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Background: Since the attribution of the Nobel prize in 2002 to Kahneman for prospect theory, behavioral

finance has become an increasingly important subfield of finance. However the main parts of behavioral finance,

prospect theory included, understand financial markets through individual investment behavior. Behavioral

finance thereby ignores any interaction between participants.

Methodology: We introduce a socio-financial model that studies the impact of communication on the pricing

in financial markets. Considering the simplest possible case where each market participant has either a positive

(bullish) or negative (bearish) sentiment with respect to the market, we model the evolution of the sentiment in

the population due to communication in subgroups of different sizes. Nonlinear feedback effects between the

market performance and changes in sentiments are taking into account by assuming that the market performance

is dependent on changes in sentiments (e.g. a large sudden positive change in bullishness would lead to more

buying). The market performance in turn has an impact on the sentiment through the transition probabilities

to change an opinion in a group of a given size. The idea is that if for example the market has observed a

recent downturn, it will be easier for even a bearish minority to convince a bullish majority to change opinion

compared to the case where the meeting takes place in a bullish upturn of the market.

Conclusions: Within the framework of our proposed model, financial markets stylized facts such as volatility

clustering and extreme events may be perceived as arising due to abrupt sentiment changes via ongoing com-

munication of the market participants. The model introduces a new volatility measure which is apt of capturing

volatility clustering and from maximum likelihood analysis we are able to apply the model to real data and give

additional long term insight into where a market is heading.
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INTRODUCTION

The quote “In the short run, the market is a voting machine, but in the long run it is a weighing machine” is

attributed to Benjamin Graham[2]. Graham himself used the quote to argue that investors should use the so-called

fundamental value investment approach and concentrate on analyzing accurately the worth of a given financial

asset. That is, he suggested ignoring the short run “voting machine” part, and instead concentrate on the long run,

where somehow the “weighing machine”of the market would ensure to end up with a pricing of the true worth of

an asset. The interesting part of Graham’s quote is the allusion to the decision making of people and its impact on

the markets. Graham however does not refer to how the decision making process actually takes places, and this

will be our focus in the following.

In situations of uncertainty people often consult others to get more information and thereby a better understand-

ing of the situation. This is in particular true with respect to financial markets, where market participants consult

the media or other colleagues to get an idea of the origin behind price movements, or to assess which impact a given

information could have on the markets. For example, copying the behavior of others is one of the predominant

mechanisms in decisions to purchase[3]. Social households, i.e. those that interact with their neighbors, have also

been shown to have an impact in the level of stock market investments. In [4] it was shown how the stock-market

participation rates were higher in places that had a higher sociability. However the sole knowledge of the role of

imitation is not sufficient to describe in an operative frame the price dynamics of financial markets since indeed the

rules governing opinion dynamics and group decisions still needs to be understood and identified in more detail.

In [5] interpersonal communication were found to be extremely important in investors decisions. Questionnaire

surveys of institutional and individual investors were found to reveal a strong influence by word-of-mouth commu-

nications. In [6] it was shown that among fund managers in Germany information exchange with other financial

and industry experts was the second most important factor influencing their investment decisions, complemented

by conversations with their colleagues and reports from media. More recently impact of large scale human network

structes and its flow of information were shown to have an impact on the asset pricing[7]. Communication and

opinion formation among market participants therefore seems to be an important ingredient in the price formation

of any financial market, the question however is how to quantify a general framework of such a scenario at the mi-

cro level? In the following we will introduce a socio-financial[1] model that in a quantitative manner does exactly

this.

ANALYSIS

Insert Figure 1 about here
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Consider a population of market participants, shown schematically as circles in Fig. 1A. We will proceed as

in the so-called Galam model of opinion formation[8–10] and for simplicity imagine that people have just two

different opinions on the market, which we can characterize as either ”‘bullish”’ (black circles) or ”bearish” (white

circles). Letting B(t) denote the proportion of bullishness in a population at time t, the proportion of bearishness

is then 1−B(t).

Figure 1A represents the opinions of the participants at the beginning of a given day. During the day people

meet in random subgroups of different sizes, as illustrated by the different boxes in Fig. 1B, to update their view

of the market. Take, for example, the leftmost box in Fig. 1B with six persons, two bullish, four bearish, who we

can imagine are sitting around a table, or having a conference call, discussing the latest market developments. The

outcome of the discussions for the different groups are illustrated in Fig. 1C. For simplicity we have illustrated

the case where a majority opinion in a given subgroup manages to polarize the opinion of the group by changing

the opinion of those who had an opinion belonging to the minority. If we take the afore mentioned group of six

persons we can see that after discussing, because of the majority polarizing rule, they have all become bearish.

More realistically, we will in the following instead assume that is a certain probability for a majority opinion to

prevail, and that even under certain conditions a minority could persuade a part of the majority to change their

opinion.

For a given group of size k with j agents having a bullish opinion and k − j a bearish opinion, we let mk,j

denote the transition probability for all (k) members to adopt the bullish opinion as a result of their meeting. After

one update taking into account communications in all groups of size k with j bullish agents, the new probability

of finding an agent with a bullish view in the population can therefore be written:

B(t+ 1) = mk,j(t)C
k
j B(t)j [1−B(t)]k−j (1)

where

Ck
j ≡ k!

j!(k − j)!
(2)

are the binomial coefficients. Notice that the transition probabilities mk,j depend on time, since we assume that

they change as the market performance changes (this point will be explained further below).

Taking the sum over different groups of different sizes and different composition of bullishness within each

group(see Fig. 1B) one obtains a general term, B(t+1), for the bullishness in a population at time t+1 due to the
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outcome of meetings of groups with different sizes and different composition of bullishness:

B(t+ 1) =

L∑

k=1

ak

k∑

j=0

mk,j(t)C
k
j B(t)j [1−B(t)]k−j (3)

L∑

k=1

ak = 1 ; ak ≡ 1

L
(4)

With L denoting the size of the largest group and ak denoting the weight of the group of size k. The link between

communication and its impact on the markets can then be taken into account by assuming that the price return r(t)

changes whenever there is a change in the bullishness. The idea is that the bullishness itself is not the relevant

factor determining how prices will change. Those feeling bullish would naturally already hold long positions on

the market. Rather, when people change their opinion, say becoming more negative about the market, or less

bullish, this will increase their tendency to sell. Assuming the return to be proportional to the percentage change

in bullishness, RB(t), as well as economic news, η(t), the return r(t) is given by:

r(t) =
RB(t)

λ
+ η(t), λ > 0 (5)

with RB(t) = B(t)−B(t−1)
B(t−1) the change or “return” of the bullishness. The variable η(t) = r(t)− RB(t)

λ
is assumed

to be Gaussian distributed with a mean µ ≡ 0 and a standard deviation that varies as a function of time depending

on changes in sentiment. We will assume that the market will react to fundamental economic news represented by

η but that the amplitude of the reaction depends on changes in the sentiment RB(t):

σ(t) = σ0 exp (
|RB(t)|

β
), σ0 > 0, β > 0 (6)

The influence of the financial market on decision-making can now be included in a natural way by letting the

strength of persuasion depend on how the market has performed since the last meeting of the market participants.

The idea is that, if for example the market had a dramatic downturn at the close yesterday, then in meetings the

next morning, those with a bearish view will be more likely to convince even a bullish majority of their point of

view. In the formal description below, this is taken into account by letting the transition probabilities for a change

of opinion, i.e., the probabilities of transitions like Fig. 1.B → Fig. 1.C, depend on the market return over the last

period:

mk,j(t) = mk,j(t− 1) exp (
r(t)

α
);mk,j(t = 0) ≡ j/k, α > 0 (7)
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where α defines the scale for which a given return r(t) impacts the transition probabilities. The condition mk,j(t =

0) ≡ j/k describes the initially unbiased case where in average no market participant changes opinion.

RESULTS

As a first demonstration of the properties of the model, Eqs. (3-7), Figure 2a shows an illustration of the link

between the bullishness of the market participants obtained through communication (thin solid line) and market

prices (thick solid line). One observes a clear almost continuous decrease in bullishness, whereas the market itself

first decreases but then regains what it lost at the end of the time period, essentially ending up unchanged compared

to its initial level. This illustrates the competition between persistence through memory effects in the bullishness

(1-7) and the randomness of the return via the η(t)-term in (5). The decaying rate of the return of the bullishness

over the last part of the time period and the simultaneous rise of the prices illustrates indeed the complex and highly

nonlinear relationship between returns and sentiments. The model is able to reproduce the most important of the

so-called stylized facts seen in real financial market data[11]. Figure 2b illustrates clustering of the volatility of

the return of the time series in Fig. 2a. Furthermore the returns show fat-tailed behavior in the returns (Fig. 2c),

with fat tail exponents similar to what is found in real markets[12]. Finally let us also mention that there are no

arbitrage possibilities within the framework of the model seen by the zero autocorrelations of returns (thin line,

Fig. 2d), whereas long memory effects are seen in the volatility, seen via the slowly decaying autocorrelations of

volatility (thick line, Fig. 2d).

Insert Figure 2 about here

Having verified that the model is indeed able to describe the main characteristics of real market data, the next

question concerns how to find the optimal parameters describing real market data. Using inference based on max-

imum likelihood (see appendix) we have first conducted a series of simulations in order to retrieve the parameter

values used to generate the simulated data (Figure 2), namely λ = 1.1, σ0 = 0.01 , β = 0.001 and a = 400.

In order to avoid the positivity restrictions for the parameters, λ > 0, σ0 > 0, β > 0 and α > 0 we use the

logarithmic transformation, so that λ∗ = ln (λ), σ∗

0 = ln
(
σ2
0

)
, β∗ = ln (β) and α∗ = ln (α). Thus the parameter

vector to estimate is θ∗ = (λ∗, σ∗

0 , β∗, α∗)′. The technique of reparameterizing the model parameters is very

useful in order to ensure that a numerical optimization algorithm always provides parameter values within certain

specified boundaries. An attractive feature of the method of maximum likelihood estimation is its invariance to

one-to-one transformations of the parameters of the log-likelihood. That is, the maximum likelihood solution is

invariant under transformation of parameters. Finally, due to the highly non-linear nature of the proposed model,

maximization of the conditional log-likelihood with respect to the model parameters is achieved by using numerical

optimization algorithms.
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Insert Table 1 about here

Different starting values of the model parameters were used to ensure that the maximization/minimization algo-

rithm converges to the true simulated parameters. We present one example of optimization using T = 5000 data

points (see Table 1) noting that other values of T gave similar results. The first column of Table 1 shows the ‘true’

parameter values θ = (λ, σ0, β, α)′ used to simulate the data, while column 2 presents the ‘true’ transformed

parameter values θ∗ = (λ∗, σ∗

0 , β∗, α∗)′. The maximum likelihood estimates θ̂∗ of the transformed parameters θ∗

and their standard errors are presented in column 3, while column 4 shows the corresponding estimated parameter

values θ̂. Finally, in the last column we present the value of the gradient of the log-likelihood function evaluated

at the parameter estimates θ̂∗. Different starting values for the model parameters have been used in the maximum

likelihood estimation procedure (see Panel A-C). For example, the starting values used in Panel C are the ‘true’

parameter values used in the simulation experiments. The results presented in Table 1 indicate that the maximum

likelihood inferential procedure provide estimates that are close to the ‘true’ parameter values, taking into account

the estimates and the corresponding standard errors. The result provide evidence of convergence of the maximiza-

tion/minimization algorithm since the estimates found by using different starting values are very similar, and the

value of the gradient of the log-likelihood evaluated at the parameter estimates is near zero.

Insert Figure 3 about here

Next, we examine whether the proposed algorithm can estimate adequately the proportion of bullishness across

time and the time-varying conditional volatilities. To this end, in Figure 3, we present the simulated prices P (t),

and the corresponding returns r(t), as well as the simulated bullishness proportions B(t) across time, for T = 5000

data points. We also present the estimated bullishness proportions B̂(t) and the estimated conditional volatilities

σ̂(t) which are based on the parameter estimates of the model. Looking at Figure 3(b) and Figure 3(d) which

illustrate the ‘true’ and the estimated bullishness proportions, respectively, we can observe that these proportions

are almost identical. Thus, the proposed optimization procedure manages to correctly identify and detect the

proportions of a bullish view on the simulated prices. Finally, looking at Figure 3(c) and Figure 3(e), which

illustrate the simulated returns and the estimated conditional volatilities, respectively, we can see that periods of

lower or higher deviation in the return series can be detected by the models volatility estimates. Therefore, the

proposed model is able to capture the volatility clustering phenomenon of the return series.

Application to the FTSE-20 Athens stock index: We present an empirical application of the proposed socio-

financial model to the FTSE-20 Athens stock exchange index. The idea is to consider a very volatile market to

study abrupt and large changes in market performance and map the corresponding evolution in sentiments. The

data consists of 1247 daily prices over the 7/11/2008-6/11/2013 period. We compute and analyse the returns of the

FTSE-20 index.
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Insert Table 2 about here

Insert Figure 4 about here

To estimate the model parameters we apply the maximum likelihood method as mentioned above. Table 2

presents the estimates θ̂∗ of the transformed parameters θ∗ and their standard errors (columns 1 and 2, respectively),

the corresponding estimated parameter values θ̂ (column 3), and the value of the gradient of the log-likelihood

function evaluated at the parameter estimates θ̂∗ (last column). Different starting values for the model parameters

been used in the maximum likelihood estimation procedure (see Panel A-C). These results provide evidence of

convergence of the maximization algorithm since the estimates found by using different starting values are very

similar, and the value of the gradient of the log-likelihood evaluated at the parameter estimates is near zero.

Next, we estimate the proportion of bullishness across time and the time-varying conditional volatilities. In

Figure 4, we present the FTSE-20 prices P (t), the corresponding returns r(t), the estimated bullishness proportions

B̂(t) and the estimated conditional volatilities σ̂(t), which are based on the parameter estimates of the socio-

financial model. Comparing the FTSE-20 price evolution Figure 4(a) and the estimated bullishness proportions

Figure 4c, one observes a steady decline in the bullishness proportions even after a relatively long (two years:

from mid-2011 to mid-2013) and stable price evolution. We consequently suggest to consider this as indicating a

‘bad signal” for the following FTSE-20 price levels. Finally, comparing the observed volatility of the FTSE-20,

Figure 4(b), and the estimated volatility from the model, Figure 4(d), one notices that periods of high volatility of

the market is indeed detected by volatility estimates of the socio-financial model. Therefore our proposed model

can be seen as introducing an alternative measure to capture volatility clustering phenomena observed in return

series of financial market data.

DISCUSSION

The main parts of traditional finance as well as behavioral finance, prospect theory[13] included, understand

pricing in financial markets through individual investment behavior, thereby ignoring any interaction between

market participants. We have on the contrary proposed a socio-financial model that focus on interaction between

market participants via communication. We have shown how communication can impact the pricing in financial

markets. Opinion formation of the market participants is modeled by communication that takes place in subgroups

of different sizes. Nonlinear feedback effects were introduced to describe how market performance can change

sentiments and vice versa. Our socio-financial model was shown to be able to reproduce the main stylized facts

of financial market data. By estimating the model parameters via maximum likelihood method we are able to

study extreme behavior of markets swings and sentiments illustrated by a case of the FTSE-20 Athens stock index
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over the last five years. Recent price behavior of the FTSE-20 index seems to indicate a reversal of the bearish

trend whereas the sentiment measure obtained from our method seems to indicate that the market still has room

for further downturns. Finally our model introduces a new volatility measure apt of capturing volatility clustering

seen in the real financial market data

APPENDIX

In the following we present an inferential method adopted to estimate the parameters of the model (3-7) based

on the maximization of the conditional likelihood. Below we describe the calculation of the likelihood function for

the model for a sample of T observations r = (r(1), r(2), ..., r(T )) under the assumption of a Normal distribution

for the error process η(t).

Consider the probability distribution of r(1), the first observation in the sample. Since η(t) is assumed Gaussian,

the density of the first observation, conditional on B(0) and mk,j(0) = j/k (corresponding to the neutral case),

takes the form

f [r(1)|B(0),mk,j(0), θ] =
1√

2πσ(1)
exp

{
− 1

2σ(1)2

[
r(1)− 1

λ
RB(1)

]2}
,

where θ = (λ, σ0, β, α)′ denotes the parameter vector to be estimated. Next, conditioning on r(1), the density of

the second observation r(2) is

f [r(2)|r(1), B(0),mk,j(0), θ] =
1√

2πσ(2)
exp

{
− 1

2σ(2)2

[
r(2)− 1

λ
RB(2)

]2}
.

Proceeding in this fashion, the conditional density of the t− th observation can be calculated as

f [r(t)|r(t− 1), ..., r(1), B(0),mk,j(0), θ] =
1√

2πσ(t)
exp

{
− 1

2σ(t)2

[
r(t)− 1

λ
RB(t)

]2}
.

Therefore, the likelihood of the complete sample can be written as

f [r|B(0),mk,j(0), θ] = (2π)
−

T

2

T∏

t=1

σ(t)−1 · exp
{
−1

2

T∑

t=1

1

σ(t)2

[
r(t)− 1

λ
RB(t)

]2}
.

The log-likelihood function, denoted LT (r|θ), can be written as

LT (r|θ) = −T

2
ln (2π)−

T∑

t=1

lnσ(t)− 1

2

T∑

t=1

1

σ(t)2

[
r(t)− 1

λ
RB(t)

]2
.
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Clearly, the value of θ that maximizes the conditional likelihood is identical to the value that maximizes the

conditional log-likelihood.
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Beginning of the day: 50 percent of the population are bulish (black circles)

A)

Communication in groups of different sizes leads to a majority concensus in each group

B)
C)

End of the day: 45 percent of the population are bulish (black circles)

D)

FIG. 1: Changing the “bullishness” in a population via communications in subgroups. a): At the beginning of a given day

t a certain percentage B(t) of bullishness. b): During the day communication takes place in random subgroups of different

sizes. c): illustrates the extreme case of complete polarization mk,j = ±1 created by a majority rule in opinion. In general

mk,j ≃ j/k corresponds to the neutral case where in average the opinion remains unchanged within a subgroup of size k. d):

due to the communication in different subgroups the “bullishness” at the end of the day is different from the beginning of the

day.
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FIG. 2: Reproducing the “stylized facts”. (a) Example of how a change in bullishness B(t) in a population (thin line) can

have an impact on prices P (t) (thick solid line). (b) Volatility clustering as a function of time. (c) ”Fat tailed” returns. (d)

No arbitrage possibilities, i.e. zero autocorrelations of returns (thin solid line), and long time memory effects in volatility, i.e.

nonzero autocorrelations of volatility versus time (thick solid line). Parameter values used: λ = 1.1, σ0 = 0.01, β = 0.001,

L = 5.
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FIG. 3: Simulated price data (T = 5000). (a) Simulated prices P (t), (b) Simulated bullishness proportions B(t), (c) Simulated

price returns r(t), (d) Estimated bullishness proportions B̂(t), (e) Estimated conditional volatilities.
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bullishness proportions using optimal parameters estimated via the maximum likelihood method. (a) FTSE-20 price P (t), (b)

FTSE-20 returns r(t), (c) Estimated bullishness proportions B̂(t). (d) Estimated conditional volatilities σ̂(t).
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Table 1: Maximum likelihood estimation results of the simulation experiments (T = 5000).

Panel A: Starting values λ̂∗=-0.6931, σ̂∗

0=-6.4378, β̂∗=-3.5066, α̂∗=5.7038

True initial True trans. MLEs trans. StdErr MLEs Gradient

λ 1.1 λ∗ 0.095 λ̂∗ 0.1747 0.8095 λ̂ 1.1909 0.0004

σ0 0.01 σ∗

0 -9.210 σ̂∗

0 -9.1891 0.0277 σ̂0 0.0101 0.0087

β 0.001 β∗ -6.908 β̂∗ -6.8884 0.0417 β̂ 0.0010 -0.0167

α 400 α∗ 5.991 α̂∗ 5.9746 0.0382 α̂ 393.32 0.8311

Panel B: Starting values λ̂∗=-2.9957, σ̂∗

0=-13.8155, β̂∗=-6.9078, α̂∗=6.2146

True initial True trans. MLEs trans. StdErr MLEs Gradient

λ 1.1 λ∗ 0.095 λ̂∗ 0.1737 0.8063 λ̂ 1.1897 -0.0048

σ0 0.01 σ∗

0 -9.210 σ̂∗

0 -9.1891 0.0277 σ̂0 0.0101 0.0777

β 0.001 β∗ -6.908 β̂∗ -6.8883 0.0402 β̂ 0.0010 -0.0461

α 400 α∗ 5.991 α̂∗ 5.9746 0.0348 α̂ 393.29 -0.3053

Panel C: Starting values λ̂∗=0.0953, σ̂∗

0=-9.2103, β̂∗=-6.9078, α̂∗=5.9915

True initial True trans. MLEs trans. StdErr MLEs Gradient

λ 1.1 λ∗ 0.095 λ̂∗ 0.1738 0.8100 λ̂ 1.1898 -0.0007

σ0 0.01 σ∗

0 -9.210 σ̂∗

0 -9.1891 0.0277 σ̂0 0.0101 -0.0208

β 0.001 β∗ -6.908 β̂∗ -6.8884 0.0417 β̂ 0.0010 -0.0219

α 400 α∗ 5.991 α̂∗ 5.9746 0.0382 α̂ 393.32 0.0883

True initial: denotes the ‘True’ simulated parameter values θ, True trans.: denotes the ‘True’ transformed simu-

lated parameter values θ∗, MLEs trans: denote the maximum likelihood estimates θ̂∗ of the transformed parameters

θ∗, StdErr: denotes the standard errors of the transformed parameters θ∗, MLEs: denote the maximum likelihood

estimates θ̂ of the parameters θ, Gradient: denotes the value of the gradient of the log-likelihood evaluated at the

parameter estimates.
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Table 2: Maximum likelihood estimation results of the FTSE-20 stock index return series.

Panel A: Starting values λ̂∗=-0.6931, σ̂∗

0=-6.4378, β̂∗=-3.5066, α̂∗=5.7038

MLEs trans. StdErr MLEs Gradient

λ̂∗ 1.2825 3.7466 λ̂ 3.6055 -0.0001

σ̂∗

0 -7.4537 0.0702 σ̂0 0.0241 0.0001

β̂∗ -4.5640 2.9009 β̂ 0.0104 -0.0000

α̂∗ 6.7058 2.9388 α̂ 817.16 -0.0004

Panel B: Starting values λ̂∗=-0.6931, σ̂∗

0=-9.2103, β̂∗=-4.6052, α̂∗=6.6846

MLEs trans. StdErr MLEs Gradient

λ̂∗ 1.2869 3.7417 λ̂ 3.6214 0.0002

σ̂∗

0 -7.4537 0.0702 σ̂0 0.0241 -0.0001

β̂∗ -4.5615 2.8968 β̂ 0.0104 -0.0001

α̂∗ 6.7033 2.9345 α̂ 815.12 -0.0001

Panel C: Starting values λ̂∗=0.0953, σ̂∗

0=-9.2103, β̂∗=-6.9078, α̂∗=5.9915

MLEs trans. StdErr MLEs Gradient

λ̂∗ 1.2832 3.7284 λ̂ 3.6082 -0.0001

σ̂∗

0 -7.4537 0.0702 σ̂0 0.0241 -0.0007

β̂∗ -4.5641 2.8921 β̂ 0.0104 0.0005

α̂∗ 6.7059 2.9298 α̂ 817.23 0.0003

MLEs trans: denote the maximum likelihood estimates θ̂∗ of the transformed parameters θ∗, StdErr: denotes

the standard errors of the transformed parameters θ∗, MLEs: denote the maximum likelihood estimates θ̂ of the

parameters θ, Gradient: denotes the value of the gradient of the log-likelihood evaluated at the parameter estimates.
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