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Abstract

This paper develops and analyzes a dynamic model of partially irreversible invest-

ment under cournot competition and stochastic evolution of demand. In this frame-

work, I characterize the markov perfect equilibrium in which player�s strategies are

continuous in the state variable. There exists a zone in the space of capacities, named

the no-move zone, such that if �rms capacity belongs to this area, no �rm invest nor

disinvest at the equilibrium. Thereby, initial asymmetry between �rms capacity can be

preserved. If �rms are outside this area, they invest in order to reached the no-move

zone. The equilibrium as an e¢ciency property: the point of this area which is reached

by the �rms minimizes the investment cost of the all industry.

Keywords: Capacity investment and disinvestment. Dynamic stochastic games. Markov

perfect equilibrium. Real option games.

JEL classi�cation: D43 L13 L25

Abstract

Cet article étudie un modèle dynamique d�investissement partiellement irréversible

en concurrence à la Cournot lorsque la demande évolue aléatoirement. Dans ce cadre,

je caractérise l�équilibre markovien pour lequel les stratégies des joueurs sont continues

dans la variable d�état. Il existe une zone dans l�espace des capacités, appelé No-

move zone, tel que, à l�équilibre, si le vecteur des capacités appartient à cette zone,

les entreprises gardent leurs capacités constante. Ainsi, une asymétrie initiale entre

les tailles des entreprises peut être préservée. Lorsque les entreprises sont en dehors

de cette zone, elles investissent (ou désinvestissent) a�n de rejoindre la No-move zone.

L�équilibre possède une propriété de l�e¢cacité: le point de cette zone qui est atteint

par les entreprises est le point qui minimise le coût d�investissement de l�ensemble de

l�industrie.

Mots-clefs: Investissement en capacité. Jeux di¤érentiel. Equilibre markovien. Option

réelle.
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1 Introduction

Capacity expansion or reduction under uncertainty is one of the most important de-

cisions that �rms can make. It impacts their immediate pro�t and creates long-run commit-

ment. In a dynamic setting, the investment pattern by a monopoly is well known. Because

of uncertainty, the �rm has incentives to delay a pro�table project (in expectation) in order

to wait for more information about the demand. This is the theory of real options. What

happens in imperfect competition becomes the theory of real option games. (For recent

surveys, see for instance Boyer, Gravel and Lasserre (2004), Azevedo and Paxson (2014),

or Chevalier-Roignant et al (2011)).

In this literature several authors focused on capacity decision under uncertainty. In

these models, at each time the pro�t made by a �rm depends on its size (i.e. its capacity),

the size of its opponents, and a parameter which evolves randomly over time (which can

be a parameter of demand or cost, the important point being that future evolutions are

unknown). As this parameter evolves, �rms wish to adapt their sizes. Firms can either

invest to increase their capacity, disinvest to reduce it, or let their capacity depreciate at its

natural rate. Investment is said perfectly reversible when the cost of investing is equal to the

cost of disinvesting, in which case �rms can perfectly adapt to the stochastic evolution of the

parameter. Such repeated game framework is classic in industrial organization. However,

in reality, increasing the size implies hiring new employees, building new factories or o¢ce,

buying new equipment, and so on... These investments are usually at least partially sunk,

so the �rm�s size decisions are not perfectly reversible. Investment is said totally irreversible

when �rms cannot reduce their sizes, and investment is partially irreversible when �rms can

decrease their size by disinvesting (but with a scrap value inferior to the cost of investing)

or by depreciation. In these cases, the theory of real option game links the hysteresis due to

the irreversibility of investment and the imperfect competition.

This paper studies capacity accumulation when competition is imperfect and invest-

ment partially irreversible. It shows that the irreversibility of investment implies a preserva-

tion of the asymmetry in �ms capacity: if a �rm owns more capacity than its opponent, the

bigger �rm still have a capacity more important than its opponent at the equilibrium. The

equilibrium has also an e¢cient capacity: the state of the industry at the equilibrium min-
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imizes the cost of investment of the all industry. This features are consistent with dynamics

and uncertainty.

Severals authors study capacity�s choices under imperfect competition and uncertain

demand. Abel et al (1996) and Merhi and Zervos (2007) focus on the monopoly behavior

under partially irreversible investment. They exhibit two boundaries, such that the �rm keep

its capacity constant when the demand is between the two boudaries, invest when the demand

is higher than the left-hand boundary, and disinvest otherwise. This creates an hysteresis

on the investment decision. When competition is imperfect, Boyer et al (2004) and Boyer,

Lasserre and Moreaux (2012) assume irreversible investment and lumpy investment. There

exists some levels of demand where a �rm has no interest too buy a new unit of capacity if its

competitors also install a new unit, but has an interest to do so if its competitor does not add

a capacity. This creates di¤erent kinds of equilibria, some in which �rms want to preempt

their opponents, and some where they behaves less agressively. When capacity is smooth and

investment irreversible, Grenadier (2002), Back and Paulsen (2009) and Chevalier-Roignant,

Huchzermeier and Trigeorgis (2011) focus on the choice of the duopoly. Grenadier (2002)

assume that the strategy of a �rm is to invest until a boundary, which depends on the level of

demand, and describes the Nash equilibrium with such strategies. Back and Paulsen (2009)

show that this equilibrium is open-loop, i.e. it is the Nash equilibrium when the strategy

of a �rm is its path of capacity and �rms can commit to their strategy. Usually, Open-loop

equilibria are not sub-game perfect, and Chevalier-Roignant, Huchzermeier and Trigeorgis

(2011) focuse on markovian equilibrium. The authors describe the optimal markovian best

response of the �rms. However, the linearity of the investment cost implies in�nite value for

the amount of investment (the capacity jumps, as there is no interest to delay purchases or

sells of capital), which prevents the characterization of the markovian equilibrium. In order

to �ll this gap, I introduce a possibility of jumps in the formulation of the strategies and

characterizes the markovian equilibrium, in case partially irreversible investment.

To do so, I �rst study the simplest investment game. In a one shot model, �rms have

initial capacities and can invest or disinvest in a partially irreversible way (�rms can buy

or sell capacities at linear but di¤erent prices). I exhibit an area in the space of capacities,

named the no-move zone. If the capacities of the �rms are inside this no-move zone, no �rm

will neither invest nor disinvest. So any point of this no-move zone is a possible equilibrium,
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given some initial capacities. For some given initial capacities, the equilibrium is the point

of the no-move zone which minimizes the costs of investment and disinvestment for the all

industry. This e¢ciency result holds even though �rms have a priori no interest in coordin-

ating their decisions. Furthermore, as long as the prices of investment and disinvestment

are not equal, the no-move zone is not reduced to one point, and an initial asymmetry in

capacities can be preserved.

In continuous time, the linearity of investment cost gives an incentive to invest as

soon as possible. This creates a di¢culty of modeling the strategies of the �rms, as the

desired �ow of investment is in�nite. In that context, I introduce a possibility of jump for

the �rm and solve the markovian equilibrium of this game. There exists a no-move zone.

At each time �rms reach the point of the no-move zone which minimizes the industry costs

of investment and disinvestment. In this sense, they behave as in the one shot game. This

result is valid when demand evolves in a deterministic or a stochastic way.

The outline of this paper is straightforward. Section 2 studies the one-shot model.

Section 3 presents the dynamic model and characterizes the markovian equilibria. Section 4

concludes. All omitted proofs are reported in appendix.

2 Investment in the one-period game

2.1 The one-shot game model

The aim of this subsection is to abstract from dynamics and uncertainty issues, in order

to focus on the e¤ect of partial irreversibility of investment. To do so, I present a simple

static model of competition in capacity.

More precisely, consider a market with n �rms competing à la Cournot in capacities.

Each �rm i starts with some amount of capital ki, which can be extended or reduced through

buying or selling some assets. Purchases are made at a linear price p+, and sales at a (also

linear) price p� (with p� � p+). I call Ki the capacity �nally installed by �rm i. Let k be

the vector of industry�s initial capacities and K the vector of installed capacities. For �rm
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i, the cost of installing a new capacity is:

C(Ki; ki) =

8
<

:
p+ (Ki � ki) if Ki � ki

p� (Ki � ki) if Ki < ki

9
=

;
: (1)

Firms produce and sell an homogenous good, at a price depending of the total quantity

�q =
Pn

i=1 q
i. Each �rm�s production depends of its capacity, according to the technology

qi = Ki, 1 and has a cost, ci(q
i). Such technology is classic in dynamic investment models,

and has been used by Fudenberg and Tirole (1983), Grenadier (2002), Merhi and Zervos

(2007) among others2. So, by selling the quantity Ki, �rm i obtains a payo¤ of:

�i(K) = P
�
�K
�
Ki � ci(K

i); (2)

where �K =
Pn

j=1K
j. The pro�t function of �rm i is thus:

�i(K; k) = �i(K)� C(Ki; ki): (3)

Note that if p� = p+, the investment decision is totally reversible, and the initial

capacity has no impact. The smaller is p�, the more irreversible are the capacities of the

�rm, and, at the limit, when p� = �1, investment is totally irreversible, as in Grenadier

(2002), Back and Paulsen (2009), Boyer, Lasserre and Moreaux (2012), and others.

In order to ensure the existence of the equilibrium I make the following hypothesis:

H1: For each i = 1; ::; n, ci(:) is a twice-di¤erentiable positive function such that c
0
i � 0,

c00i � 0. P (:) is also a twice-di¤erentiable positive function, with P
0 < 0, P 00 < 0 when P is

1In the one-shot model, this technology can be seen as the result of an endogenized game, in which �rms

buy capacities and then play a Cournot competition limited by the capacity previously bought. Indeed,

�rms have no interest to invest in capacity which will not be used to produce, as its opponents only react to

the �nal quantity. (Except if the disinvestment price is negative. In this case a �rm could whish to keep its

unused capacity in order to avoid a disinvestment case. For example, this is sometimes the case for polluted

production sites, for which the cost of decontamination is more important than the cost of conservation of

this asset.)
2As it was shown in Reynolds (1987), this technology assumption is also the result of a dynamic games

with limited Cournot competition, without uncertainty. However, when there is uncertainty, �rms have an

incentive to keep their unused capacity for a possible further use, when demand increases. Assuming that

quantities are equal to capacities permits to avoid such adaptability e¤ects and focus on the direct e¤ect of

uncertainty on capacity choice.
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strictly positive.3 Furthermore, for all i = 1; ::; n and q 2 Rn+, P
00(�q)qi < �c00i (q

i).

2.2 Best responses

This part describes the best response of �rm i. Assume that for all j 6= i, �rm j installs a

capacity Kj. Obviously, the marginal revenue of capacity for �rm i depends of the choices of

its opponents, and I note @�i

@Ki

�1
(x) the inverse function of the marginal revenue of capacity,

so
@�i

@Ki

�1

(x) = K̂ ,
@�i

@Ki

�
K1; ::; Ki = K̂; ::;Kn

�
= x.

By concavity of � in Ki, such inverse function is well de�ned and increasing. Then, �rm i

has three possible choices:

� to invest (Ki > ki), so making a pro�t:

�i = �i(K)� p+
�
Ki � ki

�
;

leading to an optimal choice of capacity @�i

@Ki

�1
(p+k ). Hence, if k

i > @�i

@Ki

�1
(p+k ), increasing its

capacity decreases �rm�s pro�t, and the �rm has no interest to invest.

� to disinvest (Ki < ki), so making a pro�t:

�i = �i(K) + p�
�
ki �Ki

�
;

leading to an optimal capacity @�i

@Ki

�1
(p�). Thus, the �rm has no interest in disinvesting if

ki < @�i

@Ki

�1
(p�) (which is higher than @�i

@Ki

�1
(p+) ).

� the last possibility is to do nothing (the �rm neither invest nor disinvest). Indeed,

as @�i

@Ki

�1
(:) is increasing, the initial capacity of the �rm can be greater than @�i

@Ki

�1
(p+k ), so

the �rm has no interest to invest more, but also smaller than @�i

@Ki

�1
(p�), so the �rm has also

no interest to disinvest.

3Theorem 1 (presented page 9) holds under less restrictive conditions. Indeed, our proof rests on the

third theorem of Novshek (1985), and the linearity of cost of investment and disinvestment. However, as

the point of interest is the dynamic game, and as some regularity is needed for the existence of the dynamic

di¤erentiable equations, I place ourselves in the assumption made by Szidarovszky and Yakowitz (1977).
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Therefore there exists two thresholds, @�i

@Ki

�1
(p�) and @�i

@Ki

�1
(p+) such that the �rm

does not wish to invest nor disinvest if its capital is between this thresholds, invest until

@�i

@Ki

�1
(p+) if its initial capacity is small, and disinvest until @�i

@Ki

�1
(p�) if its initial capacity

is large. This can be summarized in the following proposition:

Proposition 1: The best response of �rm i is:

Ki
BR =

8
>>><

>>>:

@�i

@Ki

�1
(p+) if ki < @�i

@Ki

�1
(p+)

ki if ki 2
h
@�i

@Ki

�1
(p+); @�

i

@Ki

�1
(p�)

i

@�i

@Ki

�1
(p�) if ki > @�i

@Ki

�1
(p�)

9
>>>=

>>>;
: (4)

�

Of course, this best response depends of the capacities of other �rms, as @~�i

@Ki depends

of the capacity of all �rms. Graphic 1 represents the best response of �rm 2 in the space of

capacity, for a duopoly with linear demand and no production costs.

[Insert G1]

In this graphic, we can see the existence of an area in the space of capacities, �2,

bounded by @�2

@K2

�1
(p�) and @�2

@K2

�1
(p+), such that, it is never optimal for �rm 2 to be outside

this area. Thus, if there is an equilibrium, it belongs to �i for all �rm i, so it belongs to the

intersection of these areas. Let H be this intersection. We know that all equilibria belong

to H. Furthermore, assume that the initial distribution of capacity belongs to H. Then, if

all players except i keep their capacity constant, then the best response of i is to keep its

initial capacity. In the case of duopoly with linear demand and no production cost, this can

be seen in graphic 2. The area H is called the no-move zone.

[Insert G2]
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2.3 Characterization of the equilibrium

In this subsection I show the existence of an area in the set of space capacities, the

no-move zone H, such that all equilibria belong to H. This no-move zone is de�ned by,

H =

�
K 2 Rn+ : 8i 2 f1; ::; ng ;

@�i

@Ki
(K) 2 [p�; p+]

�
, (5)

which can rewritten as

H =
�
K 2 Rn+ : 8i 2 f1; ::; ng ; P

�
�K
�
+ P 0

�
�K
�
Ki � ci(K

i) 2 [p�; p+]
	
. (6)

If the initial capacities of the �rms are in H, the equilibrium is to keep the same capacities.

If the initial capacities do not belong to H, the equilibrium is described by theorem 1.

Theorem 1: Assume H1. Then, there exists only one Nash equilibrium K�, which

statis�es:

K� = arg min
K2H

nX

i=1

C(Ki; ki): (7)

This condition is equivalent to the distance condition,

K� = arg min
K2H

nX

i=1

��Ki � ki
�� . (8)

�

Theorem 1 provides existence and uniqueness for the equilibrium, and its characteriz-

ation. To understand this characterization, let focus on the no-move zone. When investment

is totally reversible (when p+ = p�) the no-move zone is reduced to a unique point, and no

industry e¢ciency appears. This is the usual Cournot competition4. When investment is

not totally reversible, the no-move zone is a set, not reduced to a singleton. In this area the

marginal revenue of each �rm is inferior to the price of adding a new capacity, but superior

to the price of selling some capacity, so no �rms wish to invest nor disinvest. The size of the

no-move zone is thus an increasing function of the irreversibility of investment.5 By theorem

4With a cost ci(K
i) + p+Ki.

5More precisely, when p+ increases and p� decreases, the size of no-move zone increases according to (5).

When both p+ and p� increases (or decreases), the evolution of the size of the no-move zone is unknown

even if the di¤erence p+ � p� increases, as it depends of the marginal revenue of each �rm.
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1, H is also the set of all possible equilibria, in the sense that all equilibrium belongs to H

and all point of H can be an equilibrium for some initial value.

Inside the no-move zone, there is a property of no-reaction to competition. Indeed,

assume that the �rms decide to install a vector of capacity which belongs toH. Then, if a �rm

changes its level of capacity (and if the vector of capacity still belongs to H), its opponents

will not invest nor disinvest in reaction to this change of capacity. This is due to the fact that

if the evolution of the �rm capacity has an impact on its opponent�s revenue, this impact

is not su¢cient to generate a change in capacity due to the irreversibility of investment.

Inside the no-move zone, each �rm is thus myopic, and maximizes its pro�t assuming that

the other �rms have constant capacities. Theorem 1 shows that this myopicity leads to a

market e¢ciency. Indeed, the equilibrium is the point of the no-move zone which minimizes

the industry cost of investment.

Graphic 3 presents which points of the no-move zone will be an equilibrium, in function

of the initial capacities, for a duopoly with linear demand and no production costs. As it

can be seen on the graphic, �rms with di¤erent initial capacities can still be asymmetric at

the equilibrium, and there are di¤erent possible symmetric equilibria, even when �rms have

the same pro�t function.

[Insert G3]

3 Investment in a dynamic game

3.1 The dynamic model

This section presents a dynamic model of investment in capacity under imperfect com-

petition. It shows that, under some smoothness condition, the markovian equilibria are

similar to the one shot game previously considered. There exists a no-move zone and the

�rms join it as soon as possible minimizing the investment cost of the all industry. This

permits to characterize the equilibria.
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Let kit be the capital of �rm i at time t, time is continuous and capacity partially

reversible. Let �i(At; kt) be the instantaneous payo¤ of �rm i, kt being the vector of �rms

capacities and At the parameter of uncertainty, following a di¤usion process:

dAt = �(At)dt+ �(At)dWt; (9)

where Wt is a standard Wiener process. I assume Cournot competition. Let PAt(:) be the

inverse demand function, depending of the level of demand At, and let c
i(:) be the production

cost of �rm i, then the instantaneous revenue of �rm i is

�i(At; kt) = PAt
�
�kt
�
kit � c

i(kit), (10)

where �kt =
Pn

i=1 k
i
t, as previously. The interest rate is r and the purchase price of capacity

p+, whereas the selling price is p�. For each stochastic process kit, let k
i+
t and ki�t be the

respectively increasing and decreasing processes such that6:

kit = k
i+
t + ki�t . (11)

The total expected pro�t of �rm i at time 0 is thus:

�i = E

�Z +1

0

e�rt�i(At; kt)dt� p
+

Z +1

0

e�rtdki+t + p�
Z +1

0

e�rtdki�t j A0

�
. (12)

The objective of �rm i is to choose the process kit which maximizes its own expected

pro�t, given the initial levels of capital and demand. Obviously, the optimal process will

depend of the processes chosen by the other players. To properly de�ne the game, I must

de�ne the strategic variable and the equilibrium concept used by the players.

I focus on markov perfect equilibria. The strategy of a player is a function of a state

variable, representing the level of the demand and �rms capacity at time t, which determines

the futur evolution of the player capacities. Markov perfect equilibria have the advantage to

be sub-game perfect, and to avoid time inconsistency.

6This de�nition is valid for all left-continuous At-adapted stochastic process with �nite variation. The

assumption of �nite variation is natural with the investment cost considered. Indeed, a �rm with an in�nite

variation of its capacity will pay an in�nite cost of investment and disinvestment (as p+ > p�). However,

its future revenue is �nite (due to hypothesis H4), and thus a strategy with in�nite variation would lead to

a negative and in�nite pro�t, which is obviously not optimal.
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In our framework, there is a di¢culty to de�ne the strategic variable. Indeed, the

linearity of investment cost might create an incentive to install the desired capacity as soon as

possible. This creates a jump in the capacity process of the �rms. However, the usual theory

of di¤erential games does not allow the capacity processes to jump (see also Back and Paulsen

(2009) for the same observation on the de�nition of strategies). Indeed, in di¤erential games,

the evolution of the state variable is usually determined by I it , the investment done by �rm i

at date t, so that the capital of each �rm is determined by the following di¤erential equation:

@kit
@t

= I it . (13)

This de�nition implicitly assumes that the capacity is a continuous function of the time.

A markovian strategy for �rm i being a function of the state variable (demand level and

capacities), I it =
~I i(At; kt). As it can be seen in Chevalier-Roignant, Huchzermeier and

Trigeorgis (2011), the Bellman formula gives in that case:

r�i(A; k) = sup
Ii

8
<

:

PA
�
�k
�
ki � p+ (I i)+ � p

� (I i)� + I
i @�i

@Ki + �(A)
@�i

@A
+ �2(A)

2
@2�i

(@A)2

+
Pn

j=1
j 6=i

~Ij(A; k) @�
i

@Kj +
Pn

j=1
j 6=i

Pn
h=1
j 6=i

~Ih(A; k)~Ij(A; k) @2�i

@Kj@Kh

9
=

;
.

(14)

The optimal investment policy maximizes @�i

@Ki I
i � p+ (I i)+ � p

� (I i)�. So, if
@�i

@Ki 2

[p�; p+], the �rm i has no interest to invest nor to disinvest. Otherwise, the optimal �ow

of investment I it is in�nite: the �rm installs its optimal capital (capital in the region

@�i

@Ki

�1
([p�; p+])) instantly. The optimal capital policy of the �rm is thus to jump in the

area @�i

@Ki

�1
([p�; p+]), and to do nothing as long as the capital stays in this area. So the

optimal strategy cannot be de�ned by the investment variable, as the linearity of the cost of

investment implies non-continuous capital strategies.

To address this di¢culty, I introduce a new control variable,Ki
t , which is the capacity

desired by �rm i at time t. If this desired capacity is equal to the installed capacity, kit, the

�rm continue to invest in a continuous way. If the desired capacity is di¤erent from the

installed capacity, the �rm installs the desired capacity. Formally, this is expressed in the

following de�nition.

De�nition: The investment game previously considered is in its markovian state-control

form if:

12
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(i) a strategy of player i is a pair (Ki
t ; I

i
t)t2R+ , where for each t, (K

i
t ; I

i
t) 2 R

2
+.

(ii) the state variable at time t, kt = (k
1
t ; ::; k

n
t ), is de�ned by the two equations:

@+kit
@t

= I it , (15)

and

lim
s!t
s>t

kis = K
i
t , (16)

where k0 is the given initial level of capital, and
@+

@t
denotes the right-hand derivatives.7

(iii) the strategy of player i is markovian if its strategy is only function of the state

variable (�rms capacity and level of demand), i.e. if there exists ~Ki(:; :) and ~I i(:; :) such that

Ki
t = ~Ki(At; kt) and I

i
t = ~I i(At; kt). � (17)

Equation (16) states than the installed capacity kit is continuous if and only if K
i
t =

kit. When the strategies are markovian, K
i
t is a function of the state variable, and �rm i

jumps as long as kit 6=
~Ki(At; :). Graphic 4 presents the evolution of the capacity of �rm i

when player�s i strategy is

~I i(At; kt) = 1, ~K
i (At; kt) = 1fkit<2g

kit + 1fkit�2g
,

and At and
�
kjt
�
j 6=i
are constant. As long as the installed capacity, kit, is inferior to two, the

�rm invests continuously, and when installed capacity reaches two, the desired capacity, Ki
t

di¤ers from the installed capacity, and the �rm disinvests instantly a unit of capacity.

[Insert G4]

The de�nition of the markovian state-control form extends the possibility of the

stochastic processes of capacity from the class of continuous processes implicitly assumed by

(13) to the class of the left-hand continuous stochastic processes with right-hand derivative.

However, this de�nition allow multiple jumps: a jump of �rm i can imply a jump of its

7As process kt can be discontinuous in t, the right-hand derivative is de�ned by:
@
+
k
i

t

@t
= limn!+1

l�k
i

t+h

h
,

where l = lims>t
s!t

kis.
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opponents in reaction, which can bring a new jump of �rm i, and so on... In order to prevent

such multiple jumps, I introduce the following assumption.

C1: The strategies of the �rms i veri�es assumption C1 if, for all (A; k) 2 R� Rn+,

~K
�
A; ~K(A; k)

�
= ~K(A; k). (18)

A markov perfect equilibrium in the markovian state-control form is de�ned as a

vector of functions
�
~K� (:; :) ; ~I� (:; :)

�
=
�
~K�1 (:; :) ; ~I�1 (:; :) ; ::; ~K�n (:; :) ; ~I�n (:; :)

�
such that,

for all �rm i 2 f1; ::; ng and for all other markovian strategy of �rm i,
�
~K 0i (:; :) ; ~I 0i (:; :)

�
;

8(A; k) 2 R� Rn+; �
i(A; k�t ) � �

i(A; k0t), (19)

where k�t is the process de�ned by (15) and (16) and the strategies
�
~K� (:; :) ; ~I� (:; :)

�
,

and k0t is the processes created when �rm i uses the strategy
�
~K 0i (:; :) ; ~I 0i (:; :)

�
instead

of
�
~K�i (:; :) ; ~I�i (:; :)

�
, and the other �rm does not change their strategies. Furthermore,

a markovian strategy for �rm i is said continuous if the function ~Ki is continuous, and

a continuous markov perfect equilibrium is a markov perfect equilibrium with continuous

strategy.

To my knowledge, this is a new way of modeling markovian strategy. In this context,

it permits to properly de�ne the best responses of the �rms. In the next section, proposition

2 veri�es that the best responses when �rms can jump are the same than when �rms can

not jump. In addition, this de�nition permits to characterize the markov perfect equilibrium

when I assume that the strategies are continuous functions of the state variable. Theorem 2

shows that the result of the one-shot game is preserved in this dynamic framework.

3.2 Characterization of the continuous markov equilibrium

In this subsection, I characterize the continuous markovian equilibria. I start by in-

troducing technical assumptions. H2 is needed to prove proposition 2 (in order to use Ito�s

Lemma, to inverse the Ito�s Lemma results and to apply theorem 1). H3 is classic to ensure

the existence of a strong solution to (9). H4 ensures the existence of the stochastic integral

determining the pro�t of the �rms.

14
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H2: For each i = 1; ::; n, ci(:) is a four times di¤erentiable positive function such that

c0i � 0, c
00
i � 0, and for all A 2 R, P (:; :) is also four times di¤erentiable positive and strictly

concave function in each variable. Furthermore, for all i = 1; ::; n, P 00(A; �q)qi < �c
00
i (qi).

H3: �(A) and �(A) are continuous functions, and verify the Lipschitz conditions.

H4: There exists a function G : R+ ! R+, such that, 8(A; x) 2 R � R+, xP (A; x) <

G(A), and
R +1
0

e�rtG(At)dt < +1.

These assumptions allow to state proposition 2, which gives the form of the best

response in the markovian state-control form of the game.

Proposition 2: Assume H2, H3, H4 and C1. Let i 2 f1; ::; ng. In the markovian

state-control form of the game, assume that for all j 6= i, the strategy of �rm j ~Kj(:; :) is a

continuous function of the state variable. Then there exists a continuous decreasing function

� : R+ ! R+ such that the best response for �rm i,
�
~Ki
BR(:; :);

~I iBR(:; :)
�
veri�es:

~Ki
BR(A; k) =

8
>><

>>:

�(p�) if ki > �(p�)

ki if ki 2 [�(p+); �(p�)]

�(p+) if ki < �(p+)

9
>>=

>>;
; (20)

and ~I iBR(A; k) = 0 if ki 2]�(p+); �(p�)[. The best response of �rm i is continuous in the

state variable. �

This proposition shows that the optimal capacity of �rm i can jump: if at some

time t, kit is strictly smaller than �(p
+), then the �rm has interest in investing instantly

up to �(p+). In this case the investment in period t is in�nite, so the markovian state-

control form gives the same result as the regular form. However it also allows to go a step

further and to characterize the equilibria, as presented in theorem 2. In fact, at each time,

everything happens as in the one-shot game presented in the last section (with of course

some modi�cation of the no-move zone H in order to take into account the future pro�t).

Firms always want to invest or disinvest forthwith in order to reach the no-move zone. As

long as they are in the no-move zone, no �rms change its capacity.

The value of the zone H depends of the expected pro�t of the �rms. When �rms

are inside the no-move zone, the evolution of �rms pro�ts only depends on the evolution of

15
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prices. The expected price, v, should be solution to the di¤erential equation:

8x > 0; rv(A; x) = P (A; x) + �(A)
@v

@A
(A; x) +

�2(A)

2

@2v

(@A)2
(A; x): (21)

The no-move zone is then de�ned by:

Hv(A) =

�
k 2 Rn+ j 8i 2 f1; ::; ng : v

�
A; �k

�
+
@v

@k

�
A; �k

�
ki �

1

r
c0i(k

i) 2 [p�; p+]

�
. (22)

When a �rm reach the boundaries of the no-move zone, the marginal pro�t equals the price

of investment (or disinvestment). This equation is the result of the optimization of the �rm,

and I can derive this equation with respect to the level of demand. This gives a set of

condition which should be veri�ed by the pro�t functions.

Assume that k 2 Hv(A), and that

inf
i2f1;::;ng

�
v
�
A; �k

�
+
@v

@k

�
A; �k

�
ki �

1

r
c0i(k

i)

�
= p�, (23)

or

sup
i2f1;::;ng

�
v
�
A; �k

�
+
@v

@k

�
A; �k

�
ki �

1

r
c0i(k

i)

�
= p+. (24)

Then, for each i which minimizes (23) or maximizes (24), the equation

@v

@A

�
A; �k

�
+ ki

@2v

@A@k

�
A; �k

�
= 0 (25)

should be valid. In the theory of real option, these equations are known as smooth-pasting

and value-matching condition. (23) is associated to the option to invest and (24) to the

option to disinvest. The conditions are not necessarily active for all the �rms. Indeed, the

value of waiting (i.e. the pro�t maid by a �rm if no one invest nor disinvest) depends on the

capacity holds by the �rm and on its production cost.

Observe that equations (21), (23), (24) and (25) do not always de�ne an existing or a

unique solution. However, when the solution is unique, theorem 2 implies that the continuous

markovian equilibrium is unique. Furthermore, each continuous markov perfect equilibrium

is characterized by theorem 2.

Theorem 2: Assume H2, H3, H4 and C1. Then, for all continuous markov perfect

equilibrium
�
~K� (:; :) ; ~I� (:; :)

�
, there exists a solution v to the equations (21), (23), (24) and
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(25), such that the equilibrium veri�es that, for all (A; k) 2 R� Rn+; i 2 f1; ::; ng:

~K� (A; k) = arg min
K2Hv(A)

nX

i=1

C(Ki; ki), (26)

and ~I� (A; k) = 0 for all k 2 �Hv(A).

Condition (26) is equivalent to the distance condition,

~K� (A; k) = arg min
K2Hv(A)

nX

i=1

��Ki � ki
�� . (27)

Furthermore, for each solution v, the strategies de�ned by (26) form a continuous markovian

equilibrium. �

Theorem 2 is the analog of theorem 1, but in a continuous time setting. It char-

acterizes the continuous markovian equilibria. At each time, �rms invest (or disinvest) in

order to join the no-move zone at the smallest possible cost for the industry. The e¢ciency

of investment observed in the one-shot model is thus still valid in a dynamics and uncertain

framework.

This theorem focuses on the continuous markovian equilibrium. Nevertheless, one

can ask about other markovian equilibria. Indeed, there is a priori no reason that collusion

can not be sustained by markovian strategies in a di¤erential game. In a companion paper on

the same investment game, Fagart (2013), I exhibit a markovian equilibrium with tit-for-tat

strategy implementing the monopoly pro�t.8

4 Conclusion

In this work, I characterize the continuous markovian equilibria of a model of partially

irreversible investment in capacity under uncertainty and Cournot competition. There exists

8Such collusive equilibria arise because we assume that the strategy of the players rests on the state

variable. In the classic modeling of di¤erential games, the strategies of the players leads on the derivative

of the state variable, which imposes that the state variable will evolve continuously with time. As shown

by theorem 2 in our case, this continuity assumption provides the �nding of collusive equilibria when the

strategy of the player rests on the derivative of the state variable. If the �nding of collusive equilibria is

an argument in favor of our modeling, it also asks why the monopoly pro�t can not be implemented by

continuous strategies.
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an area in the space of �rms capacities, the no-move zone, such that �rms invest or disinvest

in order to join this area as soon as possible, and keep their capacity constant when they are

inside this area. The existence of this area is due to the irreversibility of investment, and

when investment is perfectly reversible, the no-move zone is reduced to a single point, as in

usual Cournot competition. When �rms have a similar pro�t function, but di¤erent initial

capacities, their asymmetry can be preserved, due to the irreversibility of investment.

At the equilibrium, �rms install the capacities vector of the no-move zone which

minimizes the cost of investment of the all industry. The intuition on this result is that the

no-move is the area where other �rms� actions do not impact the optimal action of a �rm,

so the e¢ciency of the equilibrium comes from the absence of reaction to competitor action

inside the no-move zone.

5 Appendix

Proof of theorem 1:

First, note that the pro�t function (3) veri�es the hypothesis of theorem 3 of Novshek

(1985), so there exists an unique Nash equilibrium. Let

K̂ = arg min
K2H

nX

i=1

��Ki � ki
�� : (28)

Then, if I show that K̂ is an equilibrium, it is unique. As (28) has always a solution, this

will prove theorem 1.

The �rst step of this proof introduces some notation. For any i 2 f1; ::; ng, I will

assume that K̂i is not the best response to
�
K̂j
�

j 6=i
. The second step assume that K̂i > ki

and introduce a vector of capacity �K, which belongs to H and is closer to k than K̂.

This contradicts (28) and implies that K̂i is a best response when K̂i > ki. The third

step presents the same reasoning when K̂i < ki and concludes. The last step shows the

equivalence between the two conditions (7) and (8).

Step 1: Some de�nition.
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Let xi = G
�
i (x); G

+
i (x) be the implicit functions (these functions are well de�ned and C

1

by assumption H1) de�ned by:

P (x) + P 0(x)xi � c
0
i(xi) = p

�, P (x) + P 0(x)xi � c
0
i(xi) = p

+. (29)

Observe that the best response of �rm i veri�es:

Ki =

8
>><

>>:

G+i (
�K) if ki < G+i (

�K)

ki if G+i (
�K) � ki � G�i (

�K)

G�i (
�K) if ki > G�i (

�K)

9
>>=

>>;
. (30)

Thus, K is an equilibrium if and only if (30) holds for all i. The no-move zone can be

rewritten as

H =
�
K 2 Rn+ j 8i 2 f1; ::; ng ; K

i 2
�
G+i (

�K); G�i (
�K)
�	
. (31)

Step 2: K̂i is �rm�s i best response when K̂i > ki.

This step is subdivided in three intermediate stages. The �rst stage constructs the

candidate point for the contradiction, �K. The second stage shows that �K 2 H if and only

if (37) is valid. The third stage veri�es that inequalities of (37) are valid.

� First, remark that, as K̂i > ki, K̂i is �rm�s i best response if and only if K̂i =

G+i (
Pn

h=1 K̂
h). Assume that K̂i is not �rm�s i best response. Then, as K̂ 2 H, K̂i >

G+i (
Pn

h=1 K̂
h).

Let 
 =
n
j : K̂j = G+j

�Pn

h=1 K̂
h
�o
, z = card(
) and �K de�ned by:

�Kj =

8
>><

>>:

K̂i � " if j = i

K̂j + "
z+1

if j 2 


K̂j elsewhere

9
>>=

>>;
: (32)

For " small enough to have �Ki > ki, observe that:

nX

h=1

��� �Kn � kn
��� =

nX

h=1

���K̂n � kn
����

"

z + 1
. (33)

To contradict the fact that K̂i is not �rm�s i best response, I just need to show that K̂i >

G+i (
Pn

h=1K
h) implies that �K 2 H.
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� Observe that
nX

h=1

�Kn =

nX

h=1

K̂n �
"

z + 1
. (34)

By hypothesis H1, Gu0j (x) = �
P 0(x)+P 00(x)xj
P 0(x)�c00i (xj)

< 0 and, as P 00(x)xj � �c00j (xj), G
u0
j > �1,

u 2 f+;�g. By Taylor, there exists �uj 2]0; 1[ such that

Guj

 
nX

h=1

�Kh

!

= Guj

 
nX

h=1

K̂h

!

+ �uj
"

z + 1
. (35)

Furthermore, when " is small enough,

G�j

 
nX

h=1

�Kh

!

> G+j

 
nX

h=1

K̂h

!

+
"

z + 1
. (36)

Thus, �K belongs to H if and only if

G+j

 
nX

h=1

�Kh

!

� �Kj � G�j

 
nX

h=1

�Kh

!

, (37)

for all j 2 f1; ::; ng.

�When j =2 
, I have �Kj � K̂j � G�j

�Pn

h=1 K̂
h
�
< G�j

�Pn

h=1
�Kh
�
. If j 2 
; from

(36) and (35), �Kj = K̂j+ "
z+1

= G+j

�Pn

h=1 K̂
h
�
+ "
z+1

� G�j

�Pn

h=1 K̂
h
�
� G�j

�Pn

h=1
�Kh
�
.

Thus �Kj � G�j

�Pn

h=1
�Kh
�
for all j.

When j 2 
,

�Kj = K̂j+
"

z + 1
= G+j

 
nX

h=1

K̂h

!

+
"

z + 1
= G+j

 
nX

h=1

�Kh

!

+
"

z + 1
��uj

"

z + 1
� G+j

 
nX

h=1

�Kh

!

.

(38)

The �rst equality comes from (32), the second one from the de�nition of 
, and the third

one from (35). The inequality holds as �uj 2]0; 1[. Finally, when j =2 
, by construction of


, K̂j > G+j

�Pn

h=1 K̂
h
�
, so, for " small enough, I have:

K̂j � G+j

 
nX

h=1

K̂h

!

+ �+j
"

z + 1
+ ".

Thus, by (35), �Kj � G+j
�Pn

h=1
�Kh
�
, and �K 2 H.

Step 3: K̂i is �rm�s i best response when K̂i < ki.
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As step 2, this step is subdivide in three intermediate stage.

� When K̂i < ki, K̂i is �rm�s i best response if and only if K̂i = G�i (
Pn

h=1 K̂
h).

Assume that K̂i is not �rm�s i best response. Then, as K̂ 2 H, K̂i < G�i (
Pn

h=1 K̂
h).

Let 
 =
n
j : K̂j = G�j

�Pn

h=1 K̂
h
�o
, z = card(
) and �K de�ned by:

�Kj =

8
>><

>>:

K̂i + " if j = i

K̂j � "
z+1

if j 2 


K̂j elsewhere

9
>>=

>>;
: (39)

Observe that, for small ":

nX

h=1

��� �Kn � kn
��� =

nX

h=1

���K̂n � kn
����

"

z + 1
; (40)

and
nX

h=1

�Kn =

nX

h=1

K̂n +
"

z + 1
: (41)

� Now, (35) and (36) became, for �uj 2]0; 1[:

Guj

 
nX

h=1

�Kh

!

= Guj

 
nX

h=1

K̂h

!

� �uj
"

z + 1
. (42)

Furthermore, when " is small enough,

G�j

 
nX

h=1

�Kh

!

> G+j

 
nX

h=1

K̂h

!

+
"

z + 1
. (43)

� When j =2 
, we have �Kj � K̂j � G�j

�Pn

h=1 K̂
h
�
> G�j

�Pn

h=1
�Kh
�
. If j 2


; from (43) and (42), �Kj = K̂j � "
z+1

= G�j

�Pn

h=1 K̂
h
�
� "

z+1
� G+j

�Pn

h=1 K̂
h
�
�

G�j

�Pn

h=1
�Kh
�
. Thus �Kj � G�j

�Pn

h=1
�Kh
�
.

When j 2 
, (39) and (42) gives:

�Kj = K̂j�
"

z + 1
� G�j

 
nX

h=1

K̂h

!

�
"

z + 1
= G�j

 
nX

h=1

�Kh

!

�
"

z + 1
+�uj

"

z + 1
� G�j

 
nX

h=1

�Kh

!

,

whereas, when j =2 
, for " small enough, we have:

K̂j � G�j

 
nX

h=1

K̂h

!

� �+j
"

z + 1
� ",
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and thus, �Kj � G�j

�Pn

h=1
�Kh
�
. Therefore �K 2 H.

Observe that if K̂i = ki, ki 2 H as K̂i 2 H, and (30) and (31) implies that K̂i is

�rm i best response. This prove that the K̂ is an equilibrium.

Step 3: Equivalence between the two equilibrium characterization (7) and (8).

To show the equivalence between (7) and (8), it su¢ces to remark that equations (33)

and (40) become respectively

C( �K; k) = C(K̂; k)� p+
1

z + 1
" (44)

and

C( �K; k) = C(K̂; k)� p�
1

z + 1
" (45)

with the investment cost function. Thus, the same reasoning applies. �

In the following proofs, I put the time in index when I consider a variable as a stochastic

process and nothing in index when I consider the variable as a constant. Thereby, Ki =

~Ki (A; k) is the capacity implemented by �rm i for a level of demand A and a vector of

installed capacity k, whereas Ki
t = ~Ki (At; kt) is the stochastic process implemented during

a period of time.

Proof of proposition 2:

This proof is made in three step. The properties of the pro�t function exhibited in

step 1 are used in step 2 to �nd the optimal control when �rm i does not jump. Step 3

describes the optimal jump and concludes.

Step 1: Properties on �i.

Assume that the optimal control, ~K�i(:) is a continuous function. Then, as ~Kj(:) is

also continuous, the path kt is continuous (exept in 0). Indeed, when h! 0,

kt+h = ~K(kt+h)! ~K(kt) = kt. (46)

Thus, if there is a jump, it is done only at time 0, and after that the �rm uses it continuous

control, I i, to adapt continuously the state variable kit. Let J be the set of intial conditions

such that �rm i does not jump,

J =
n
(A; k) j ~K�i(A; k) = ki

o
. (47)
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By assumption C1, this space is non empty. If (A; k) belongs to J , Bellmans veri�cation

theorem applies as the state space variable evolves continuously, and the objectif function,

�i, is C2.

Furthermore, �i is an increasing function of ki. Indeed, assume that k and k0 are two

initial conditions such that ki > k0i and kj = k0j if j 6= i. Then, let k0�it be the optimal

path induced by k0. If the initial condition are (A; k), �rm i can always imitate the optimal

strategy coming from (A; k0), investing according to k0i instantly and following k0�it after. In

this case,

�i(A; k) � �i(A; k0i) + p�
�
ki � k

0i
�
. (48)

Thus, �i is an increasing function.

Step 2: Optimal strategy when the �rm does not jump.

If the initial point (A; k) belongs to J , Bellman theorem applies and:

r�i(A; k) = max
Ii

�
�i (A; k)� p+

�
I i
�
+
� p�

�
I i
�
�
+ I i

@�i

@Ki
+D�i

�
, (49)

where D�i does not depend of the control I i. If @�
i

@Ki 2 [p
�; p+], then the optimal control is

I i = 0. If @�
i

@Ki =2 [p
�; p+], then there is no optimal control available in R, and in that case,

(A; k) =2 J , i.e. �rm i wishes to jump.

Step 3: Optimal strategy when the �rm does jump.

Assume now that the optimal strategy of �rm i is to jump at the initial point (A; k).

Let Ki be the level of the jump and k̂i be the vector of capacity at the instant of the jump

of �rm i:

�ki = Ki, �kj = ~Kj (k) for j 6= i. (50)

Then, the pro�t of �rm i is equal to:

�i(A; k) = �i
�
A; k̂

�
� C

�
k̂i; ki0

�
. (51)

After the jump,
�
A; k̂

�
belongs to J and thus �i is derivable in

�
A; k̂

�
. As �i is increasing,

the solution to (51) is unique and given by:

Ki =

8
>><

>>:

�(p�) if ki > �(p�)

ki if ki 2 [�(p+); �(p�)]

�(p+) if ki < �(p+)

9
>>=

>>;
, (52)
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where � is the implicit function de�ned by

@�i

@ki
(A; k�) = x, (53)

for ki� = �(x) and kj� = kj. In that case, J = [�(p+); �(p�)], and the strategy is I i = 0

except when ki = f�(p+); �(p�)g.

Remark that if �i is C2 for all its variables, D�i is given by

D�i = �(A)
@�i

@A
+
�2(A)

2

@2�i

(@A)2
+

nX

j=1
j 6=i

~Ij
@�i

@kj
+
�2(A)

2

nX

j;h=1
j;h 6=i

~IjIh
@2�i

@kj@kh
. (54)

�

Proof of Theorem 2:

The idea of proof is to characterizes the pro�t function inside the no-move zone

(where the optimal �rms strategies are to keep their capacities constant), and to apply

theorem 1 in order to characterize the equilibria.

Let
�
~K� (:; :) ; ~I� (:; :)

�
be a continuous markov perfect equilibrium. For all A 2 R,

let H(A) be the no-move zone de�ned by,

H(A) =
n
k 2 Rn+ j

~K�(A; k) = k
o
. (55)

By assumption C1, this no-move zone is not empty. Proposition 2 states that when

the installed capacity k does not belong to H, �rms wish to invest or disinvest in order to in-

stall a vector of capacity which belongs toH. The �rst two steps of the proof characterize the

pro�t of the �rm inside the no-move zone. The �rst step gives the dynamic equation veri�ed

by the pro�t functions. The second step presents the smooth-pasting and value matching

conditions. The third step establishes that the application requirements for theorem 1 are

valid. Step 4 applies theorem 4, gives the form of the no-move zone and characterizes the

equilibrium. Finally, step 5 shows that every strategies de�ned by equations (21), (23), (24),

(25) and (26) is an equilibrium.

Step 1: The pro�t functions as a solution to a unique di¤erential equation, (58).

24

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2014.39



Assume that k 2 H. In this case, the best strategy of each �rm is to maintain its

capacity constant and thus the �rms pro�t depends only on the evolution of the uncertainty.

Therefore, for all i 2 f1; ::; ng,

D�i = �(A)
@�i

@A
(A; k) +

�2(A)

2

@2�i

(@A)2
(A; k). (56)

Furthermore, when k belongs to H, the equilibrium strategies are ~K�(A; k) = k, and thus,

by (49):

r�i(A; k) = P
�
A; �k

�
ki � ci(k

i) + �(A)
@�i

@A
(A; k) +

�2(A)

2

@2�i

(@A)2
(A; k). (57)

Cauchy theorem shows that the space of solutions to a second degree di¤erential equation is a

two-dimensional vector space. The set of solution to (57) is thus a priori two-n-dimensional.

However, (57) can be reduced to a unique equation, and the set of solutions to a two-

dimensional space. Indeed, if v(:; :) is a solution to

rv(A; x) = P (A; x) + �(A)
@v

@A
(A; x) +

�2(A)

2

@2v

(@A)2
(A; x), (58)

the pro�ts de�ned by

8i 2 f1; ::; ng, �i(A; k) = v
�
A; �k

�
ki �

1

r
ci(k

i), (59)

is solution to the equations (57). Reciprocally, a solution to (57) de�nes a solution to (58).

Step 2: Smooth pasting and value-matching condition.

Let k 2 H(A). Let A+ be the level of demand such that one �rm invests if the

demand increases over this level. Then, if �rm i is a �rm which invests just after A+, the

pro�t function of �rm i should verify,

@�i

@ki
�
A+; k

�
= p+. (60)

If �rm i does not invest just after A+,

@�i

@ki
�
A+; k

�
< p+. (61)

The smooth pasting condition is thus

sup
i2f1;::;ng

@�i

@ki
�
A+; k

�
= p+, (62)
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which can be written as:

sup
i2f1;::;ng

�
v
�
A+; �k

�
+
@v

@k

�
A+; �k

�
ki �

1

r
c0i(k

i)

�
= p+. (63)

The di¤erentiation of (60) gives the optimal matching condition:

@2�i

@A@ki
�
A+; k

�
= 0, (64)

for all i which maximizes (62), which can be written

@v

@A

�
A+; �k

�
+

@2v

@A@ki
�
A+; �k

�
ki = 0. (65)

The same reasoning applies for disinvesting when the level of demand decreases, and in that

case the smooth-pasting and value matching conditions are:

inf
i2f1;::;ng

�
v
�
A�; �k

�
+
@v

@k

�
A�; �k

�
ki �

1

r
c0i(k

i)

�
= p�, (66)

and
@v

@A

�
A�; �k

�
+

@2v

@A@ki
�
A�; �k

�
ki = 0. (67)

Equations (63), (65), (66) and (67) characterizes the solution of the di¤erential equation

(58).

At this point of the proof, we have seen that the pro�t function of �rm i, i 2 f1; ::; ng,

can be rewritten:

�i(A; k) = max
KijK2H(A)

�
v
�
A; �K

�
Ki �

1

r
ci(K

i)� C(Ki; ki)

�
, (68)

where v is a solution to the di¤erential equation (58), which veri�es (63), (65), (66) and (67).

Step 3: Veri�cation of assumption H1.

The principal di¢culty of that step is that (58) de�nes v only on H. So I will use a

general solution to (58), w, and show that assumption H1 is valid for this function, before

to bring me to v.

Let w(A; x) be a solution to (58) for all (A; x) 2 R
2
+. Using Itô Lemma on the

function e�rtw(At; �k) gives:

d
�
e�rtw(At; �k)

�
=

�
�(At)

@w

@A
(At; �k) +

�2(At)

2

@2w

(@A)2
(At; �k)� rw(At; �k)

�
e�rtdt

+ �(At)e
�rt@w

@A
(At; �k)dWt.
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By (58), this equation becomes

d
�
e�rtw(At; �k)

�
= �P

�
At; �k

�
e�rtdt+ �(At)e

�rt@w

@A
(At; �k)dWt, (69)

which can be rewritten, for h > 0,

8A0 2 R+; w(A0; �k)� e
�rhw(Ah; �k) =

Z h

0

P
�
At; �k

�
e�rtdt�

Z h

0

�(At)e
�rt@w

@A
(At; �k)dWt

(70)

and thus

w(A0; �k)� e
�rhE

�
w(Ah; �k)jA0

�
= E

�Z h

0

P
�
At; �k

�
e�rtdt j A0

�
. (71)

When h! +1, (71) becomes,

w(A0; �k) = E

�Z +1

0

P
�
At; �k

�
e�rtdt j A0

�
. (72)

AssumptionH4 implies that this integral is well de�ned. AssumptionH2 implies that v0 < 0,

v00 < 0 and:

w00(A; �k) = E

�Z +1

0

e�rtP 00
�
At; �k

�
dt j A

�
< E

�Z +1

0

e�rt
c00i (
�k)
�k
dt j A

�
=
1

r

c00i (
�k)
�k
. (73)

So w veri�es assumption H1. Furthermore, on H, w(A; �k) is a particular solution to the

di¤erential equation (58), and, as v is also a solution to (58), there exists a function g(:)

such that, on H:

v(A; �k) = g(A) + w(A; �k), (74)

where g is a solution to the di¤erential equation:

rg = �(A)
@g

@A
+
�2(A)

2

@2g

(@A)2
. (75)

Outside the zone H, v is not necessarily equal to g + w. However, the pro�t functions do

not depend on v outside H, and equation (68) is equivalent to:

�i(A; k) = max
KijK2H

��
g(A) + w(A; �k)

�
Ki �

1

r
ci(K

i)� C(Ki; ki)

�
. (76)

Step 4: Applying theorem 1 and showing the unicity of the equilibrium.
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As g + w veri�es assumption H1, I can apply theorem 1. This gives the character-

ization of the equilibrium (26), and the form of zone H:

H(A) =

�
k 2 Rn+ j 8i 2 f1; ::; ng : g(A) + w(A;

�k) + w0(A; �k)ki �
1

r
c0i(k

i) 2 [p�; p+]

�
.

(77)

Of course, by (74), this can be rewritten as:

H(A) =

�
k 2 Rn+ j 8i 2 f1; ::; ng : v(A;

�k) + v0(A; �k)ki �
1

r
c0i(k

i) 2 [p�; p+]

�
. (78)

Step 5: Equation (21), (23), (24), (25) and (26) de�ne an equilibrium.

Assume that there exists a solution v to the equations (21), (23), (24), and (25),

and let ~K(:; :) be the equilibrium de�ned by (26) (with ~I = 0). For all (A; k) 2 R� Rn+, let

K = ~K(A; k) be the vector of desired capacities. Then, for all i 2 f1; ::; ng, I show that Ki

is the best response of �rm i to (Kj)j 6=i. Indeed, assume that (K
j)j 6=i is �xed, then, by (26),

the strategy of �rm i veri�es,

~Ki(A; k) = arg max
Ki2Hi

v(A)
C(Ki; ki), (79)

where

H i
v(A) =

�
Ki 2 R+ j v(A; �K) + v

0(A; �K)Ki �
1

r
c0j(K

i) 2 [p�; p+]

�
: (80)

As v is a solution to (21), v veri�es H1 by step 3. Thus, for all x 2 [p�; p+], there exists a

unique solution to the implicit equation,

v(A; �K) + v0(A; �K)Ki �
1

r
c0j(K

i) = x, (81)

as a unique solution Ki = �(x). In that case, the strategy of �rm i is de�ned by

Ki =

8
>><

>>:

�(p�) if ki > �(p�)

ki if ki 2 [�(p+); �(p�)]

�(p+) if ki < �(p+)

9
>>=

>>;
: (82)

Furthermore, even if ~K(:; :) is not an equilibrium, �rms does not invest nor disinvest inside

the no-move zone, and the reasoning of step 1 and step 2 applies. Thus, for k 2 H(A),

@�i

@ki
= v(A; �k) + v0(A; �k)ki �

1

r
c0j(k

i). (83)
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Equations (82) and (83) are equivalent to (52) and (53), so by proposition 2 the strategy

of �rm i is its best response to the opponents strategy, and ~K(:; :) is a markov perfect

equilibrium. �
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Graphic 1: best response of firm 2 
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Graphic 2: No-move zone and equilibrium 
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Graphic 3: Joining the no-move 
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Graphic 4: strategy with jump 
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