
HAL Id: halshs-01025079
https://shs.hal.science/halshs-01025079

Submitted on 23 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bargaining over a common conceptual space
Nadia Mâagli, Marco Licalzi

To cite this version:

Nadia Mâagli, Marco Licalzi. Bargaining over a common conceptual space. 2014. �halshs-01025079�

https://shs.hal.science/halshs-01025079
https://hal.archives-ouvertes.fr


 
 

 Documents de Travail du 
Centre d’Economie de la Sorbonne 

 
 

 
 

 
 

 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

Bargaining over a common conceptual space 

 

Marco LICALZI, Nadia MÂAGLI 

 

2014.52 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Maison des Sciences Économiques, 106-112 boulevard de L'Hôpital, 75647  Paris Cedex 13 
http://centredeconomiesorbonne.univ-paris1.fr/ 

ISSN : 1955-611X 



Bargaining over a common conceptual space∗

Marco LiCalzi Nadia Maagli
[licalzi@unive.it] [maagli.nadia@gmail.com]

Dept. of Management EDE-EM
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Abstract. Two agents endowed with different individual conceptual spaces are engaged in a
dialectic process to reach a common understanding. We model the process as a simple non-
cooperative game and demonstrate three results. When the initial disagreement is focused,
the bargaining process has a zero-sum structure. When the disagreement is widespread,
the zero-sum structure disappears and the unique equilibrium requires a retraction of con-
sensus: two agents who individually agree to associate a region with the same concept end
up rebranding it as a different concept. Finally, we document a conversers’ dilemma: such
equilibrium outcome is Pareto-dominated by a cooperative solution that avoids retraction.
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1 Introduction

Conceptual spaces have been introduced in Gärdenfors (2000) as an alternative approach to
the problem of modelling cognitive representations. In short, a natural concept is associated
with a convex region and a conceptual space consists of a collection of convex regions. The
underlying geometric structure resonates with early theories of categorisation based on proto-
types (Rotsch, 1975; Mervis and Rotsch, 1981) and has recently been given both evolutionary
(Jäger, 2007) and game-theoretic foundations (Jäger et al., 2011).

More recently, Warglien and Gärdenfors (2013) have presented an account of semantics as
a mapping between individual conceptual spaces. People create meaning by finding ways to
map their own individual conceptual spaces to some common ground. A well-known example
is the integration of different cultures within an organisation, when different communication
codes must blend into a commonly understood language (Wernerfelt, 2004). Related issues
arise when studying the emergence of languages (Selten and Warglien, 2007) or the evolution
of signals (Skyrms, 2010). Warglien and Gärdenfors (2013) rely on the theory of fixed points to
argue for the plausibility of achieving a common conceptual space. Their approach, however,
is merely existential and thus offers no insight in the structure of the possible outcomes
associated with the creation of a common conceptual space.

This paper addresses the latter issue by analysing a simple non-cooperative game where
two agents, each endowed with his own individual conceptual space, bargain over the defini-
tion of a common conceptual space. Agents exhibit stubbornness as they are reluctant to give
up on their own conceptual space, but they are engaged in a dialectic process that must ulti-
mately lead to a common ground. Our game-theoretic approach is aligned with the argument
that meaning is constructed and shared via an equilibrating process; see Parikh (2010).

We demonstrate two main phenomena, depending on whether the disagreement between
agents’ individual spaces is focused or widespread. Under focused disagreement, the bar-
gaining process has a zero-sum structure: agents’ stubbornness leads to a unique equilibrium
where each concedes as little as possible, and the agents who has a larger span of control
over the process ends up better off. Under widespread disagreement, the zero-sum structure
disappears and each agent confronts a dilemma: holding on to one of his individual concepts
weakens his position on another one. At the unique equilibrium, these conflicting pressures
force a retraction of consensus: two agents who individually agree on a region being repre-
sentative of the same concept agree to remould it in order to minimise conflict. Moreover, we
uncover a conversers’ dilemma: the equilibrium outcome is Pareto-dominated by the Nash
bargaining solution without retraction.

2 Model

There are two agents. Each agent i = 1, 2 has his own binary conceptual space over the
closed unit disk C in R2. (Our qualitative results carry through for any convex compact
region C in R2.) This specific choice is both elegant and analytically advantageous because
C is invariant to rotations. Conventionally, we label the two concepts L for Left and R for
Right and use them accordingly in our figures.
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The agents agree on the classification of two antipodal points in C: they both label
l = (−1, 0) as L and r = (0, 1) as R, respectively. However, we do not require the convex
regions underlying their conceptual spaces be the same.

The conceptual space of Agent i over C consists of two convex regions Li and Ri. Dropping
subscripts for simplicity, this may look like in Figure 1. Clearly, the representation is fully

L Rl r

t

b

Figure 1: A binary conceptual space.

characterized by the chord tb separating the two convex regions. The endpoints t and b for
the chord are located in the top and in the bottom semicircumference, respectively. (To avoid
trivialities, assume that the antipodal points l and r are interior.) The two regions of the
conceptual space may differ in extension and thus the dividing chord need not be a diameter
for C.

Consider the conceptual spaces of the two agents. Unless t1b1 = t2b2, the regions rep-
resenting the concepts are different. If the agents are to share a common conceptual space,
they must negotiate an agreement. This bargaining process over conceptual spaces amounts
to a search for a common ground, where each agent presumably tries to push for preserv-
ing as much as possible of his own original conceptual space. Figure 2 provides a pictorial
representation for the process: Agent 1 (Primus) and Agent 2 (Secunda) negotiate a shared
conceptual space as a compromise between their own conceptual spaces.

L R ⊕ L R ⇒ L R

Primus Secunda Common ground

Figure 2: The search for a common conceptual space.

We provide a simple game–theoretic model for their interaction and study the equilibrium
outcomes. We do not claim any generality for our model, but its simplicity should help making
the robustness of our results transparent.

The two agents play a game with complete information, where the endpoints (ti, bi) of
each agent i are commonly known. Without any loss of generality, let Primus be the agent for
whom t1 precedes t2 in the clockwise order. Primus picks a point t in the arc interval [t1, t2]
from the top semicircumference, while Secunda simultaneously chooses a point b between
b1 and b2 from the bottom semicircumference. The resulting chord tb defines the common
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conceptual space. Under our assumption that the antipodal points l and r are interior, the
agents cannot pick either of them.

Each agent evaluates the common conceptual space against his own conceptual space.
Superimposing these two spaces, there is one region where the common space and the indi-
vidual space agree on the classification and (possibly) a second region where they disagree.
For instance, consider the left-hand side of Figure 3 where the solid and the dotted chords
represent the agent’s and the common conceptual space, respectively. The two classifications

L R L R

Figure 3: The disagreement area.

disagree over the central region, coloured in grey on the right-hand side.
Each agent wants to minimise the disagreement between his own individual and the

common conceptual space. For simplicity, assume that the payoff for an agent is the opposite
of the area of the disagreement region D; that is, ui = −λ(Di) where λ is the Lebesgue
measure. (Our qualitative results carry through for any absolutely continuous measure µ.)
Note that the region D need not be convex: when the chords underlying the agent’s and
the common conceptual space intersect inside the disc, D consists of two opposing circular
sectors.

3 Results

The study of the equilibria is greatly facilitated if we distinguish three cases. First, when
t1 = t2 and b1 = b2, the two individual conceptual spaces are identical: the unique Nash
equilibrium has t∗ = t1 and b∗ = b2, and the common conceptual space agrees with the
individual ones. This is a trivial case, which we consider no further. From now on, we
assume that the two individual conceptual spaces disagree; that is, either t1 6= t2 or b1 6= b2
(or both).

The other two cases depend on the shape of the disagreement region D. When t1b1 and
t2b2 do not cross inside the disc, then D is a convex set as in the left-hand side of Figure 4.
We define this situation as focused disagreement, because one agent labels D as L and the
other as R. The disagreement is focused on whether D should be construed as L or R.

Instead, when t1b1 and t2b2 cross strictly inside the disc, then D is the union of two circular
sectors as in the right-hand side of Figure 4. This is the case of widespread disagreement,
because the two agents label the two sectors in opposite ways: the top sector is L for one
and R for the other, while the opposite holds for the bottom sector.

3
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L R L R

Figure 4: Focused (left) and widespread disagreement (right).

3.1 Focused disagreement

Under focused disagreement, t1 precedes t2 and b2 precedes b1 in the clockwise order. The
disagreement region is convex and the interaction is a game of conflict: as Primus’s choice of
t moves clockwise, his disagreement region (with respect to the common conceptual space)
increases, while Secunda’s decreases. In particular, under our simplifying assumption that
payoffs are the opposites of the disagreement areas, this is a zero-sum game.

Intuitively, players have opposing interests over giving up on their conceptual spaces.
Therefore, we expect that in equilibrium each player concedes as little as possible. In our
model, this leads to the stark result that they make no concessions at all over whatever is
under their control. That is, they exhibit maximal stubbornness. This is made precise in the
following theorem, that characterises the unique equilibrium. All proofs are relegated in the
appendix.

Theorem 1 Under focused disagreement, the unique Nash equilibrium is (t∗, b∗) = (t1, b2).
Moreover, the equilibrium strategies are dominant.

Figure 5 illustrates the equilibrium outcome corresponding to the situation depicted on
the left-hand side of Figure 4. The thick line defines the common conceptual space. In this

L Ro

t1 t2

b1 b2

Figure 5: The unique equilibrium outcome under focused disagreement.

example, Primus and Secunda give up the small grey area on the left and on the right of the
thick line, respectively. Note how Primus and Secunda stubbornly stick to their own original
t1 and b2. Moreover, Primus gives up a smaller area and thus ends up being better off than
Secunda. This shows that, in spite of its simplicity, the game is not symmetric. Our next
result elucidates which player has the upper hand in general. Formally, let (ts, bs) be the
Nash bargaining solution, with ts and bs being the midpoints of the two players’ strategy
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sets. We say that in equilibrium Primus is stronger than Secunda if u1(t
∗, b∗) ≥ u1(t

s, bs) =
u2(t

s, bs) ≥ u2(t∗, b∗).
To gain intuition, consider again Figure 5. The thick line defining the common ground

divides the disagreement region into two sectors S1(t1t2b2) and S2(b2b1t1). Primus wins S1
and loses S2; so he is stronger when λ(S1) ≥ λ(S2). The area of S1 depends on the angular

distance τ = t̂1ot2 controlled by Primus and on the angular distance θR = t̂2ob2 underlying

the arc that is commonly labeled R; similarly, the area of S2 depends on τ = b̂1ob2 and θL.
Primus is advantaged when τ ≥ β and θR ≥ θL. The first inequality implies that his span
of control is higher. The second inequality makes the common ground for R less contestable
than for L, so that Primus’ stubborn clinging to t1 is more effective than Secunda’s choice of
b2. The next result assumes that a player (say, Primus) has the larger span of control: then
Primus is stronger when his span of control is sufficiently large, or when R is more contestable
than L but the opponent’s span of control is small enough.

Proposition 2 Suppose τ ≥ β. If τ ≥ β + (θL − θR), then Primus is stronger. If τ <
β + (θL − θR), then there exists β such that Primus is stronger if and only if β ≤ β.

3.2 Widespread disagreement

Under widespread disagreement, t1 precedes t2 and b1 precedes b2 in the clockwise order.
The disagreement region is not convex and the interaction is no longer a zero-sum game.
We simplify the analysis by making the assumption that the two chords characterising the
players’ conceptual spaces are diameters. Then the two angular distances τ = t̂1ot2 and

β = b̂1ob2 are equal, the players have the same strength and the game is symmetric.
Players’ stubbornness now has a double-edged effect, leading to a retraction of consensus

at the unique equilibrium. Before stating it formally, we illustrate this result with the help of
Fig. 6, drawn for the special case τ = β = π/2. The thick line depicts the common conceptual

L Ro

t1 t2

b2 b1

Figure 6: The unique equilibrium outcome under widespread disagreement.

space at the unique equilibrium for this situation.
Consider Primus. Choosing t very close to t1 concedes little on the upper circular sector,

but exposes him to the risk of a substantial loss in the lower sector. This temperates Primus’
stubbornness and, in equilibrium, leads him to choose a value of t∗ away from t1. However, as
his opponent’s choice makes the loss from the lower sector smaller than the advantage gained
in the upper sector, the best reply t∗ stays closer to t1 than to t2. An analogous argument
holds for Secunda.

5
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A surprising side-effect of these tensions is that, in equilibrium, the common conceptual
space labels the small white triangle between the thick line and the origin as R, in spite of
both agents classifying it as L in their own individual conceptual spaces. That is, in order to
find a common ground, players retract their consensus on a small region and switch label. The
following theorem characterise the unique equilibrium by means of the two angular distances

t̂∗ot1 and b̂∗ob2. It is an immediate corollary that the retraction of consensus always occurs,
unless τ = 0 and the two agents start off with identical conceptual spaces.

Theorem 3 Suppose that the individual conceptual spaces are supported by diameters, so
that τ = β. Under widespread disagreement, there is a unique Nash equilibrium (t∗, b∗)
characterised by

t̂∗ot1 = b̂∗ob2 = arctan

(
sin τ√

2 + 1 + cos τ

)
.

As the equilibrium necessitates a retraction of consensus, it should not be surprising that
we have an efficiency loss that we call the cost of consensus. The equilibrium strategies lead
to payoffs that are pareto-dominated by those obtained under different strategy profiles. The
following result exemplifies the existence of such cost using the natural benchmark provided
by the Nash bargaining solution (ts, bs), with ts and bs being the midpoints of the respective
arc intervals.

Proposition 4 Suppose that the individual conceptual spaces are supported by diameters.
Under widespread disagreement, ui(t

∗, b∗) ≤ ui(ts, bs) for each player i = 1, 2, with the strict
inequality holding unless τ = 0.

A Proofs

A.1 Proof of Theorem 1

The proof is a bit long, but straightforward. It is convenient to introduce some additional
notation. The endpoints (ti, bi) for the two agents’ chords and their choices for t and b
identify six sectors. Proceeding clockwise, these are numbered from 1 to 6 on the left-hand
side of Figure 7. For each sector i, we denote its central angle by θi; that is, we let θ1 = t̂1ot,

o

t2

b2

t1

b1

t

b

1 2

3

45

6

t2

b2

t1

b1

t

b

S1

S2

Figure 7: Visual aids for the proof of Theorem 1.

θ2 = t̂ot2, θ3 = t̂2ob2, θ4 = b̂2ob, θ5 = b̂ob1, and θ6 = b̂1ot1. The following lemma characterises
the disagreement area of each player as a function of the six central angles.

6
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Lemma 1 The disagreement areas for Primus and Secunda are, respectively:

λ(D1) =
θ1 + θ5 + sin θ6 − sin (θ1 + θ5 + θ6)

2
, (1)

and

λ(D2) =
θ2 + θ4 + sin θ3 − sin (θ2 + θ3 + θ4)

2
.

Proof. The disagreement region D1 for Primus can be decomposed into the two sector-
like regions S1(t1bb1) and S2(t1tb) as shown on the right-hand side of Figure 7. (The figure
illustrates a special case, but the formulas hold in general.) We compute the areas λ(S1) and
λ(S2), and then add them up to obtain λ(D1).

Consider S1(t1bb1). It can be decomposed into two regions: the circular segment from b
to b1 with central angle θ5, and the triangle T (t1bb1). The area of a circular segment with
central angle θ and radius r is r2(θ − sin θ)/2, which in our case reduces to (θ5 − sin θ5)/2.

Concerning the triangle, the inscribed angle theorem implies that the angle b̂1t1b = θ5/2;
hence, by the law of sines, its area can be written as

t1b · t1b1 · sin(θ5/2)

2
. (2)

Finally, by elementary trigonometry, t1b = 2 sin [(θ5 + θ6)/2] and t1b1 = 2 sin [(θ6)/2]. Sub-
stituting into (2) and adding up the areas of the two regions, we obtain

λ(S1) =
θ5 − sin θ5

2
+ 2 sin

(
θ5
2

)
sin

(
θ6
2

)
sin

(
θ5 + θ6

2

)
.

By a similar argument, we obtain

λ(S2) =
θ1 − sin θ1

2
+ 2 sin

(
θ1
2

)
sin

(
θ5 + θ6

2

)
sin

(
θ1 + θ5 + θ6

2

)
.

Summing up λ(S1) and λ(S2), we find

λ(D1) =
θ1 − sin θ1

2
+
θ5 − sin θ5

2
(3)

+ 2 sin

(
θ5 + θ6

2

)[
sin

(
θ1
2

)
sin

(
θ1 + θ5 + θ6

2

)
+ sin

(
θ5
2

)
sin

(
θ6
2

)]
.

After some manipulations shown separately in the following Lemma 2, this expression
simplifies to

λ(D1) =
θ1 + θ5 + sin θ6 − sin (θ1 + θ5 + θ6)

2
.

The derivation of a specular formula for λ(D2) is analogous. �

Lemma 2 The expression in (3) for λ(D1) can be rewritten as

λ(D1) =
θ1 + θ5 + sin θ6 − sin (θ1 + θ5 + θ6)

2
.
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Proof. Let p = θ5/2 and q = θ6/2. Then

λ(S1) =
2p− sin (2p)

2
+ 2 sin (p) sin (q) sin (p+ q)

=
2p− sin (2p)

2
+ 2 sin (p+ q) [cos (p− q)− cos (p+ q)]

=
2p− sin (2p)

2
+ 2 sin (p+ q) cos (p− q)− sin [2 (p+ q)]

2

=
2p− sin (2p)

2
+

sin (2p) + sin (2q)

2
− sin [2 (p+ q)]

2

=
2p+ sin (2q)− sin [2 (p+ q)]

2

=
θ5 + sin (θ6)− sin (θ5 + θ6)

2
.

An analogous derivation with p = θ1/2 and q = (θ5 + θ6)/2 leads to

λ(S2) =
θ1 + sin (θ5 + θ6)− sin [(θ1 + θ5 + θ6)]

2
.

Summing up λ(S1) and λ(S2) we obtain the target formula for λ(D1). �

Proof of Theorem 1 We compute Primus’ best reply function. Given t1, b1, t2, b2, and
b, Primus would like to choose t in order to minimise λ(D1). Because of the 1–1 mapping
between t and θ1, we can reformulate this problem as the choice of the optimal angle θ1 and
compute his best reply with respect to θ1. Differentiating (1) from Lemma 1, we find

∂λ(D1)

∂θ1
=

1− cos(θ1 + θ5 + θ6)

2
> 0

for any argument, because 0 < |θ1 + θ5 + θ6| < 2π under the assumption that l and r are
interior. Since λ(D1) is (strictly) increasing in θ1, minimising θ1 by choosing t = t1 is a
dominant strategy for Primus. By a similar argument, b = b2 is a dominant strategy for
Secunda. Thus, the unique Nash equilibrium (in dominant strategies) is (t∗, b∗) = (t1, b2). �

A.2 Proof of Proposition 2

We use the same notation of the previous proof. Hence, τ = t̂1ot2 = θ1 + θ2 and β = b̂1ob2 =
θ4 + θ5. Moreover, θR = θ3 and θL = θ6.

Proof. The thick line defining the common ground divides the disagreement region into two
sectors S1(t1t2b2) and S2(b2b1t1). The area λ(S1) is the difference between the areas of the
circular segment from t1 to b2 with central angle (τ + θ3) and of the circular segment from
t2 to b2 with central angle θ3. Hence,

λ(S1) =
τ + sin θ3 − sin(τ + θ3)

2
.

8
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Similarly,

λ(S2) =
β + sin θ6 − sin(β + θ6)

2
.

Note that (τ + θ3) + (β + θ6) = 2π; consequently, sin(τ + θ3) = − sin(β + θ6).
Clearly, Primus is stronger if and only if λ(S1)− λ(S2) ≥ 0. The sign of the difference

λ(S1)− λ(S2) =
τ − β + sin θ3 − sin θ6 − 2 sin(τ + θ3)

2
(4)

is not trivial. We distinguish two cases and study such sign.

1) Assume τ + θ3 ≥ π ≥ β+ θ6. We consider two sub-cases, depending on the sign of θ6− θ3.
Let us begin with θ6 ≥ θ3. We have

λ(S1)− λ(S2) =
τ − β + sin θ3 − sin θ6 − 2 sin(τ + θ3)

2

=
2(τ + θ3 − π) + [(θ6 − sin θ6)− (θ3 − sin θ3)]− 2 sin(τ + θ3)

2
.

Since τ + θ3 ≥ π by assumption, the first and the last term in the numerator are positive.
Moreover, as the function x− sinx is increasing on (0, π), the term in square brackets is also
positive. Hence, λ(S1)− λ(S2) ≥ 0.

Consider now the sub-case θ6 < θ3. Decomposing S1 into the circular segment from t1 to
t2 with central angle τ and the triangle T (t1t2b2), we obtain

λ(S1) =
τ − sin τ

2
+ 2 sin

(
θ3
2

)
sin

(
τ + θ3

2

)
sin
(τ

2

)
,

and, similarly,

λ(S2) =
β − sinβ

2
+ 2 sin

(
θ6
2

)
sin

(
β + θ6

2

)
sin

(
β

2

)
.

Hence,

λ(S1)− λ(S2) =
(τ − sin τ)− (β − sinβ)

2

+2 sin

(
τ + θ3

2

)[
sin

(
θ3
2

)
sin
(τ

2

)
− sin

(
θ6
2

)
sin

(
β

2

)]
.

The first term is positive by the increasing monotonicity of the function (x− sinx) on (0, π).
We claim that the second term is also positive. If θ3 ≤ π, this follows because sinx is
increasing in (0, π/2), and thus sin(θ3/2) sin(τ/2) ≥ sin(θ3/2) sin(β/2) ≥ sin(θ6/2) sin(β/2).
If θ3 > π, then θ6 ≤ τ + β + θ6 = 2π − θ3 < π; thus, sin (θ6/2) ≤ sin (π − θ3/2) = sin(θ3/2),
which suffices to establish the claim. From the positivity of the two terms, we conclude that
λ(S1) ≥ λ(S2).

2) Assume τ + θ3 < β + θ6. Since by assumption τ ≥ β, we have θ6 ≥ θ3. By (4), using the
identity τ + β + θ3 + θ6 = 2π, we have

2 [λ(S1)− λ(S1)] = τ − β + sin θ3 + sin (τ + β + θ3)− 2 sin(τ + θ3)

9
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and it suffices to study the sign of the right-hand term. Fix t2 and b2. Given τ in (0, π),
consider the function f(β) = τ − β + sin θ3 + sin (τ + β + θ3) − 2 sin(τ + θ3) for β in (0, π).
Since f ′(β) = −1+cos(τ +β+θ3) < 0, the function is strictly decreasing on [0, τ ]. Moreover,

f(0) = τ + sin θ3 − sin (τ + θ3) = [(τ + θ3)− sin (τ + θ3)]− (θ3 − sin θ3) ≥ 0

by the increasing monotonicity of (x− sinx) on [0, π]. Finally, we have

f(τ) = sin θ3 + sin(θ3 + 2τ)− 2 sin(τ + θ3)

= sin(θ3) + [sin(θ3) cos(2τ) + cos(θ3) sin(2τ)]− 2 [sin(τ) cos(θ3) + cos(τ) sin(θ3)]

= sin(θ3) [1 + cos(2τ)− 2 cos τ ] + cos(θ3) [sin(2τ)− 2 sin τ ]

Using the identities cos(2τ) = 2 cos2 τ − 1 and sin(2τ) = 2 sin τ cos τ , we obtain

f(τ) = 2 [cos τ − 1] sin (τ + θ3) ≤ 0.

By the intermediate value theorem, there exists a unique β in [0, τ ] such that f(β) = 0. For
β ≤ β, λ(S1) ≥ λ(S2) and Primus is stronger. For β > β, the opposite inequality holds and
Secunda is stronger. �

A.3 Proof of Theorem 3

Similarly to the above (except for switching b1 and b2), the endpoints (ti, bi) for the two
agents’ chords and their choices for t and b identify six sectors. Proceeding clockwise, these
are numbered from 1 to 6 on the left-hand side of Figure 8.

o

t1

b1

t2

b2

t

b

1 2

3

45

6

k

o

b1

t1 t

b

Figure 8: Visual aids for the proof of Theorem 3.

For each sector i, we denote its central angle by θi. The notation is similar, except that

now θ3 = t̂2ob1, θ4 = b̂1ob, θ5 = b̂ob2, and θ6 = b̂2ot1. Recall that τ = θ1 +θ2 and β = θ4 +θ5;
moreover, since the conceptual spaces are characterised by diameters, τ = β. The following
lemma characterises the disagreement area of each player as a function of the six central
angles.

Lemma 3 The disagreement areas for Primus and Secunda are, respectively:

λ(D1) =
θ1 − sin θ1

2
+
θ4 − sin θ4

2
+ 2 cos

(
θ1
2

)
cos

(
θ4
2

)
sin2 (θ1/2) + sin2 (θ4/2)

sin (θ1/2 + θ4/2)
, (5)
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and

λ(D2) =
θ2 − sin θ2

2
+
θ5 − sin θ5

2
+ 2 cos

(
θ2
2

)
cos

(
θ5
2

)
sin2 (θ2/2) + sin2 (θ5/2)

sin (θ2/2 + θ5/2)
.

Proof. The disagreement region D1 for Primus can be decomposed into the two sector-like
regions S1(t1tk) and S2(kb1b) as shown on the right-hand side of Figure 8. We compute the
areas λ(S1) and λ(S2), and then add them up to obtain λ(D1).

The region S1(t1tk) can be decomposed into two parts: the circular segment from t1
to t with central angle θ1, and the triangle T (t1tk). The area of the circular segment is
(θ1 − sin θ1)/2. The computation of the area of the triangle needs to take into account that
the position of k depends on t. We use the ASA formula: given the length a of one side
and the size of its two adjacent angles α and γ, the area is (a2 sinα sin γ)/ (2 sin(α+ γ)). We

pick a = tt1, α = k̂t1t, and γ = t̂1tk. By the inscribed angle theorem, α = (π − θ1)/2 and
γ = (π − θ4)/2. Recall that tt1 = 2 sin(θ1/2); moreover, sinα = sin ((π − θ1)/2) = cos(θ1/2)
and, similarly, sin γ = cos(θ4/2). Hence,

λ(T ) =
2 (sin(θ1/2))2 · cos(θ1/2) · cos(θ4/2)

sin (θ1/2 + θ4/2)
.

Adding up the two areas, we obtain

λ(S1) =
θ1 − sin θ1

2
+

2 (sin(θ1/2))2 · cos(θ1/2) · cos(θ4/2)

sin (θ1/2 + θ4/2)
.

By a similar argument,

λ(S2) =
θ4 − sin θ4

2
+

2 (sin(θ4/2))2 · cos(θ1/2) · cos(θ4/2)

sin (θ1/2 + θ4/2)
.

Summing up λ(S1) and λ(S2) provides the formula for λ(D1). The derivation of a specular
formula for λ(D2) is analogous. �

A direct study of the sign of the derivative ∂λ(D1)/∂θ1 is quite involved, but the following
lemma greatly simplifies it. An analogous result holds for Secunda.

Lemma 4 Let a = cos(θ4/2), b = sin(θ4/2), c = ab = sin(θ4)/2, and x = tan(θ1/4). Then

sgn

[
∂λ(D1)

∂θ1

]
= sgn

[
P (x)

]
, (6)

where
P (x) = −

[
c
(
1 + x2

)2 − 2
(√

2 + 1
)
x
(
1− x2

) ]
.
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Proof. Differentiating (5) from Lemma 3 and using a few trigonometric identities, we obtain

∂λ(D1)

∂θ1
=

1− cos θ1
2

+
2 sin(θ1/2) cos2(θ1/2) cos(θ4/2)

sin (θ1/2 + θ4/2)
−

cos(θ4/2)
[
sin2(θ1/2) + sin2(θ4/2)

]
sin2 (θ1/2 + θ4/2)

·
[

sin(θ1) sin(θ1/2 + θ4/2) + cos(θ1) cos(θ1/2 + θ4/2)
]

= sin2(θ1/2) +
sin(θ1) cos(θ1/2) cos(θ4/2)

sin (θ1/2 + θ4/2)
−

cos2(θ4/2)
[
sin2(θ1/2) + sin2(θ4/2)

]
sin2 (θ1/2 + θ4/2)

Let a = cos(θ4/2), b = sin(θ4/2), and x = tan(θ1/4). Recall the double angle formulas
sin(θ1/2) = 2x/(1 + x2) and cos(θ1/2) = (1− x2)/(1 + x2). Then

sin

(
θ1 + θ4

2

)
= a

(
2x

1 + x2

)
+ b

(
1− x2

1 + x2

)
=

2ax+ b(1− x2)
1 + x2

.

Substituting with respect to the new variable x, we find

∂λ(D1)

∂θ1
=

(
2x

1 + x2

)2

+
4ax(1− x2)2

(1 + x2)2 [2ax+ b(1− x)2]
−
a2
[
4x2 + b2(1 + x2)2

]
[2ax+ b(1− x)2]2

= − N(x)

(1 + x2)2 [2ax+ b(1− x2)]2
, (7)

where, using the identity a2 + b2 = 1, the polynomial in the numerator can be written as

N(x) = a2
(
1 + x2

)2 [
4x2 + b2

(
1 + x2

)2]− 4ax
(
1− x2

)2 [
2ax+ b(1− x2)

]
.

Let c = ab = sin(θ4)/2 and rewrite N(x) after collecting terms with respect to c:

N(x) = c2
(
1 + x2

)4 − 4cx
(
1− x2

) (
1 + x2

)2 − 4x2
(
1− x2

)
=
[
c
(
1 + x2

)2 − 2x
(
1− x2

)]2
−
[
2
√

2x
(
1− x2

)]2
=
[
c
(
1 + x2

)2 − 2
(√

2 + 1
)
x
(
1− x2

)]
·
[
c
(
1 + x2

)2
+ 2

(√
2− 1

)
x
(
1− x2

)]
.

As both θ1 and θ4 are in the open interval (0, π) by construction, we have x = tan(θ1/4) > 0
and c = sin(θ4)/2 > 0; hence, the second term in the multiplication is strictly positive.
Returning to (7), this implies

sgn

[
∂λ(D1)

∂θ1

]
= − sgn

[
N(x)

]
= sgn

[
P (x)

]
,

with P (x) = −
[
c(1 + x2)2 − 2(

√
2 + 1)x(1− x2)

]
, as it was to be shown. �

It is convenient to work with the central angles subtended by the points on the circumfer-
ence. Recall that, given t1, t2, b1, and b2, Primus and Secunda simultaneously choose t and b,
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respectively. Then Secunda’s choice of b is in a 1-1 mapping with the angle θ5 = b̂2ob, while
Primus’ choice of t has a similar relation to θ1 = t̂1ot.

The following lemma characterizes Primus’ best reply using the central angles θ1 and
θ5, rather than the endpoints t and b. As it turns out, such best reply is always unique;
hence, with obvious notation, we denote it as the function θ1 = r1(θ5). Correspondingly, let
θ5 = r2(θ1) be the best reply function for Secunda. Finally, recall our assumption that the
individual conceptual spaces are supported by diameters: this implies that the two angular
distances τ = θ1 +θ2 and β = θ4 +θ5 are equal with 0 ≤ τ = β < π; moreover, players’ initial
positions have the same strength and the game is symmetric.

Lemma 5 The best reply functions for the two players are

r1(θ5) = arcsin

(
sin (β − θ5)√

2 + 1

)
and r2(θ1) = arcsin

(
sin (τ − θ1)√

2 + 1

)
,

with 0 ≤ θ5 ≤ β and 0 ≤ θ1 ≤ τ .

Proof. Consider Primus. (The argument for Secunda is identical.) For any θ5 in [0, β], we
search which value of θ1 in [0, τ ] minimises λ(D1). We distinguish two cases.

First, suppose θ5 = β. Then θ4 = 0 and λ(D1) = (θ1 + sin θ1) /2. As this function is
increasing in θ1, the optimal value is θ∗1 = 0.

Second, suppose θ5 < β. We begin by finding the stationary points of λ(D1). Recall that
we let x = tan(θ1/4). By Lemma 4, ∂λ(D1)/∂θ1 = 0 if and only if P (x) = 0; that is, if and
only if

c =
2
(√

2 + 1
)
x
(
1− x2

)
(1 + x2)2

.

Replacing the double angle formulæ sin(θ1/2) = 2x/(1+x2) and cos(θ1/2) = (1−x2)/(1+x2),
we obtain

c =
(√

2 + 1
)

sin

(
θ1
2

)
cos

(
θ1
2

)
=
(√

2 + 1
) sin θ1

2
.

On the other hand, since c = (sin θ4) /2 by definition and θ4 + θ5 = β, this yields

sin θ1 =
sin θ4√
2 + 1

=
sin (β − θ5)√

2 + 1
.

Since θ5 ∈ [0, β], the only solutions to this equation are the supplementary angles θ′1 and
θ′′1 = π − θ′1 with

θ′1 = arcsin

(
sin (β − θ5)√

2 + 1

)
<
π

2
< π − θ′1 = θ′′1 .

These are the stationary points for λ(D1).
Clearly, θ′1 ≥ 0. We claim that θ′1 < τ . If π/2 ≤ τ , this is obvious. Suppose instead

τ < π/2. Since θ4 < β = τ < π/2, we have sin θ′1 =
(√

2− 1
)

sin(θ4) < sin θ4 < sin τ and
thus θ′1 < τ . We conclude that the stationary point θ′1 belongs to the interval [0, τ ].

For θ1 = 0, we have x = 0 and P (x)|x=0 = −c = −(sin θ4)/2 < 0. Therefore, we have
by continuity that P (x) changes sign from negative to positive in θ′1 and from positive to
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negative in θ′′1 . By Lemma 4, this implies that the only local minimisers for λ(D1) in the
compact interval [0, τ ] are θ = θ′1 and θ = τ . Comparing the corresponding values for λ(D1),
we find

λ(D1)|θ1=θ′ < λ(D1)|θ1=0 < λ(D1)|θ1=τ ,

where the first inequality follows from the (strict) negativity of ∂λ(D1)/∂θ1 in [0, θ′) and
the second inequality from a direct comparison. Hence, the global minimiser is θ′. Com-
bining the two cases, it follows that, for any θ5 in [0, β], the unique best reply is r1(θ5) =
arcsin

[
sin (β − θ5) /

(√
2 + 1

)]
. �

Proof of Theorem 3 A Nash equilibrium is any fixed point (θ1, θ5) of the map(
θ1
θ5

)
=

(
r1(θ5)

r2(θ1)

)
from [0, τ ] × [0, β] into itself. Substituting from Lemma 5 and using τ = β, we obtain the
system of equations 

sin(θ1) =
sin (τ − θ5)√

2 + 1

sin(θ5) =
sin (τ − θ1)√

2 + 1

(8)

Multiplying across gives

sin(θ1) sin(τ − θ1) = sin(θ5) sin(τ − θ5);

or, using the prosthaphaeresis formula,

cos (2θ1 − τ)− cos τ = cos (2θ5 − τ)− cos τ

from which we get that the only two possible solutions in [0, τ ] are

θ1 = θ5 or θ1 = τ − θ5.

When τ > 0, the second possibility can be discarded because, when replaced in (8), it would
yield the contradiction θ1 = θ5 = τ = 0. (When τ = 0, we trivially obtain θ1 = θ2 as in the
first case.) Hence, we are left with θ1 = θ5.

Substituting in the first equation of (8), we obtain

sin(θ1) =
sin (τ − θ1)√

2 + 1
=

sin τ cos θ1 − cos τ sin θ1√
2 + 1

.

As 0 ≤ θ1 < π/2, dividing by cos θ1 yields

tan(θ1) =
sin τ√

2 + 1 + cos τ

and the result follows.
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A.4 Proof of Proposition 4

Proof. Recall that the payoff for an agent is the opposite of the area of the disagreement
region. Consider Primus. (The proof for Secunda is analogous.) Let D∗ and Ds be the region
of disagreement between Primus’ and the common conceptual space at the equilibrium and,
respectively, at the Nash cooperative solution. For τ = 0, D∗ = Ds. Hence, we assume τ 6= 0
and show that λ(Ds)− λ(D∗) > 0.

At the Nash bargaining solution, θs1 = θs2 = τ/2; replacing these into (6), we find λ(Ds) =
τ/2. At the Nash equilibrium, θ∗1 = θ∗5 and thus θ∗4 = τ − θ∗1; substituting these into (6) and
dropping superscripts and subscripts for simplicity, we obtain

λ(D∗) =
τ

2
−
[

sin θ + sin (τ − θ)
2

]
+ 2 cos

(
θ

2

)
cos

(
τ − θ

2

)
sin2 (θ/2) + sin2 ((τ − θ)/2)

sin (τ/2)
.

Hence, using standard trigonometric identities,

λ(Ds)− λ(D∗) =

[
sin θ + sin (τ − θ)

2

]
− 2 cos

(
θ

2

)
cos

(
τ − θ

2

)
sin2 (θ/2) + sin2 ((τ − θ)/2)

sin (τ/2)

= sin
(τ

2

)
cos
(
θ − τ

2

)
−
[

1

sin(τ/2)

] [
cos
(τ

2

)
+ cos

(
θ − τ

2

)] [
1− cos θ

2
− cos(τ − θ)

2

]
=

[
1

sin(τ/2)

] [
1− cos2

(τ
2

)]
cos
(
θ − τ

2

)
−
[

1

sin(τ/2)

] [
cos
(τ

2

)
+ cos

(
θ − τ

2

)] [
1− cos

(τ
2

)
cos
(
θ − τ

2

)]
=

[
cos(τ/2)

sin(τ/2)

]
sin2

(
θ − τ

2

)
,

from which we obtain
sgn [λ(Ds)− λ(D∗)] = sgn [tan(τ/2)] .

Since 0 < τ < π, tan(τ/2) > 0, and the claim follows. �
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