\{ \frac{\exp(\varphi_0 + \varphi_1(S_{ij}) + \varepsilon_{ij})}{1 - \alpha} \right\}
\]

where

\[
w_{ij} = \exp(\varphi_0 + \varphi_1(S_{ij}) + \varphi_2 \text{Exper}_{ij} + \varphi_3 \text{Exper}_{ij}^2 + \varepsilon_{ij})
\]

Closed-form solution to the problem can be obtain by noting that

\[
E(V_{iT}) = EU(\exp(\ln(Z_{iT}))) = E\frac{\exp(\ln(Z_{iT}))^{1-\alpha} - 1}{1 - \alpha}
\]
and that
\[
\int_{-\infty}^{+\infty} \frac{(\exp(\ln(Z_iT)))^{1-\alpha} - 1}{1 - \alpha} f_T(\ln Z_i) \, d\ln Z_i = \\
\frac{\exp\{\mu_{iT}(1 - \alpha) + \frac{1}{2}\sigma_T^2(1 - \alpha)^2\} - 1}{1 - \alpha}
\]
where \(\ln(Z_i)\) is normal with parameters \(\mu_{iT}\) and \(\sigma_T^2\) and where
\[
\mu_{iT} = \varphi_0 + \varphi_1(S_{iT}) + \varphi_2\text{Exper}_{iT} + \varphi_3\text{Exper}_{iT}^2
\]
(8)

The expected utility of entering the labor market in any period can be solved using recursive methods (see Bellman, 1959 or, more recently, Stokey and Lucas, 1989).

3 Empirical Specification

In the sample data, everyone has at least 6 years of education, and as a consequence, we only model the decision to acquire schooling beyond six years. We also assume that the returns to accumulated education and experience at 65 (upon retirement) is 0 and that parental transfers are set to 0 upon entrance in the labor market.

3.1 The Utility of Attending School

Parental transfers are given by the following equation,
\[
\xi_{it} = \exp(X_{it}'\delta + v_\xi^i)
\]
(10)

The vector \(X_{it}\) contains the following variables: parents’ education (both mother and father), household income, number of siblings, family composition at age 14 and regional controls. The household composition variable (Nuclear Family) is equal to 1 for those who have been raised with both their biological parents (at age 14) and is likely to be correlated with the psychic costs of attending school. The geographical variables are introduced in order to control for the possibility that direct (as well as psychic) costs of schooling may differ between those raised in urban areas and those raised in rural areas and between those raised in the South and those raised in the North. The term \(v_\xi^i\) represents unobserved taste for schooling and is described in Section (3.4).

3.2 Wages and Employment Rates

Observed wages, \(\ln \tilde{w}_{it}\), are assumed to be the sum of the true wage (\(\ln w_{it}\)) and a measurement error (\(\varepsilon_{it}''\)), so that the log wage (observed) regression is
\[
\ln \tilde{w}_{it} = \varphi_0'' + \varphi_1''(S_{it}) + \varphi_2''\text{Exper}_{it} + \varphi_3''\text{Exper}_{it}^2 + v_i'' + \varepsilon_{it}'' + \varepsilon_{it}''
\]
where ν^w_i is unobserved labor market ability affecting wages and where $\varepsilon^m_{it} \sim i.i.d. N(0, \sigma^2_m)$. Our specification of the wage distribution therefore disregards the existence of comparative advantages in schooling or wage growth, such as those allowed in more general random coefficient wage regression models, see for instance Heckman and Vytlacil (1998) and Belzil and Hansen (2003).

The employment equation is

$$\ln e_{it} = \kappa_0 + \kappa_1 S_{it} + \kappa_2 \text{Exper}_{it} + \kappa_3 \text{Exper}^2_{it} + \nu^k_i + \varepsilon^e_{it}$$

where the term ν^k_i captures the effect of unobserved ability on employment rates.

3.3 Earnings Dispersion and Education

As already mentioned above, we assume that the variance of wage and employment rates are heteroskedastic. The variances, $\sigma^2_e(S_t)$ and $\sigma^2_w(S_t)$, are given by

$$\sigma^2_e(S_{it}) = \exp(\sigma_{e0} + \sigma_{e1} S_{it} + \sigma_{e2} S^2_{it})$$

$$\sigma^2_w(S_{it}) = \exp(\sigma_{w0} + \sigma_{w1} S_{it} + \sigma_{w2} S^2_{it})$$

3.4 Unobserved Ability in School and in the Labor Market

The intercept terms of the utility of attending school (ν^{ξ}_i), the employment rate equation (ν^k_i) and of the log wage regression function (ν^w_i) are individual specific. We assume that there are K types of individuals and that each type is endowed with a vector of intercept terms ($\nu^{\xi}_k, \nu^k_k, \nu^w_k$) for $k = 1, 2, ..., K$ and $K = 6$.

The distribution of unobserved ability is orthogonal to parents’ background by construction. As a consequence, the distribution of ability which we estimate should be understood as a measure of unobserved ability remaining after conditioning on parents human capital. The probability of belonging to type k, p_k, is estimated using logistic transforms

$$p_k = \frac{\exp(q^0_k)}{\sum_{j=1}^6 \exp(q^0_j)}$$

where the q^0_js are parameters to be estimated (we normalize q^0_6 to 0).

3.5 Identification

With data on wages, employment rates and schooling attainments, it is straightforward to identify the key parameters: the utility of attending school, the wage return to schooling, the employment return to schooling and unobserved school and market ability. This does not require further discussion (see Belzil and
Hansen, 2002). The identification of the degree of risk aversion (α) is also straightforward to establish given knowledge of the variance of earnings (see equation 8).

However, the identification (and estimation) of a structural dynamic programming model always requires some parametric assumptions. For instance, identification of the subjective discount rate relies on the standard assumption that preferences are time additive. Also, given that the model allows for unobserved taste for schooling, it is unrealistic to account for other sources of preference heterogeneity such as individual differences in risk aversion or in discount rates. This means that, given parents’ background variables and unobserved market ability, observed differences in schooling are automatically imputed to differences in taste for schooling.

3.6 Constructing the Likelihood

Dropping the individual subscript, the probability of investing in an additional year of schooling at time t is given by

$$
\Pr(d_t = 1) = \Pr \left[V_t^s(S_t) \geq V_t^w(S_t) \right]
= \Pr \left\{ \frac{\xi_t^{1-\alpha} + \beta E(V_{t+1} \mid d_t = 1)}{1-\alpha} \geq \frac{\exp(\ln(\xi_t))^{1-\alpha}}{1-\alpha} + \beta E(V_{t+1} \mid d_t = 0) \right\}
$$

or, equivalently, as

$$
\Pr(d_t = 1) = \Pr \left\{ \ln \left[\frac{\eta_t^{1-\alpha} + (1-\alpha)\beta E(V_{t+1} \mid d_t = 1)}{E(V_{t+1} \mid d_t = 0)} \right] \leq \frac{(1-\alpha)Z_t}{1-\alpha} \right\}
$$

and can be expressed as follows

$$
\Pr(d_t = 1) = \Pr(\xi_t \leq [h(S_t)]) = \Phi \left(\frac{h(S_t)}{\sigma_w(t)} \right)
$$

where

$$
h(S_t) = \frac{1}{1-\alpha} \ln \left[(1-\alpha) \left(\frac{V_t^s(S_t) - \beta E(V_{t+1} \mid d_t = 0)}{1-\alpha} \right) + \frac{1}{1-\alpha} \right] - \varphi_0 - \varphi_1(S_t)
$$

The likelihood function is constructed from data on schooling attainments as well as data on the allocation of time between years spent in school ($I_t = 0, d_t = 1$) and years during which school was interrupted ($I_t = 1, d_t = 1$) and on employment histories (wage/employment) observed when schooling acquisition is terminated (until 1990). The construction of the likelihood function requires us to evaluate the following probabilities:

- the probability of having spent at most τ years in school (including years of interruption), $Pr[(d_0 = 1, I_0), (d_1 = 1, I_1), \ldots (d_\tau = 1, I_\tau)] = L_1$ and is easily evaluated using (11) and the definition of the interruption probability.
• the probability of entering the labor market, in year $\tau + 1$, at observed wage $\tilde{w}_{\tau+1}$, $P(d_{\tau+1} = 0, \tilde{w}_{\tau+1}) = L_2$, which can easily be factored as the product of a conditional times a marginal density.

• the density of observed wages and employment rates from $\tau + 2$ until 1990, $Pr\{\{\tilde{w}_{\tau+2}, e_{\tau+2}\}..\{\tilde{w}_{1990}, e_{1990}\}\} = L_3$, which is easily evaluated using the fact that the random shocks affecting the employment process and the wage process are mutually independent.

The log likelihood function, for individual i, is then given by

$$\ln L_i = \ln \sum_{k=1}^{K=6} p_k \cdot L_{1i(k)} \cdot L_{2i(k)} \cdot L_{3i(k)}$$

(13)

where each p_k represents the population proportion of type k.

4 The Data

The sample used in the analysis is extracted from the 1979 youth cohort of the The National Longitudinal Survey of Youth (NLSY). The NLSY is a nationally representative sample of 12,686 Americans who were 14-21 years old as of January 1, 1979. After the initial survey, re-interviews have been conducted in each subsequent year until 1996. In this paper, we restrict our sample to white males who were 20 years old or less as of January 1, 1979. We record information on education, wages and on employment rates for each individual from the time the individual is 16 up to December 31, 1990.

The original sample contained 3,790 white males. However, we lacked information on family background variables (such as family income as of 1978 and parents’ education). We lost about 17% of the sample due to missing information regarding family income and about 6% due to missing information regarding parents’ education. The age limit and missing information regarding actual work experience further reduced the sample to 1,710.

Descriptive statistics for the sample used in the estimation can be found in Table A1 (in appendix). The education length variable is the reported highest grade completed as of May 1 of the survey year and individuals are also asked if they are currently enrolled in school or not. This question allows us to identify those individuals who are still acquiring schooling and therefore to take into account that education length is right-censored for some individuals. It also helps us to identify those individuals who have interrupted schooling. Overall, the majority of young individuals acquire education without interruption. The low incidence of interruptions (Table A1) explains the low average number of interruptions per individual (0.06) and the very low average interruption duration (0.43 year). In our sample, only 306 individuals have experienced at least one interruption. This represents only 18% of our sample and it is along the lines of results reported in Keane and Wolpin (1997). Given the age of the individuals
in our sample, we assume that those who have already started to work full-time by 1990 (94% of our sample), will never return to school beyond 1990.

The average schooling completed (by 1990) is 12.8 years. From Table 1, it is clear that the distribution of schooling attainments is bimodal. There is a large fraction of young individuals who terminate school after 12 years (high school graduation). The next largest frequency is at 16 years and corresponds to college graduation. Altogether, more than half of the sample has obtained either 12 or 16 years of schooling. As a consequence, one might expect that either the wage return to schooling or the parental transfers vary substantially with grade level. This question will be addressed below.

5 Structural Estimates and Goodness of Fit

In this section, we present a brief overview of some of the main structural parameter estimates which do not raise immediate interest and evaluate the goodness of fit of the model. The parameter estimates (found in Table A2) indicate that, other things equal, the utility of attending school increases with parents’ education and income. This is well documented in various reduced-form studies as well as in many structural studies (Cameron and Heckman, 1998; Eckstein and Wolpin, 1999; Belzil and Hansen, 2002). The parameter estimates characterizing the distribution of all individual specific intercept terms (school ability, employment and wage regression and type probabilities) are also found in Table A2. The differences in intercept terms across types are indicative of the importance of unobserved ability affecting wages, employment rates and the utility of attending school.14 The resulting type probabilities are 0.36 (type 1), 0.19 (type 2), 0.31 (type 3), 0.06 (type 4), 0.03 (type 5) and 0.06 (type 6). The spline estimates of the local returns to schooling, also found in Table A2, can be transformed into local returns (after adding up the proper parameters). More details on the return to schooling can be found in Belzil and Hansen (2002).15

The predicted schooling attainments, along with actual frequencies are found in Table 1, and allow us to evaluate the goodness of fit. There is clear evidence that our model is capable of fitting the data well. In particular, our model is capable of predicting the very large frequencies at the most frequent grade levels (grade 12 and grade 16).

6 Risk Aversion, Earnings and Education: Some Results

In this section, we discuss the three following issues: the degree or risk aversion revealed in the data, the effect of education on earnings dispersion (as measured by the variances of wages and employment rates) and the effect of a counterfactual change in risk aversion on schooling attainment.
6.1 The Degree of Risk Aversion

Given the objectives of the paper, the estimates of the preference parameters are those that raise most interest. Our estimate of the discount rate, 0.0891, appears quite reasonable. In practice, the willingness to trade current wages for future wages is likely to be affected by imperfections in the capital market. The estimate of the degree of relative risk aversion, 0.9282 is however quite low when compared to estimates cited in the finance literature. In order to illustrate the low degree of risk aversion, we examined the behavior toward risk of two types of labor market entrants (a high school graduate and a college graduate). Without loss of generality, we restrict ourself to a single period hourly wage lottery which is characterized by the parameters of the log wage distribution. We computed the certainty equivalent hourly wage rate and compared it with the expected hourly wage rate resulting from the within period lottery. The certainty equivalent is the certain wage rate, \(w_c \), at which
\[
\frac{-U''(E(w))}{U'(E(w))}.
\]

We have also computed the level of absolute risk aversion
\[
-\frac{U''(E(w))}{U'(E(w))}
\]
at the expected entry wage. Both measures of risk aversion (absolute and relative) as well as the expected wage and the certainty equivalent are found in Table 2. They illustrate the very low degree of risk aversion. A high school graduate, who obtain on average an hourly wage rate of $6.32, would be as well off with a certain wage of $6.13. For a college graduate, the corresponding expected wage and certainty equivalent are equal to $8.65 and $8.46.

TABLE 2 ABOUT HERE

6.2 The Effects of Education on Earnings Dispersion

In the empirical literature, homoskedasticity of the log wage regression function is rarely questioned. With a structural dynamic programming model taking into account individual unobserved heterogeneity, it is possible to distinguish the distribution of unobserved ability from the distribution of stochastic wage shocks. The variance of stochastic wage shocks is a measure of wage dispersion and the effect of schooling on wage and employment rate variances can easily be computed. The quadratic specification of the log wage variance, along with estimates of \(\sigma_{w0} \) (-1.3739), \(\sigma_{w1} \) (0.0214) and \(\sigma_{w2} \) (-0.0032), which are found in Table A2, imply that wage dispersion will attain a maximum at 9 years of schooling and decrease thereafter. In practice, this means that wage dispersion decreases significantly with human capital for almost all individuals. At the same time, the estimates for \(\sigma_{e0} \) (-0.4084), \(\sigma_{e1} \) (-0.1030) and \(\sigma_{e2} \) (-0.0051) imply that employment rate dispersion decreases monotonically with schooling attainments.

In order to establish the links between risk and education more clearly, we have computed the variances in lifetime wages, lifetime employment rates and lifetime earnings for all possible levels of schooling. All variances are measured over a period of 45 years of potential experience. The results are in Table 3. The decrease in employment rate and wage dispersion with schooling is well
illustrated in columns 1 and 2. As earnings are defined as the product of an hourly wage rate times an employment rate, the variance in lifetime earnings also decreases dramatically with schooling attainments. The evidence suggests that schooling acquisition implies a significant reduction in total risk.

TABLE 3 ABOUT HERE

6.3 The Effect of Risk Aversion on Education

After having established the link between education and earnings dispersion, it is natural to investigate the relationship between risk aversion and education. As explained earlier, it is unrealistic to account for other sources of preference heterogeneity such as individual differences in risk aversion or in discount rates. While our model has been estimated under the assumption that preferences are homogenous (individuals differ only in terms of ability), it is easy to evaluate how mean schooling attainments change with a counterfactual change in risk aversion. This counterfactual experiment may be viewed as an evaluation of the importance of the differences in schooling attainments between various subgroups of the population endowed with different levels of risk aversion. For the sake of comparison with the results usually reported in the empirical finance literature, we have computed mean schooling attainments for levels of relative risk aversion between 0.93 and 3.00. These are found in Table 4. These simulations indicate that, over the range considered, mean schooling attainments will increase with risk aversion. For instance, at a relatively high degree of risk aversion such as $\alpha = 3.0$, individuals would obtain, on average, 18.50 years of schooling.

TABLE 4 ABOUT HERE

7 Some Elasticities of Schooling Attainments

In this section, we evaluate the elasticities of mean schooling attainments with respect to changes in some of the key parameters of the model. In particular, we investigate individual reactions to changes in the wage and employment returns to schooling as well as changes in schooling attainments due to changes in school and wage subsidies.

7.1 How Do People React to Changes in the Returns to Education

Using counterfactual changes in the return to schooling, it is easy to evaluate mean schooling attainments elasticities. As the wage return to schooling is estimated flexibly, we simulated changes in the overall return and also simulated changes in the return to college graduation. The elasticities with respect to the wage return, reported in Table 5, are 0.35 (for an overall increase) and 0.11
(for an increase in the return to college graduation). Schooling attainments are therefore relatively inelastic with respect to the wage return to schooling.

7.2 How Do People React to Changes in School Subsidies and Wage Subsidies

As for the wage return to schooling, it is possible to evaluate the elasticities of schooling attainments with respect to an overall increase in the income support while at school (school subsidies) or a subsidy to post high-school education. As expected, the elasticity with respect to a general increase (1.01) exceeds the elasticity to post high-school education (0.46). When compared to the elasticities reported in Section 7.1, these elasticities indicate that individual are more responsive to school subsidies (or parental transfers) than to the return to schooling. Finally, by increasing the intercept term of the wage regression, it is possible to simulate the effect of a wage subsidy. It is well known that an overall increase in wages will result in an increase in the opportunity costs of schooling. Not surprisingly, our results indicate that the elasticity of schooling attainments with respect to a wage increase is negative (-0.70).

As a conclusion, schooling attainments appear more sensitive to changes in the utility of attending school than to changes in the return to schooling. This is consistent with findings reported in Keane and Wolpin (1997), Eckstein and Wolpin (1999), and Belzil and Hansen (2002) and can be explained by the importance of individual differences in school ability.

7.3 How do people react to changes in risk

Our flexible specifications of the log wage and the log employment regression functions allow us to investigate how individuals react to changes in risk. In particular, the heteroskedastic function for the variances allow us to evaluate the effects of an overall change in earnings dispersion. In order to do so, we must change the variance of the log earnings regression (σ) and adjust the mean of log earnings (μ) so that only earnings dispersion is changed.

The elasticity with respect to a change in risk is found to be small and positive (0.07). The positive sign can be explained as follows. An increase in earnings risk makes parental transfers relatively more appealing for risk averse individuals. As a consequence, young individuals respond by staying in school longer. However, given the very low level of risk aversion, the effect is small.

TABLE 5 ABOUT HERE

8 Conclusion

We have estimated a dynamic programming model of schooling decisions in which risk averse individuals make optimal sequential schooling decisions based on the fact that schooling affects both the mean and the variance of lifetime
wages and employment rates. Our model fits the data quite well and the results indicate that individuals have a very low degree of risk (relative) aversion. The parameter estimate of the degree of risk aversion, 0.93, is just somewhat below the degree of risk aversion implied by logarithmic preferences. At the same time, our estimates of log wage and log employment rate regression functions indicate that, after conditioning on individual specific unobserved ability, wage dispersion and employment rate dispersion are highly heteroskedastic. More precisely, both wage and employment rate dispersions decrease with schooling. This is consistent with the hypothesis that risk sharing agreements are more common among highly educated (high wage) workers. Not surprisingly, mean schooling attainments are found to be increasing in risk aversion, that is, a counterfactual increase in the degree of risk aversion will increase schooling attainments.

Finally, we have used our model to simulate the effects of a change in the returns to education, a change in school (and wage) subsidies and a change in risk on expected schooling attainments. The results indicate that schooling attainments are relatively more elastic with respect to school subsidies than to the return to schooling. Consistent with the low degree of risk aversion disclosed in the data, an increase in earnings dispersion (an increase in the overall variance of wages and employment rates) will raise schooling by a relatively small number and the elasticity is quite small (around 0.07).

These findings suggest avenues for future research. As education can play the role of self-insurance, it would be interesting to analyze the optimality of social insurance in a context where human capital (schooling) is a substitute for social insurance. It would also be interesting to analyze optimal schooling decisions in a context where workers can explicitly enter contractual agreements with potential employers. We leave these potential extensions for future research.
References

Notes:

1 For a survey of the contract literature, see Rosen (1985).

2 While it is generally accepted by most economists that income/wage uncertainty should reduce schooling, Kodde (1986) finds empirical evidence in favor of a positive relationship between income uncertainty and schooling attainments. His results are obtained from self-reported expectation data of Dutch students.

3 In a standard recursive utility framework, such as the one used in this paper, there is a one-to-one correspondence between the degree of risk aversion and the willingness to smooth consumption (intertemporal substitution). Disentangling the behavior toward risk from the willingness to smooth consumption is beyond the scope of this paper.

4 However, the link between schooling acquisition and capital markets had been discussed in the earlier literature. See Ben-Porath (1967) and Johnson (1978), among others, for discussions relating to various education financing issues.

5 It is well known that, in order to solve the “Equity premium Puzzle”, the degree of relative risk aversion must be very large (at least above 50). For a review of the literature, see Kocherlakota (1996).

6 In most western countries, labor income account for 60% to 70% of total income.

7 We assume that individuals cannot borrow during school.

8 A similar assumption is made in Johnson (1978).

9 In the NLSY, we find that more than 82% of the sample has never experienced school interruption.

10 The degree of under-identification arising in the dynamic programming literature is discussed in Rust (1994) and Magnac and Thesmar (2002).

11 While another possible estimation strategy could have been to include AFQT scores in the intercept terms of both the utility of attending school and the log wage regression function, we are reluctant to do so. This approach could lead to an understatement of the effects of schooling on wages and an understatement of risk aversion heterogeneity, if AFQT scores are themselves explained by schooling.

12 This feature of the NLSY implies that there is a relatively low level of measurement error in the education variable.

13 Overall, interruptions tend to be quite short. Almost half of the individuals (45 %) who experienced an interruption, returned to school within one year while 73% returned within 3 years.

14 Similar results are reported in Keane and Wolpin (1997), Eckstein and Wolpin (2000), and Belzil and Hansen (2002).

15 Belzil and Hansen (2002) argue that the returns to schooling are much lower than those reported previously in the literature and find evidence that the log wage regression is highly convex in schooling.

16 See Kocherlakota (1996).

17 In the NLSY, we are unable to observe tuition costs and we assume that an increase in the income support while at school can proxy school subsidies.
18 Note that log normality implies that $E(Z) = \exp(\mu + 0.5\sigma^2)$ and $Var(Z) = \exp(2\mu + \sigma^2)(\exp(\sigma^2) - 1)$.
Table 1
Model Fit: Actual vs Predicted Schooling Attainments

<table>
<thead>
<tr>
<th>Grade Level</th>
<th>Predicted (%)</th>
<th>Actual (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0.0%</td>
<td>0.3%</td>
</tr>
<tr>
<td>7</td>
<td>1.7%</td>
<td>0.6%</td>
</tr>
<tr>
<td>8</td>
<td>2.2%</td>
<td>2.9%</td>
</tr>
<tr>
<td>9</td>
<td>5.2%</td>
<td>4.7%</td>
</tr>
<tr>
<td>10</td>
<td>7.0%</td>
<td>6.0%</td>
</tr>
<tr>
<td>11</td>
<td>8.9%</td>
<td>7.5%</td>
</tr>
<tr>
<td>12</td>
<td>45.3%</td>
<td>39.6%</td>
</tr>
<tr>
<td>13</td>
<td>5.8%</td>
<td>7.0%</td>
</tr>
<tr>
<td>14</td>
<td>5.1%</td>
<td>7.7%</td>
</tr>
<tr>
<td>15</td>
<td>1.5%</td>
<td>2.9%</td>
</tr>
<tr>
<td>16</td>
<td>9.1%</td>
<td>12.9%</td>
</tr>
<tr>
<td>17</td>
<td>5.1%</td>
<td>2.5%</td>
</tr>
<tr>
<td>18</td>
<td>2.1%</td>
<td>2.4%</td>
</tr>
<tr>
<td>19</td>
<td>1.0%</td>
<td>1.3%</td>
</tr>
<tr>
<td>20-more</td>
<td>0.2%</td>
<td>1.6%</td>
</tr>
<tr>
<td>Measure</td>
<td>High School Graduates</td>
<td>College Graduates</td>
</tr>
<tr>
<td>--</td>
<td>-----------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Relative Risk aversion (α)</td>
<td>0.9282</td>
<td>0.9282</td>
</tr>
<tr>
<td>Absolute Risk aversion</td>
<td>0.1469</td>
<td>0.1073</td>
</tr>
<tr>
<td>Expected wage ($E(W)$)</td>
<td>6.3183</td>
<td>8.6478</td>
</tr>
<tr>
<td>Certainty equivalent ($w_c = U^{-1}(E(w))$)</td>
<td>6.1337</td>
<td>8.4579</td>
</tr>
</tbody>
</table>

Note: The degree of relative risk aversion, α, is also equal to $-\frac{U''(E(w))}{U'(E(w))}$. The absolute degree of risk aversion is defined as $-\frac{U''(E(w))}{U'(E(w))}$. The certainty equivalent wage, w_c, is defined as the solution of the following equation: $w_c = U^{-1}(E(w))$.

23
Table 3
Schooling Attainments and the variances of lifetime wages, employment rates and earnings

<table>
<thead>
<tr>
<th>grade level</th>
<th>Variance of Emp. rates (log)</th>
<th>Variance of Wages (log)</th>
<th>Variance of Earnings (log)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>16.02</td>
<td>2.99</td>
<td>19.01</td>
</tr>
<tr>
<td>8</td>
<td>12.64</td>
<td>3.06</td>
<td>15.70</td>
</tr>
<tr>
<td>9</td>
<td>9.78</td>
<td>3.09</td>
<td>12.87</td>
</tr>
<tr>
<td>10</td>
<td>7.41</td>
<td>3.09</td>
<td>10.50</td>
</tr>
<tr>
<td>11</td>
<td>5.50</td>
<td>3.04</td>
<td>8.54</td>
</tr>
<tr>
<td>12</td>
<td>4.00</td>
<td>2.96</td>
<td>6.96</td>
</tr>
<tr>
<td>13</td>
<td>2.85</td>
<td>2.84</td>
<td>5.70</td>
</tr>
<tr>
<td>14</td>
<td>1.99</td>
<td>2.70</td>
<td>4.69</td>
</tr>
<tr>
<td>15</td>
<td>1.36</td>
<td>2.52</td>
<td>3.89</td>
</tr>
<tr>
<td>16</td>
<td>0.91</td>
<td>2.33</td>
<td>3.25</td>
</tr>
<tr>
<td>17-more</td>
<td>0.60</td>
<td>2.13</td>
<td>2.73</td>
</tr>
</tbody>
</table>

Note: Variances are computed over a period of 45 years of potential experience.
<table>
<thead>
<tr>
<th>Relative Risk Aversion (α)</th>
<th>Mean Schooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha = 0.93$</td>
<td>12.45 years</td>
</tr>
<tr>
<td>$\alpha = 1.00$</td>
<td>12.49 years</td>
</tr>
<tr>
<td>$\alpha = 1.5$</td>
<td>13.65 years</td>
</tr>
<tr>
<td>$\alpha = 2.0$</td>
<td>16.19 years</td>
</tr>
<tr>
<td>$\alpha = 3.0$</td>
<td>18.50 years</td>
</tr>
</tbody>
</table>
Table 5
Various Elasticities of Expected Schooling Attainments

<table>
<thead>
<tr>
<th>Parameters</th>
<th>elasticities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wage Return</td>
<td></td>
</tr>
<tr>
<td>all levels</td>
<td>0.35</td>
</tr>
<tr>
<td>grade 16</td>
<td>0.11</td>
</tr>
<tr>
<td>School Subsidies</td>
<td></td>
</tr>
<tr>
<td>all levels</td>
<td>1.01</td>
</tr>
<tr>
<td>post high school</td>
<td>0.46</td>
</tr>
<tr>
<td>Wage subsidies</td>
<td>-0.70</td>
</tr>
<tr>
<td>Risk</td>
<td></td>
</tr>
<tr>
<td>Earnings (σ^2)</td>
<td>0.0700</td>
</tr>
</tbody>
</table>
Table A1. Descriptive Statistics.

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>St dev.</th>
<th>Number of individuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family Income/1000</td>
<td>36,904</td>
<td>27.61</td>
<td>1710</td>
</tr>
<tr>
<td>Father’s educ</td>
<td>11.69</td>
<td>3.47</td>
<td>1710</td>
</tr>
<tr>
<td>Mother’s educ</td>
<td>11.67</td>
<td>2.46</td>
<td>1710</td>
</tr>
<tr>
<td>Number of siblings</td>
<td>3.18</td>
<td>2.13</td>
<td>1710</td>
</tr>
<tr>
<td>Prop. raised in urban areas</td>
<td>0.73</td>
<td>-</td>
<td>1710</td>
</tr>
<tr>
<td>Prop. raised in south</td>
<td>0.27</td>
<td>-</td>
<td>1710</td>
</tr>
<tr>
<td>Prop in nuclear family</td>
<td>0.79</td>
<td>-</td>
<td>1710</td>
</tr>
<tr>
<td>Schooling completed (1990)</td>
<td>12.81</td>
<td>2.58</td>
<td>1710</td>
</tr>
<tr>
<td>Number of interruptions</td>
<td>0.06</td>
<td>0.51</td>
<td>1710</td>
</tr>
<tr>
<td>Duration of interruptions (year)</td>
<td>0.43</td>
<td>1.39</td>
<td>1710</td>
</tr>
<tr>
<td>Wage 1979 (hour)</td>
<td>7.36</td>
<td>2.43</td>
<td>217</td>
</tr>
<tr>
<td>Wage 1980 (hour)</td>
<td>7.17</td>
<td>2.74</td>
<td>422</td>
</tr>
<tr>
<td>Wage 1981 (hour)</td>
<td>7.18</td>
<td>2.75</td>
<td>598</td>
</tr>
<tr>
<td>Wage 1982 (hour)</td>
<td>7.43</td>
<td>3.17</td>
<td>819</td>
</tr>
<tr>
<td>Wage 1983 (hour)</td>
<td>7.35</td>
<td>3.21</td>
<td>947</td>
</tr>
<tr>
<td>Wage 1984 (hour)</td>
<td>7.66</td>
<td>3.60</td>
<td>1071</td>
</tr>
<tr>
<td>Wage 1985 (hour)</td>
<td>8.08</td>
<td>3.54</td>
<td>1060</td>
</tr>
<tr>
<td>Wage 1986 (hour)</td>
<td>8.75</td>
<td>3.87</td>
<td>1097</td>
</tr>
<tr>
<td>Wage 1987 (hour)</td>
<td>9.64</td>
<td>4.44</td>
<td>1147</td>
</tr>
<tr>
<td>Wage 1988 (hour)</td>
<td>10.32</td>
<td>4.89</td>
<td>1215</td>
</tr>
<tr>
<td>Wage 1989 (hour)</td>
<td>10.47</td>
<td>4.97</td>
<td>1232</td>
</tr>
<tr>
<td>Wage 1990 (hour)</td>
<td>10.99</td>
<td>5.23</td>
<td>1230</td>
</tr>
<tr>
<td>Experience 1990 (years)</td>
<td>8.05</td>
<td>11.55</td>
<td>1230</td>
</tr>
</tbody>
</table>
Table A2. Structural Parameter Estimates.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Std error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utility in School</td>
<td></td>
</tr>
<tr>
<td>Father’s Educ</td>
<td>0.0158</td>
</tr>
<tr>
<td>Mother’s Educ</td>
<td>0.0115</td>
</tr>
<tr>
<td>Family Income/1000</td>
<td>0.0009</td>
</tr>
<tr>
<td>Nuclear Family</td>
<td>0.0382</td>
</tr>
<tr>
<td>Siblings</td>
<td>-0.0108</td>
</tr>
<tr>
<td>Rural</td>
<td>-0.0071</td>
</tr>
<tr>
<td>South</td>
<td>-0.0209</td>
</tr>
<tr>
<td>Risk Aversion</td>
<td>0.9282</td>
</tr>
<tr>
<td>Discount Rate</td>
<td>0.0891</td>
</tr>
<tr>
<td>Employment</td>
<td></td>
</tr>
<tr>
<td>Schooling</td>
<td>0.0116</td>
</tr>
<tr>
<td>Exper.</td>
<td>0.0027</td>
</tr>
<tr>
<td>Exper2.</td>
<td>-0.0001</td>
</tr>
<tr>
<td>σ^e_0 (intercept)</td>
<td>-0.4084</td>
</tr>
<tr>
<td>σ^e_1 (schooling)</td>
<td>-0.1030</td>
</tr>
<tr>
<td>σ^e_2 (schooling2)</td>
<td>-0.051</td>
</tr>
<tr>
<td>Wages</td>
<td></td>
</tr>
<tr>
<td>spline 7-10</td>
<td>0.0070</td>
</tr>
<tr>
<td>spline 11</td>
<td>0.0030</td>
</tr>
<tr>
<td>spline 12</td>
<td>0.0407</td>
</tr>
<tr>
<td>spline 13</td>
<td>-0.0820</td>
</tr>
<tr>
<td>spline 14</td>
<td>0.0680</td>
</tr>
<tr>
<td>spline 15</td>
<td>-0.0305</td>
</tr>
<tr>
<td>spline 16</td>
<td>0.0489</td>
</tr>
<tr>
<td>spline 17-more</td>
<td>-0.0325</td>
</tr>
<tr>
<td>Exper</td>
<td>0.1034</td>
</tr>
<tr>
<td>Exper2.</td>
<td>-0.0044</td>
</tr>
<tr>
<td>σ^w_0 (intercept)</td>
<td>-1.3739</td>
</tr>
<tr>
<td>σ^w_1 (schooling)</td>
<td>0.0214</td>
</tr>
<tr>
<td>σ^w_2 (schooling2)</td>
<td>-0.0032</td>
</tr>
<tr>
<td>Measurement error</td>
<td></td>
</tr>
<tr>
<td>σ^2_m</td>
<td>0.1444</td>
</tr>
<tr>
<td>interruption prob</td>
<td></td>
</tr>
<tr>
<td>ζ_7</td>
<td>0.0124</td>
</tr>
<tr>
<td>ζ_8</td>
<td>0.0621</td>
</tr>
</tbody>
</table>
Table A2. Structural Parameter Estimates, Continued.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Std error</th>
</tr>
</thead>
<tbody>
<tr>
<td>ζ₀</td>
<td>0.0937</td>
</tr>
<tr>
<td>ζ₁₀</td>
<td>0.0270</td>
</tr>
<tr>
<td>ζ₁₁</td>
<td>0.1167</td>
</tr>
<tr>
<td>ζ₁₂</td>
<td>0.3420</td>
</tr>
<tr>
<td>ζ₁₃</td>
<td>0.1004</td>
</tr>
<tr>
<td>ζ₁₄</td>
<td>0.1217</td>
</tr>
<tr>
<td>ζ₁₅−more</td>
<td>0.1220</td>
</tr>
</tbody>
</table>

Unobs. Hetero.

Type 1
- School ab. \(v₁^1\) -1.2147 0.0473
- Wage \(v₁^w\) 1.3463 0.0094
- Employment \(v₁^κ\) -3.3629 0.0301
- Type Prob. \(q₁^1\) 1.6875 0.0419

Type 2
- School ab. \(v₂^2\) -0.8354 0.0481
- Wage ab. \(v₂^w\) 1.6785 0.0192
- Employment \(v₂^κ\) -0.1615 0.0113
- Type Prob \(q₂^2\) 1.0255 0.0378

Type 3
- School ab. \(v₃^3\) -1.4983 0.0453
- Wage \(v₃^w\) 1.0529 0.0121
- Employment \(v₃^κ\) -0.1560 0.0241
- Type Prob \(q₃^3\) 1.5402 0.0098

Type 4
- School ab. \(v₄^4\) -1.8252 0.0532
- Wage \(v₄^w\) 1.1546 0.0112
- Employment \(v₄^κ\) -0.5491 0.0204
- Type Prob \(q₄^4\) 0.1578 0.1396

Type 5
- School ab. \(v₅^5\) -2.3599 0.0538
- Wage \(v₅^w\) 1.2591 0.0121
- Employment \(v₅^κ\) -1.0950 0.0269
- Type Prob \(q₅^5\) -1.1992 0.1913

Type 6
- School ab. \(v₆^6\) -1.8127 0.0456
- Wage \(v₆^w\) 0.7072 0.0106
- Employment \(v₆^κ\) -0.2005 0.0141
- Type Prob \(q₆^6\) 0.0 (normalized)

Mean Log Likelihood -8.02289