Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Correcting the effect of sampling bias in species distribution modeling – A new method in the case of a low number of presence data

Abstract : Species distribution models that only require presence data provide potentially inaccurate results due to sampling bias and presence data scarcity. Methods have been proposed in the literature to minimize the effects of sampling bias, but without explicitly considering the issue of sample size. A new method developed to better take into account environmental biases in a context of data scarcity is proposed here. It is compared to other sampling bias correction methods primarily used in the literature by analyzing their absolute and relative impacts on model performances. Results showed that the number of presence sites is critical for selecting the applicable method. The method proposed was regularly placed in the first or second rank and tends to be more proficient than other methods in the context of presence site scarcity (〈100). It tends to improve results regarding environment-based performance indexes. Eventually, its parametrization, requiring background knowledge on species bio-ecology, appears to be more robust and convenient to perform than those based on geographical criteria.
Liste complète des métadonnées

Littérature citée [33 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-02550890
Contributeur : Emmanuel Roux <>
Soumis le : mardi 28 avril 2020 - 14:21:01
Dernière modification le : vendredi 10 juillet 2020 - 14:56:24

Fichier

Moua_et_al_2020.pdf
Publication financée par une institution

Licence


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale - Pas de modification 4.0 International License

Identifiants

Citation

Yi Moua, Emmanuel Roux, F. Seyler, Sebastien Briolant. Correcting the effect of sampling bias in species distribution modeling – A new method in the case of a low number of presence data. Ecological Informatics, Elsevier, 2020, 57, pp.101086. ⟨10.1016/j.ecoinf.2020.101086⟩. ⟨hal-02550890⟩

Partager

Métriques

Consultations de la notice

113

Téléchargements de fichiers

139