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Abstract

We consider a general equilibrium model with heterogeneous agents, borrowing
constraints, and exogenous labor supply. First, the existence of intertemporal equi-
librium is proved even if the aggregate capitals are not uniformly bounded above and
the production functions are not time invariant. Second, (i) we call by physical capital
bubble a situation in which the fundamental value of physical capital is lower than its
price, (ii) we say that the interest rates are low if the sum of interest rates is finite.
We show that physical capital bubble is equivalent to a situation with low interest
rates. Last, we prove that with linear technologies, every intertemporal equilibrium is
efficient. Moreover, there is a room for both efficiency and bubble.

Keywords: Intertemporal equilibrium, physical capital bubble, efficiency, infinite hori-
zon.
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1 Introduction

Following Becker, Bosi, Le Van and Seegmuller (2014), we consider a dynamic general
equilibrium model with heterogeneous agents. However, our framework is different from
their model in three points: (i) for simplicity, we consider exogenous labor suply, (ii)
our technology is not stationary, (iii) aggregate capital stock is not necessarily uniformly
bounded from above. Heterogeneous agents decide to invest and consume. If they invest
in physical capital, this asset will not only give them return in term of consumption good
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at the next period but also give back a fraction of the same asset (after being depreciated).
Agents cannot borrow.

Our first contribution is to prove the existence of intertemporal general equilibrium. To do
it, we firstly prove the existence of equilibrium for each T−truncated economy. Hence, we
have a sequence of equilibria which depend on T . We then prove that this sequence has a
limit (for the product topology) which is an equilibrium for the infinite horizon economy.

We say that physical capital bubble occurs at equilibrium (for short, bubble) if the price
of the physical asset is greater than its fundamental value. We say interest rates are low
at equilibrium (for short, low interest rates) if the sum of returns on capital is finite. Our
second contribution to prove that bubble is equivalent to low interest rates.
The no-bubble result in Becker, Bosi, Le Van and Seegmuller (2014) can be viewed as
a particular case of our result. Indeed, in Becker, Bosi, Le Van and Seegmuller (2014),
thanks to the concavity of a stationary technology, the aggregate capital stock is uniformly
bounded, and then real return of the physical capital is uniformly bounded from below.
Therefore, the sum of returns equals infinity. According to our result, the physical capital
bubble is ruled out.
However, when we allow non-stationary production functions, there may be a bubble at
equilibrium. To see the point, take linear production functions whose productivity at date
t is denoted by at. At equilibrium, real return of physical capital at date t must be at. As

mentioned above, there is a bubble if and only if
∞
∑

t=0
at < ∞. We can now see clearly that

there is a bubble if productivities decrease with sufficiently high speed.

Our third contribution is about the efficiency of intertemporal equilibrium. An intertem-
poral equilibrium is called to be efficient if its aggregate capital path is efficient in sense of
Malinvaud (1953). We prove that with linear production functions, every intertemporal
equilibrium is efficient. However, as we mentioned above, this efficient intertemporal equi-
librium may have bubble if productivities decrease with sufficiently high speed. Therefore,
we have both efficient and bubble at equilibrium with such technologies. Note that our
result does not require any conditions about the convergence or boundedness of the capital
path as in previous literature.

Related literature
(1) On rational bubbles. Tirole (1982) proved that there is no financial asset bubble in
a rational expectation model without endowment. A survey on bubble in models with
asymmetric information, overlapping generation, heterogeneous-beliefs can be found in
Brunnermeier and Oehmke (2012). Doblas-Madrid Doblas-Madrid (2012) presented a
model of speculative bubbles where rational agents buy an overvalued asset because given
their private information, they believe they have a good chance of reselling at a profit to
a greater fool. Martin and Ventura (1953), Ventura (2012) did not define bubble as we
do. Instead, they defined bubble as a short-lived asset.

(2) On the efficiency of a capital path. Malinvaud (1953) introduced the concept of
efficiency of a capital path and give a sufficient condition of the efficiency: lim

t→∞
ptKt = 0,
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where (pt) is a sequence of competitive prices, (Kt) is the capital path.1 Following Malin-
vaud, Cass (1972) considered capital path which is uniformly bounded from below. Under
the concavity of a stationary production function and some mild conditions, he proved
that a capital path is inefficient if and only if the sum (over time) of future values of a
unit of physical capital is finite. Cass and Yaari (1971) given a necessary and sufficient
condition for a consumption plan (C) to be efficient, which can be stated that the limit
inferior of differences between the present value of any consumption plan and the plan (C)
is negative.
Our paper is also related to Becker and Mitra (2012) where they proved that a Ramsey
equilibrium is efficient if the most patient household is not credit constrained from some
date. However, their result is based on the fact that consumption of each household is
uniformly bounded from below. In our paper, we do not need this condition. Instead, the
efficient capital path in our model may converge to zero. Mitra and Ray (2012) studied the
efficiency of a capital path with nonconvex production technologies and examined whether
the Phelps-Koopmans theorem is valid. However, their results are no longer valid without
the convergence or the boundedness of capital paths.

(3) Another concept of efficiency is constrained efficiency. About the constrained effi-
ciency in general equilibrium models with financial asset, see Kehoe and Levine (1993),
Alvarez and Jermann (2000), Bloise and Pietro (2011). About the constrained efficiency
in the neoclassical growth model, see Davila, Hong, Krusell and Rios-Rull (2012).

The remainder of the paper is organized as follows. Section 2 describes the model. In
section 3, existence of equilibrium is proved. Section 4 studies physical capital bubble.
Section 5 explores our results on the efficiency of equilibria. Conclusion will be presented
in Section 6. Technical details are gathered in Appendix.

2 Model

We follow Becker, Bosi, Le Van and Seegmuller (2014), but we consider: (i) exogenous
labor supply, (ii) non-stationary production functions.

Consumption good: at each period t, price of consumption is denoted by pt and agent
i consumes ci,t units of consumption good.

Physical capital: at time t, if agent i decides to buy ki,t+1 ≥ 0 units of new capital,
then at period t + 1, after begin depreciated, agent i will receive (1 − δ)ki,t+1 units of
old capital and a return on capital ki,t+1 at the rate rt+1. Here, δ is the rate of capital
depreciation rate.

1See Malinvaud (1953), Lemma 5, page 248.
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Each household i takes sequences of prices (p, r) = (pt, rt)
∞
t=0 as given and solves

(Pi(p, r)) : max
(

(ci,t,ki,t+1)mi=1

)+∞

t=0

[

+∞
∑

t=0

βt
iui(ci,t)

]

(1)

subject to : ki,t+1 ≥ 0 (2)

pt(ci,t + ki,t+1 − (1− δ)ki,t) ≤ rtki,t + θiπt(pt, rt), (3)

where (θi)mi=1 is the share of profit, θi ≥ 0 for all i and
m
∑

i=1
θi = 1.

Firm: For each period, there is a representative firm who takes prices (pt, rt) as given
and maximizes its profit.

(P (rt)) : πt(pt, rt) := max
Kt≥0

[

ptFt(Kt)− rtKt

]

We write πt instead of πt(pt, rt) if there is no confusion.

Definition 1. A sequence of prices and quantities
(

p̄t, r̄t, (c̄i,t, k̄i,t+1)
m
i=1, K̄t

)+∞

t=0
is an

equilibrium of the economy E =
(

(ui, βi, ki,0, θi)
m
i=1, F,

)

if the following holds.

(i) Price positivity: p̄t, r̄t > 0 for t ≥ 0.

(ii) Market clearing: at each t ≥ 0,

good :
m
∑

i=1

[c̄i,t + k̄i,t+1 − (1− δ)k̄i,t] = Ft(K̄t) (4)

capital : K̄t =
m
∑

i=1

k̄i,t. (5)

(iii) Optimal consumption plans: for each i,
(

(c̄i,t, k̄i,t+1)
m
i=1

)∞

t=0
is a solution to problem

(Pi(p̄, r̄)).

(iv) Optimal production plan: for each t ≥ 0, (K̄t) is a solution to problem (P (r̄t)).

3 The existence of equilibrium

The following result proves that the feasible aggregate capital and the feasible consumption
are bounded for the product topology.

Lemma 1. Feasible individual and aggregate capitals and feasible consumptions are in
a compact set for the product topology. Moreover, they are uniformly bounded if there
exists t0 and an increasing, concave function G such that: (i) for every t ≥ t0 we have
Ft(K) ≤ G(K) for every K, (ii) there exists x > 0 such that G(y) + (1− δ)y ≤ y for every
y ≥ x.
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Proof. Denote

D0 := D0(F0, δ,K0) := F0(K0) + (1− δ)K0,

Dt := Dt((Fs)
t
s=0, δ,K0) := Ft(Dt−1((Fs)

t−1
s=0, δ,K0)) + (1− δ)Dt−1((Fs)

t−1
s=0, δ,K0), ∀t ≥ 0.

Then
m
∑

i=1
ci,t +Kt+1 ≤ Dt for every t ≥ 0.

We now assume t0 and the function G (as in Lemma 1) exist. We are going to prove
that 0 ≤ Kt ≤ max{D0, ..., Dt0−1, x} =: M . Indeed, Kt ≤ Dt−1 ≤ M for every t ≤ t0. For
t ≥ t0, we have

Kt+1 =
m
∑

i=1

ki,t+1 ≤ G(Kt) + (1− δ)Kt.

Then Kt0+1 ≤ G(Kt0) + (1− δ)Kt0 ≤ G(M) + (1− δ)M ≤ M . Iterating the argument, we
obtain Kt ≤ M for each t ≥ 0.

Feasible consumptions are bounded because
m
∑

i=1
ci,t ≤ G(Kt) + (1− δ)Kt.

We need the following assumptions.

Assumption (H1): For each i, the utility function ui of agent i is strictly increasing,
strictly concave, continuous differentiable, and u(0) = 0, u′(0) = ∞.

Assumption (H2): Ft(·) is continuously differentiable, strictly increasing, concave, the
input is essential (Ft(0) = 0) and Ft(∞) = ∞.

Assumption (H3): δ ∈ (0, 1) and ki,0 > 0 for every i.2

Assumption (H4): For each i, utility of agent i is finite

∞
∑

t=0

βt
iui(Dt) < ∞.

3.1 Existence of equilibrium in ET

We define T− truncated economy ET as E but there are no activities from period T +1 to
the infinity, i.e., ci,t = ki,t = 0 for every i = 1, . . . ,m, and for every t ≥ T + 1.

In the economy ET , agent i takes sequences of prices (p, r) = (pt, rt)
T
t=0 as given and

maximizes his intertemporal utility by choosing consumption and investment levels.

(Pi(p, r)) : max
(ci,t,ki,t+1)Tt=0

[

T
∑

t=0

βt
iui(ci,t)

]

(6)

subject to: ki,t+1 ≥ 0, (7)

(budget constraints) pt(ci,t + ki,t+1 − (1− δ)ki,t) ≤ rtki,t + θiπt, (8)

2Becker, Bosi, Le Van and Seegmuller (3) weekens H3 by assuming
∑m

i=1
ki,0 > 0 because of positive

labor income.
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where ki,T = 0.
Then we define the bounded economy ET

b as ET but all variables are bounded in the
following bounded sets:

(ci,t)
T
t=0 ∈ Ci := [0, Bc]

T+1

(ki,t)
T+1
t=1 ∈ Ki := [0, Bk]

T

K := (Kt)
T+1
t=1 ∈ K := [0, B]T ,

where Bc > max
t

Ft(B) + (1− δ)B, B > mBk.

Proposition 1. Under Assumptions (H1)− (H3), there exists an equilibrium for ET
b .

Proof. See Appendix.

Proposition 2. An equilibrium of the economy ET
b is also an equilibrium of the unbounded

economy ET .

Proof. Similar to the one in Becker, Bosi, Le Van and Seegmuller (2014).

3.2 Existence of equilibrium in E

Theorem 1. Under Assumptions (H1)-(H4), there exists an equilibrium.

Proof of Theorem 1. We have shown that for each T ≥ 1, there exists an equilibrium for
the economy ET . We denote by (p̄T , r̄T , (c̄Ti , k̄

T
i )

m
i=1, K̄

T ) an equilibrium of T− truncated
economy ET .
We can normalize by setting p̄Tt + r̄Tt = 1 for every t ≤ T .
We see that

0 < c̄Ti,t, K̄
T
t ≤ Dt.

Without loss of generality, we can assume that

(p̄T , r̄T , (c̄Ti , k̄
T
i )

m
i=1, K̄

T )
T→∞
−−−−→ (p̄, r̄, (c̄i, k̄i)

m
i=1, K̄) (for the product topology ).

We are going to prove that: (i) all markets clear, (ii) at each date t, K̄t is a solution to
the firm’s maximization problem, (iii) r̄t > 0 for each t ≥ 0, (iv) (c̄i, k̄i) is a solution to the
maximization problem of agent i for each i = 1, . . . ,m, (v) p̄t > 0 for each t. Consequently,
we obtain that (p̄, r̄, (c̄i, k̄i)

m
i=1, K̄) is an equilibrium for the economy E .

(i) By taking the limit of market clearing conditions for the truncated economy, we
obtain the market clearing conditions for the economy E .

(ii) Take K ≥ 0 arbitrary. We have p̄Tt Ft(K)− r̄Tt K ≤ p̄Tt Ft(K̄
T
t )− r̄Tt K̄

T
t . Let T tend to

infinity, we obtain that p̄tFt(K)− r̄tK ≤ p̄tFt(K̄t)− r̄tK̄t. Therefore, the optimality
of K̄t is proved.

(iii) If r̄t = 0 then p̄t = 1 (since r̄Tt + p̄Tt = 1). The optimality of K̄t implies that K̄t = ∞.
This is a contradiction, because we have K̄t = lim

t→∞
K̄T

t ≤ Dt < ∞.

6

 
Documents de travail du Centre d'Economie de la Sorbonne - 2014.43



(iv) First, we give some notations. For each i and t, we define BT
i (p̄, r̄) and CT

i (p̄, r̄) as
follows

BT
i (p̄, r̄) :=

{

(ci,t, ki,t+1)
T
t=0 ∈ R

T+1
+ × R

T+1
+ : (a) ki,T+1 = 0, (b) ∀t = 0, . . . , T,

ki,t+1 > 0, p̄t[ci,t + ki,t+1 − (1− δ)ki,t] < r̄tki,t + θiπt(p̄t, r̄t)
}

CT
i (p̄, r̄) :=

{

(ci,t, ki,t+1)
T
t=0 ∈ R

T+1
+ × R

T+1
+ : (a) ki,T+1 = 0, (b) ∀t = 0, . . . , T,

ki,t+1 ≥ 0, p̄t[ci,t + ki,t+1 − (1− δ)ki,t] ≤ r̄tki,t + θiπt(p̄t, r̄t)
}

.

Since r̄t > 0 for every t, it is easy to prove that BT
i (p̄, r̄) 6= ∅.

Let (ci, ki) be an feasible allocation of the problem Pi(p̄, r̄). We have to prove that
∞
∑

t=0
βt
iui(ci,t) ≤

∞
∑

t=0
βt
iui(c̄i,t).

We define (c′i,t, k
′
i,t+1)

T
t=0 as follows: c′i,t = ci,t for every t ≤ T , = 0 if t > T ;

k′i,t+1 = ki,t+1 for every t ≤ T −1, = 0 if t ≥ 0. We see that (c′i,t, k
′
i,t+1)

T
t=0 belongs to

CT
i (p̄, r̄). Since BT

i (p̄, r̄) 6= ∅, there exists a sequence
(

(cni,t, k
n
i,t+1)

T
t=0

)∞

n=0
∈ BT

i (p̄, r̄)

with kni,T+1 = 0, and this sequence converges to (c′i,t, k
′
i,t+1)

T
t=0 when n tends to

infinity. We have

p̄t(c
n
i,t + kni,t+1 − (1− δ)kni,t) < r̄tk

n
i,t + θiπt(p̄t, r̄t)

We can chose s0 > T , high enough, such that: for every s ≥ s0, we have

p̄st (c
n
i,t + kni,t+1 − (1− δ)kni,t) < r̄stk

n
i,t + θiπt(p̄

s
t , r̄

s
t ).

It means that (cni,t, k
n
i,t+1)

T
t=0 ∈ CT

i (p̄
s, r̄s). Therefore, we get

T
∑

t=0
βt
iui(c

n
i,t) ≤

s
∑

t=0
βt
iui(c̄

s
i,t).

Let s tend to infinity, we obtain
T
∑

t=0
βt
iui(c

n
i,t) ≤

∞
∑

t=0
βt
iui(c̄i,t).

Let n tends to infinity, we have
T
∑

t=0
βt
iui(ci,t) ≤

∞
∑

t=0
βt
iui(c̄i,t) for every T .

Let T tend to infinity, we obtain
∞
∑

t=0
βt
iui(ci,t) ≤

∞
∑

t=0
βt
iui(c̄i,t).

(v) pt is strictly positive thanks to the strict increasingness of the utility functions.

4 Physical asset bubble

Let
(

pt, rt, (ci,t, ki,t)
m
i=1,Kt

)+∞

t=0
be an equilibrium. Without loss of generality, we assume

that pt = 1 for every t.

Lemma 2. For each t, we have

1 = (1− δ +
rt+1

pt+1
)γt+1 (9)

where γt+1 := max
i∈{1,...,m}

βiu
′
i(ci,t+1)

u′i(ci,t)
.
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Proof. Firstly, we write all FOCs for the economy E . Denote by λi,t the multiplier with
respect to the budget constraint of agent i and by µt+1 the multiplier with respect to the
borrowing constraint (i.e., kTi,t+1 ≥ 0) of agent i.

βt
iu

′
i(ci,t) = λi,tpt

λi,tpt = λi,t+1(rt+1 + pt+1(1− δ)) + µi,t+1

µi,t+1ki,t+1 = 0.

Therefore, we have
pt+1

rt+1 + pt+1(1− δ)
≥

βiu
′
i(ci,t+1)

u′i(ci,t)
for every i.

Since Kt > 0 at equilibrium, there exists i such that ki,t+1 > 0. For such agent, we have
µi,t+1 = 0. Thus, λi,tpt = λi,t+1(rt+1 + pt+1(1− δ)). Consequently, we get (9)

Definition 2. We define the discount factor of the economy from initial date to date t as
follows

Q0 := 1, Qt :=
t
∏

s=1

γs, t ≥ 1. (10)

According to Lemma 2, we have Qt = (1 − δ + rt+1

pt+1
)Qt+1 for every t ≥ 0. As a

consequence, we can write

1 = (1− δ +
r1

p1
)Q1 = (1− δ)Q1 +

r1

p1
Q1

= (1− δ)(1− δ +
r2

p2
)Q2 +

r1

p1
Q1 = (1− δ)2Q2 + (1− δ)

r2

p2
Q2 +

r1

p1
Q1

= · · ·

= (1− δ)TQT +

T
∑

t=1

(1− δ)t−1 rt

pt
Qt.

Interpretation. In this model, physical capital is viewed as a long-lived asset.

1. At date 1, one unit (from date 0) of this asset will give (1−δ) units of physical capital
and r1

p1
units of consumption good as its dividend.

2. At date 2, (1− δ) units of physical capital will give (1− δ)2 units of physical capital
and (1− δ) r2

p2
units of consumption good ...

Therefore, the fundamental value of physical capital at date 0 can be defined by

FV0 =

∞
∑

t=1

(1− δ)t−1 rt

pt
Qt.

Definition 3. We say that there is a capital asset bubble if physical capital’s price is greater

that its fundamental value, i.e., 1 >
∞
∑

t=1
(1− δ)t−1 rt

pt
Qt.

We can see that there is a bubble on capital asset if and only if lim
t→∞

(1− δ)tQt > 0.

8
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Definition 4. We say that interest rates are low at equilibrium if

∞
∑

t=1

rt

pt
< ∞. (11)

Otherwise, we say that interest rates are high.

We now state our main result in this section.

Proposition 3. There is a bubble if and only if interest rates are low

Proof. According (9), we see that Qt = (1− δ + rt+1

pt+1
)Qt+1. Hence, we have

1 = (1− δ +
r1

p1
)Q1 = (1− δ +

r1

p1
)(1− δ +

r2

p2
)Q2

= . . . = QT

T
∏

t=1

(1− δ +
rt

pt
) = QT (1− δ)T

T
∏

t=1

[1 +
rt

(1− δ)pt
].

Consequently, lim
t→∞

(1 − δ)tQt > 0 if and only if
∞
∏

t=1
[1 + rt

(1−δ)pt
] < +∞. This condition is

equivalent to

∞
∑

t=1

rt

pt
< ∞. (12)

It means that interest rates are low.

We point out some consequences of Proposition 3.

Corollary 1. ( Becker, Bosi, Le Van and Seegmuller (2014))
Assume that Ft = F for every t, F is strictly increasing, strictly concave. Then there is
no bubble at equilibrium.

Proof. Since F is strictly increasing and strictly concave, aggregate capital stock is uni-
formly bounded, i.e., there exists 0 < K < ∞ such that Kt ≤ K. Consequently,
rt
pt

= F ′(Kt) > F ′(K) > 0 for every t. This implies that
∞
∑

t=1

rt
pt

= ∞. According to

Proposition 3, there is no bubble.

Corollary 2. Assume that Ft(K) = atK for each t. Then there is a bubble at equilibrium

if and only if
∞
∑

t=1
at < ∞.

Proof. This is a direct consequence of Proposition 3 .

This result shows that if the productivity decrease to zero with high speed, a bubble
in physical capital will appear.

9

 
Documents de travail du Centre d'Economie de la Sorbonne - 2014.43



5 On the efficiency of equilibria

In this section, we study the efficiency of intertemporal equilibrium. Following Malinvaud
(1953), we define the efficiency of a capital path as follows.

Definition 5. Let Ft be a production function, δ be capital depreciation rate. A feasible
path of capital is a positive sequence (Kt)

∞
t=0 such that 0 ≤ Kt+1 ≤ Ft(Kt) + (1− δ)Kt for

every t ≥ 0 and K0 is given.
A feasible path is efficient if there is no other feasible path (K ′

t) such that

Ft(K
′
t) + (1− δ)K ′

t −K ′
t+1 ≥ Ft(Kt) + (1− δ)Kt −Kt+1

for every t with strict inequality for some t.

Here, aggregate feasible consumption at date t is defined by Ct := Ft(Kt)+(1− δ)Kt−
Kt+1.

Definition 6. We say that an intertemporal equilibrium is efficient if its aggregate feasible
capital path (Kt) is efficient.

Our main result in this section requires some intermediate steps. First, we have as in
(Malinvaud (1953)).

Lemma 3. An equilibrium is efficient if lim
t→∞

QtKt+1 = 0.

Proof. Let (K ′
t, C

′
t) be a feasible sequence. We have just to show that

lim inf
T→+∞

T
∑

t=0

Qt

(

Ct − C ′
t

)

≥ 0. (13)

It is enough to prove that feasibility and first-order conditions imply

T
∑

t=0

Qt

(

Ct − C ′
t

)

≥ −QTKT+1 (14)

Let us prove inequality (14). We have

∆T ≡
T
∑

t=0

Qt

(

Ct − C ′
t

)

=

T
∑

t=0

Qt

[

Ft (Kt)− Ft

(

K ′
t

)

+ (1− δ)
(

Kt −K ′
t

)

−
(

Kt+1 −K ′
t+1

)]

≥
T
∑

t=0

Qt

[

F ′
t (Kt)

(

Kt −K ′
t

)]

+ (1− δ)
(

Kt −K ′
t

)

]−
T
∑

t=0

Qt

(

Kt+1 −K ′
t+1

)

=

T
∑

t=0

Qt

(

1− δ +
rt

pt

)

(

Kt −K ′
t

)

−
T
∑

t=0

Qt

(

Kt+1 −K ′
t+1

)
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By noticing that K0 = K ′
0 and Qt+1

(

1− δ +
rt+1

pt+1

)

−Qt = 0, we then get:

∆T ≥
T
∑

t=1

Qt

(

1− δ +
rt

pt

)

(

Kt −K ′
t

)

−
T
∑

t=0

Qt

(

Kt+1 −K ′
t+1

)

=

T−1
∑

t=0

[

Qt+1

(

1− δ +
rt+1

pt+1

)

−Qt

]

(

Kt+1 −K ′
t+1

)

−QT

(

KT+1 −K ′
T+1

)

≥
T−1
∑

t=0

[

Qt+1

(

1− δ +
rt+1

pt+1

)

−Qt

]

(

Kt+1 −K ′
t+1

)

−QTKT+1

= −QTKT+1.

We also have the transversality condition of each agent.

Lemma 4. At any equilibrium, we have lim
t→∞

βt
iu

′
i(ci,t)ki,t+1 = 0 for every i.

Proof. See Kamihigashi (2002).

The following result shows the impact of borrowing constraints on the efficiency of an
intertemporal equilibrium.

Lemma 5. Consider an equilibrium. If there exists a date such that, from this date on,
the borrowing constraints of agents are not binding at this equilibrium, then it is efficient.

Proof. Assume that there exists t0 such that ki,t > 0 for every i and for every t ≥ t0. Then
we have: for every t ≥ t0

Qt

Qt0

= βt−t0
i

u′i(ci,t)

u′i(ci,t0)
.

According to Lemma 4, we have lim
t→∞

βt
iu

′
i(ci,t)ki,t+1 = 0. Then lim

t→∞
Qtki,t+1 = 0 for every

i. This implies that lim
t→∞

QtKt+1 = 0. Therefore, this equilibrium is efficient.

We now state our main finding in this section.

Proposition 4. Assume that the production functions are linear. Then every equilibrium
path is efficient.

Proof. Since production functions are linear, profit equals to zero. Recall that we have
ci,t > 0 for every i and every t. This implies that ki,t > 0 at equilibrium. According to
Lemma 5, every equilibrium path is efficient.

Corollary 2 and Proposition 4 indicate that with linear production functions, there
exists an equilibrium the capital path of which is efficient and a bubble may arise at this
equilibrium.
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6 Conclusion

We build infinite-horizon dynamic deterministic general equilibrium models in which het-
erogenous agents invest in physical capital and consume. We proved existence of equilib-
rium in this model, even if technologies are not stationary and aggregate capital is not
uniformly bounded.

We say there is a bubble of physical capital at equilibrium if the physical capital’s price is
greater than its fundamental value. We point out that bubble is equivalent to low interest
rates. In particular, there is a bubble if productivities decrease with high speed.

With linear technologies, every intertemporal equilibrium is efficient. Interestingly, it is
possible to have both bubble and efficient at equilibrium.

A Appendix: Existence of equilibrium for the truncated

economy

Proof of Proposition 1. Denote ∆ := {z0 = (p, r) : 0 ≤ pt, rt ≤ 1, pt + rt = 1 ∀t =
0, . . . , T},

Bi(p, r) :=
{

(ci, ki) ∈ Ci ×Ki such that : ∀t = 0, . . . , T

pt(ci,t + ki,t+1 − (1− δ)ki,t) < rtki,t + θiπt
}

,

and

Ci(p, r) :=
{

(ci, ki) ∈ Ci ×Ki such that : ∀t = 0, . . . , T

pt(ci,t + ki,t+1 − (1− δ)ki,t) ≤ rtki,t + θiπt
}

,

Denote by B̄i(z0) the closure of Bi(z0).

Lemma 6. For every (p, r) ∈ P, we have Bi(p, q) 6= ∅ and B̄i(p, q) = Ci(p, q).

Proof. We rewrite Bi(p, r) as follows

Bi(p, r) :=
{

(ci, ai) ∈ Ci ×Ai such that : ∀t = 0, . . . , T

0 < pt((1− δ)ki,t − ci,t − ki,t+1) + rtki,t + θiπt
}

.

Since (1− δ)ki,0 > 0, we can choose ci,0 ∈ (0, Bc) and ki,1 ∈ (0, Bk) such that

0 < p0((1− δ)ki,0 − ci,0 − ki,1) + r0ki,0 + θiπ0.

By induction, we see that Bi(p, r) is not empty.

Lemma 7. Bi(p, r) is a lower semi-continuous correspondence on P := ∆T+1. And Ci(p, r)
is upper semi-continuous on P with compact convex values.

Proof. Clearly, since Bi(p, r) is empty and has an open graph.
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We define Φ := ∆ ×
m
∏

i=1
(Ci × Ki) × K. An element z ∈ Φ is in the form z = (zi)

m+1
i=0

where z0 := (p, r), zi := (ci, ki) for each i = 1, . . . ,m, and zm+1 = K.
We now define correspondences. First, we define ϕ0 (for additional agent 0)

ϕ0 :
m
∏

i=1

(Ci ×Ki)×K → 2∆

ϕ0((zi)
m+1
i=1 ) := argmax

(p,r)∈∆

{

T
∑

t=0

pt
(

m
∑

i=1

[ci,t + ki,t+1 − (1− δ)ki,t]− Ft(Kt)
)

+

T
∑

t=0

rt
(

Kt −
m
∑

i=1

ki,t
)

}

.

For each i = 1, . . . ,m, we define

ϕi : ∆ → 2Ci×Ki

ϕi(p, r) := argmax
(ci,ki)∈Ci(p,r)

{

T
∑

t=0

βt
iui(ci,t)

}

.

For each i = m+ 1, we define

ϕm+1 : ∆ → 2K

ϕi(p, r) := argmax
K∈K

{

T
∑

t=0

ptFt(Kt)− rtKt

}

.

Lemma 8. ϕi is upper semi-continuous convex-valued correspondence for each i = 0, 1, . . . ,m+
1.

Proof. This is a direct consequence of the Maximum Theorem.

According to the Kakutani Theorem, there exists (p̄, r̄, (c̄i, k̄i)
m
i=1, K̄) such that

(p̄, r̄) ∈ ϕ0((c̄i, k̄i)
m
i=1, K̄) (15)

(c̄i, k̄i) ∈ ϕi(p̄, r̄) (16)

K̄ ∈ ϕm+1(p̄, r̄). (17)

Denote by X̄t :=
m
∑

i=1
[c̄i,t + k̄i,t+1 − (1 − δ)k̄i,t] − Ft(K̄t) and Ȳt = K̄t −

m
∑

i=1
k̄i,t the excess

demands for goods and capital respectively. For every (p, r) ∈ ∆T+1, we have

T
∑

t=0

(pt − p̄t)X̄t +

T
∑

t=0

(rt − r̄t)Ȳt ≤ 0. (18)

By summing the budget constraints, for each t, we get

p̄tX̄t + r̄tȲt ≤ 0. (19)

Hence, we have: for every (pt, rt) ∈ ∆

ptX̄t + qtȲt ≤ p̄tX̄t + r̄tȲt ≤ 0. (20)
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Therefore, we have X̄t, Ȳt ≤ 0, which implies that

m
∑

i=1

c̄i,t + k̄i,t+1 ≤ (1− δ)
m
∑

i=1

k̄i,t + Ft(K̄t) (21)

K̄t ≤
m
∑

i=1

k̄i,t. (22)

Lemma 9. p̄t, r̄t > 0 for t = 0, . . . , T .

Proof. If p̄t = 0 then c̄i,t = Bc > (1 − δ)B + Ft(B). Therefore, we get c̄i,t + k̄i,t+1 >

(1− δ)
m
∑

i=1
k̄i,t + Ft(K̄t) which is a contradiction. Hence, p̄t > 0.

If r̄t = 0, then the optimality of K̄ implies that Kt = B. However, we have k̄i,t ≤ Bk for

every i, t. Consequently,
m
∑

i=1
k̄i,t ≤ mBk < B = Kt, contradiction to (22). Therefore, we

get r̄t > 0.

Lemma 10.
m
∑

i=1
k̄i,t = K̄t and

m
∑

i=1
[c̄i,t + k̄i,t+1 − (1− δ)k̄i,t] = F (K̄t)

Proof. Since prices are strictly positive and the utility functions are strictly increasing, all
the budget constraints are binding and, summing them across the individuals, we get

p̄tX̄t + r̄tȲt = 0. (23)

We know that X̄t, Ȳt ≤ 0 and p̄t, r̄t > 0. Then, X̄t = Ȳt = 0. The optimality of (c̄i, k̄i) and
K̄ comes from (16) and (17).
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