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Optimal estimation strategies for bivariate fractional cointegration systems

Marcel Aloy1, Gilles de Truchis1,∗

Aix-Marseille University (Aix-Marseille School of Economics), CNRS & EHESS

Abstract

Estimation methods of bivariate fractional cointegration models are numerous. In most cases they have non-

equivalent asymptotic and finite sample properties, implying difficulties in determining an optimal estimation strategy.

In this paper, we address this issue by means of simulations and provide useful guidance to practitioners. Our Monte

Carlo study reveals the superiority of techniques that estimate jointly all parameters of interest, over those operating

in two steps. In some cases, it also shows that estimators originally designed for the stationary cointegration, have

good finite sample properties in non-stationary regions of the parameter space.
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1. Introduction

In recent years, cointegration has attracted considerable attention. This powerful theory allows for analyzing

long-run relationship, stating that a vector of p series, Xt, integrated of same orders δ, share p − r common stochastic

trends if there exists r linear combinations between the elements of Xt, having less memory, γ, such as 0 ≤ γ < δ.

Although the theoretical and empirical studies have primarily investigated the rigid case where Xt possesses unit roots

and cointegrating errors are weakly dependent (see Engle and Granger , 1987), the seminal definition proposed by

Granger (1981) is more flexible and allows for fractional cointegration (i.e. δ and γ are real numbers). In a pioneering

work, Cheung and Lai (1993) suggest a two-step procedure to estimate a bivariate fractional cointegration model

when regressors are I(1) and errors I(γ); the first step is to estimate the long-run coefficient, β, and the second step

is to estimate the integration order of collected residuals, γ. Subsequently, numerous studies address the issue of

estimating β, in presence of cointegration with unknown integration orders.2 They generally perform a narrow-band

analysis of the averaged cross-periodograms but focus on different ranges for δ and γ because the asymptotic theory

requires different treatments depending on the parameter space. Three cases are generally distinguished: the strong
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fractional cointegration (δ − γ > 1/2 and δ > 1/2); the weak fractional cointegration (δ − γ < 1/2 and δ ≶ 1/2);

the stationary fractional cointegration (δ − γ < 1/2 and δ < 1/2). A more recent strand of the literature focuses on

estimating δ, γ and β jointly in order to achieve greater efficiency (see Robinson and Hualde , 2003). For instance,

Velasco (2003) and Hualde and Robinson (2007) suggest different methods to jointly estimate δ and γ. Then, Nielsen

(2007), Robinson (2008) and Shimotsu (2012) propose local Whittle estimators of δ, γ and β.3

Thereby, there exists a lot of possible strategies for estimating fractional cointegration, implying estimators with

non-equivalent asymptotic and finite sample properties. Accordingly, determining an optimal strategy of estimation

is not so simple for practitioners. Panopoulou and Pittis (2004), Kurozumi and Hayakawa (2009) and Hualde and

Iacone (2009) deal with this issue providing theoretical and/or numerical comparisons. Nonetheless, these studies

essentially focus on estimation of β in two-step procedures. Moreover, Panopoulou and Pittis (2004) and Kurozumi

and Hayakawa (2009) only consider the traditional I(1)/I(0) framework of Engle and Granger (1987). In this short

article, we propose a Monte Carlo study that covers the three cases of cointegration and deals with two-step and

one-step procedures. Our panel of estimators includes popular as well as recent techniques. The results of our finite

sample analysis provide useful guidance to practitioners.

The rest of the paper is laid out as follows. The Section 2 introduces the data generating process and the different

estimators considered in our simulation study, distinguishing between both the two-step and the one-step procedures.

Section 3 presents the results of the Monte Carlo experiment and Section 4 concludes.

2. Estimation of Fractional cointegration

Estimators presented in this section and implemented in Section 3 operate in frequency domain analysis and

proceed in a semi-parametric treatment of the cointegrating systems. The main reason is that short run dynamics are

more likely to be treated as nuisance parameters in cointegration framework, considering that β, δ and γ are the main

parameters of interest.4

2.1. The data generating process

Define εt = (ε1t, ε2t)′ as a zero-mean covariance stationary process whose spectral density, fε(λ j), is positive,

bounded at all frequencies and satisfies fε(0) = G with λ j = (2π j)n−1, j = 1, . . . , n the Fourier frequencies. Let yt and

xt two sequences expressed as

yt = βxt + ε#
1t(−γ), xt = ε#

2t(−δ), t = 1, 2, ..., n, (1)

3Hualde and Robinson (2010) and Johansen and Nielsen (2012) treat the multivariate case in frequency and time domain respectively, but this
discussion goes beyond of the scope of the paper.

4Moreover, Nielsen and Frederiksen (2005) show in an extensive Monte Carlo analysis of long memory estimation techniques, that time-domain
estimators usually lead to worst performances than frequency-domain approaches. Although these authors do not deal with cointegration, we rest
on their results to conjecture that two-step strategies combining any estimator of β and time-domain estimators of γ will result to inferior finite
sample performances.
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where, generically, the truncated process a#
t is defined by a#

t = atl(t ≥ 1), with l(.) the indicator function and a#
t (−α)

denotes the fractional difference of a#
t , satisfying a#

t (−α) :=
∑t−1

k=0 Γ(k + α)(Γ(α)k!)−1a#
t−k, for α , −1,−2, . . . with Γ(.)

the gamma function.5 Thereby, xt has long memory δ, if xt = ε#
2t(−δ) with δ > 0. Moreover, xt is covariance stationary

when δ ∈ (0, 1/2), nonstationary otherwise (i.e. δ ≥ 1/2). Finally, yt and xt are fractionally cointegrated when β , 0

and 0 ≤ γ < δ.

2.2. The two-step strategies

The so-called two-step methodology introduced by Cheung and Lai (1993) consists of estimating β (henceforth the

first step) and estimating the memory parameter of resulting residuals (hereafter the second step). Thereby, considering

different estimators for both β and γ, we can investigate several versions of this methodology.

The least squares estimate (LSE) of β is considered in the original methodology of Cheung and Lai (1993).

However, in cointegration systems, one might expect corr(ε1t, ε2t) = ρ , 0. In such case, the orthogonality condition

between the regressors and the error term is violated and the LSE is only consistent if the (inverse) signal-to-noise ratio,(∑n
t=1 x2

t

)−1 (∑n
t=1 ε

2
1t

)
, converges stochastically to zero as n tends to infinity. Accordingly, LSE would be inconsistent

when the regressors are stationary and ρ , 0.

The narrow-band least squares (NBLS) estimator has been introduced by Robinson (1994) to overcome this is-

sue. This estimator is analog to the LSE but operates in frequency domain and relies on a narrow-band analysis of

the average periodogram near the origin. Given that the spectrum of the regressors dominates that of the residuals

near zero frequency, the NBLS estimator is consistent when xt and ε1t are correlated at frequencies away from the

origin, even in the stationary regions. Following Nielsen and Frederiksen (2011), we accommodate the nonstationary

regions of δ and γ by pre-differencing the data using any real, η, which transforms a potentially non-stationary process

into one stationary. Defining ωx(λ j, η) = (2πn)−1/2 ∑n
t=1 xt(η)eitλ j the pre-differenced Fourier transform of xt, the peri-

odogram of xt and the cross-periodogram of xt and yt are expressed as Ixx(λ j, η) = ωx(λ j, η)ω̄x(λ j, η) and Ixy(λ j, η) =

ωx(λ j, η)ω̄y(λ j, η) respectively. Then, the average periodogram of xt is simply F̂xx(k, l, η) = 2πn−1 ∑l
j=k Re(Ixx(λ j, η))

with 1 ≤ k ≤ l ≤ n − 1. Choosing m0 such as m−1
0 + m0n−1 → 0 as n→ ∞, it results the NBLS estimator

β̂NB(m0) = F̂−1
xx (k,m0, η)F̂xy(k,m0, η) (2)

Although the NBLS estimator remains consistent in presence of a correlation between the regressors and the errors at

higher frequency, a non-zero coherence at frequency zero introduces an asymptotic bias in their distribution.

The fully modified narrow-band least squares (FM-NBLS) estimator, introduced by Nielsen and Frederiksen

(2011), solves the latter issue by estimating and removing the asymptotic bias. Denoting ε̂1t the residuals ob-

tained from an initial NBLS regression, the authors suggest to estimate the asymptotic bias by Υ̂m2 (η) = F̂−1
xx (m0 +

1,m2, η)F̂xε̂1 (m0 + 1,m2, η), with m0m−1
2 + m2n−1 → 0 as n → ∞. When cointegration arises δ , γ. Therefore, one

5The type II representation adopted here is valid for arbitrary large values δ and γ.
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would expect the phase parameter to be non-null and equal to (δ − γ)π/2, leading Nielsen and Frederiksen (2011) to

suggest F̃xε̂1 (k, l, η) = 2πn−1 ∑l
j=k Re(eiλ j(δ−γ)/2Ixε̂1 (λ j, η)). Then, the FM-NBLS estimate of β is given by

β̂FM(m3) = β̂NB(m3) − λ−γ̂m3λ
δ̂
m3
λ
γ̂
m2λ

−δ̂
m2

Υ̃m2 (η) (3)

where m3 satisfies the Assumption 3.2 of Nielsen and Frederiksen (2011). For simplicity, we further choose m3 = m0.

Nielsen and Frederiksen (2011) suggest to use the local Whittle estimator of Robinson (1995) based on the bandwidth

m1 to obtain the long memory estimates needed to compute β̂FM(m3).

As it concerns long memory parameter estimators, the log-periodogram regression (LPR) introduced by Geweke

and Porter-Hudak (1983) and implemented by Cheung and Lai (1993), is one of the most popular. It is based on the

power law behavior of the spectral density of stationary long memory process near zero frequency. Assume that xt

has long memory δ ∈ (0, 1/2) so that its spectral density, fx(λ), exists and satisfies fx(λ) ∼ gλ−2δ as λ → 0, with g a

positive constant. Taking logarithms of this relation we obtain log fx(λ j) ≈ log g − 2δ log λ j. Adding the logarithm of

Ix(λ j) = ωx(λ j)ω̄x(λ j), ωx(λ j) = (2πn)−1/2 ∑n
t=1 xteitλ j and rearranging terms, this expression becomes

log Ix(λ j) ≈ log g − 2δ log λ j + log Ix(λ j) fx(λ j)−1 (4)

The slope δ of this approximate linear regression model can be estimate by the LSE. Velasco (1999a) and Kim and

Phillips (2006) proof the asymptotic normality and the consistency of the LPR estimates for δ ∈ [1/2, 3/4) and

δ ∈ [1/2, 1] respectively. More recently, Hassler et al. (2006) show the consistency of the LPR estimate of γ in

presence of estimated errors, ε̂1t, when δ − γ > 1/2.

The Gaussian semi-parametric estimator (GSE) of Robinson (1995) relies on a local version of the so-called

Whittle approximate maximum likelihood method. Exploiting the relation fx(λ) ∼ gλ−2δ as λ → 0, the local Whittle

pseudo-maximum likelihood estimator of δ is obtained minimizing the concentrated local Whittle objective function,

Rδ(θ), with

Rm(δ) = log ĝ(δ) − 2δ
1
m

m∑
j=1

log λ j, ĝ(δ) =
1
m

m∑
j=1

λ2δ
j Ix(λ j), (5)

where m−1 + mn−1 → 0 as n → ∞. Velasco (1999b) demonstrates that the GSE is consistent for δ ∈ (−1/2, 1) and

normally distributed under Gaussianity assumption for δ ∈ (−1/2, 3/4) with m1/2(δ̂LW − δ0)
d
−→N(0, 1/4).6 Velasco

(2003) shows the consistency of δ̂LW when it is applied to estimated cointegrated errors.

The two-step exact local Whittle estimator (2S-ELW), suggested by Shimotsu (2010), is an exact version of the

local Whittle objective function. Operating in two steps, this estimator accommodates both an unknown mean and a

polynomial time trend. In a first stage, Shimotsu (2010) proposes to use the tapered estimator of Velasco (1999b).

The author also suggests to estimate the unknown mean µx, by µ̂x = w(δ)x̄ + (1 − w(δ))x1, where x̄ = n−1 ∑n
t=1 xt and

6Velasco (1999a,b) also proof that tapering data appropriately, these type of estimator are consistent for a wider range of δ.
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w(δ) is a smooth weight function such that w(δ) = 1 for δ ≤ 1/2, w(δ) = 1/2 + cos(4πδ)/2 for δ ∈ (1/2, 3/4) and

w(δ) = 0 for δ ≥ 3/4. Now, consider the following concentrated exact local Whittle objective function,

Rm(δ) = log ĝ(δ) − 2δ
1
m

m∑
j=1

log |λ j|, ĝ(δ) =
1
m

m∑
j=1

I∆δ(x−µ̂)(λ j), (6)

where ∆δ denotes the fractional difference operator (1 − L)δ. The 2S-ELW estimator of δ is defined as δ̂ELW =

δ̃ −
(
(∂/∂δ)R(δ̃)

) (
(∂2/∂δ∂δ)R(δ̃)

)−1
where δ̃ denotes the first-stage estimate of δ. Shimotsu (2010) proofs that the the

2S-ELW estimator has the same asymptotic properties as the GSE.

2.3. The one-step approaches

The local Whittle estimator (LWN-FC) of Nielsen (2007) allows for estimating jointly all parameters of inter-

est of bivariate stationary cointegrating systems. Given that a simultaneous treatment of equations in 1 requires a

multivariate approach, Nielsen (2007) considers the following natural extension of the GSE of Robinson (1995),

Rm(θ) = log det Ĝ(θ) − 2(δ + γ)
1
m

m∑
j=1

log |λ j|, Ĝ(θ) =
1
m

m∑
j=1

Re
(
Λ(λ j)Iz(λ j)Λ(λ j)

)
, (7)

where Λ(λ j) = diag(λγj , λ
δ
j) and Iz(λ j) is the periodogram matrix of zt = (yt − βxt, xt)′. Thus, β enters the likelihood

function through I(11)(λ j) = Iyy(λ j)−2βIxy(λ j)+β2Ixx(λ j), where I(11)(λ j) denotes the top left element of I(λ j). Nielsen

(2007) proofs that m1/2 diag(1, 1, λδ−γ)(θ̂−θ0)
d
−→N(0,Ξ−1) when 0 ≤ γ < δ < 1/2 with θ̂ = (δ̂, γ̂, β̂)′ and Ξ described

in Nielsen (2007, p. 431).

The local Whittle estimator (LWR-FC) of Robinson (2008) allows to estimation of multivariate stationary sys-

tems, including cointegration systems as special cases. This general multivariate setting possibly introduces a phase

parameter, henceforth ϕ, if the cross-spectrum, i.e. the top right parameter of spectral density matrix, is non-null. In

presence of cointegration, the phase parameter reduces to ϕ = (δ − γ)π/2.7 Robinson (2008) suggests to estimate the

phase parameter, arguing that misspecification of ϕ might lead to inconsistent estimates of long memory parameters.

Thereby, Robinson (2008) proposes the following general concentrated objective function,

Rm(θ) = log det Ĝ(θ) − 2(δ + γ)
1
m

m∑
j=1

log |ψ(λ j)|, Ĝ(θ) =
1
m

m∑
j=1

Re
(
Λ(λ j)BI(y,x)′ (λ j)B′Λ(λ j)

)
, (8)

where Λ(λ j) = diag(ψ(λ j)γ, ψ(λ j)δe−i sign(λ j)ϕ) with ψ(λ) any function that satisfies ψ(λ)− |λ| = o(1) as λ→ ∞ and B is

a 2×2 identity matrix whose the top right element is equal to β. Robinson (2008) shows that m1/2 diag(λδ−γ, 1, 1, 1)(θ̂−

θ0)
d
−→N(0,Ξ−1) when 0 ≤ γ < δ < 1/2 with θ̂ = (β̂, ϕ̂, γ̂, δ̂)′ and Ξ detailed in Robinson (2008, p. 2516).

The two-step exact local Whittle estimator (2S-ELW-FC) of Shimotsu (2012) extends the estimator of Robinson

(2008) to accommodate nonstationarity, but does not estimate the phase, setting ϕ = (δ−γ)π/2. The first-stage consists

7Nielsen (2007) sets ϕ = 0, assuming zero coherence between ε1t and ε2t in long-run.
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of applying a tapered and modified version of the LWR-FC estimator.8 The second stage consists of minimizing a

modified multivariate version of the ELW concentrated objective function,

Rm(θ) = log det Ĝ(θ) − 2(γ + δ)
1
m

m∑
j=1

log λ j, Ĝ(θ) =
1
m

m∑
j=1

Re
(
I
∆θd z(λ j; β)

)
, (9)

where θ = (θd, β)′ with θd = (γ, δ)′. Denoting θ̃ the estimate of θ from the LWR-FC, the 2S-ELW-FC estimator is

defined as θ̂ = θ̃−
(
(∂2/∂θ∂θ′)R(θ̃)

)−1 (
(∂/∂θ)R(θ̃)

)
. The author shows that m1/2 diag(λ−(δ0−γ0)

m , 1, 1)(θ̂−θ0)
d
−→N(0,Ξ−1)

as n → ∞ when (δ0 − γ0) ∈ (0, 1/2) and m1/2(θ̂d − θd
0)

d
−→N(0,Ξ−1

θd ) while (β̂ − β0) = Op(n−(δ0−γ0)) as n → ∞ when

(δ0 − γ0) ∈ (1/2, 3/2). Exploiting Ĝ(θ), this procedure is also able to estimate the off-diagonal parameter, ρ, of the

residuals covariance matrix (i.e. endogeneity parameter). The matrix Ξ is detailed in Shimotsu (2012, p. 269).

Table 1: Bias and RMSE comparisons of β estimators

Stationary Weak Strong Stationary Weak Strong

ρ = 0 ρ = 0.4

n = 256 Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
δ = 0.4 γ = 0 δ = 0.6 γ = 0.4 δ = 0.6 γ = 0 δ = 0.4 γ = 0 δ = 0.6 γ = 0.4 δ = 0.6 γ = 0

LSE -0.000 0.016 0.000 0.062 0.000 0.010 0.242 0.244 0.207 0.216 0.084 0.087
NBLS -0.001 0.033 0.001 0.094 0.000 0.014 0.056 0.064 0.150 0.174 0.017 0.021

FMNBLS -0.001 0.043 0.002 0.141 0.000 0.015 0.038 0.055 0.108 0.171 0.013 0.020
δ = 0.4 γ = 0.2 δ = 0.8 γ = 0.6 δ = 0.8 γ = 0.2 δ = 0.4 γ = 0.2 δ = 0.8 γ = 0.6 δ = 0.8 γ = 0.2

LSE 0.000 0.028 0.001 0.110 0.000 0.011 0.299 0.301 0.145 0.179 0.026 0.030
NBLS 0.000 0.086 -0.001 0.094 0.000 0.014 0.157 0.175 0.149 0.172 0.017 0.021

FMNBLS 0.000 0.119 -0.001 0.151 0.000 0.015 0.128 0.167 0.100 0.171 0.014 0.020
δ = 0.4 γ = 0.3 δ = 1 γ = 0.8 δ = 1 γ = 0.4 δ = 0.4 γ = 0.3 δ = 1 γ = 0.8 δ = 1 γ = 0.4

LSE 0.000 0.041 0.000 0.161 0.000 0.013 0.341 0.343 0.119 0.193 0.011 0.017
NBLS 0.001 0.141 -0.002 0.097 0.000 0.013 0.249 0.279 0.146 0.172 0.016 0.021

FMNBLS 0.001 0.201 -0.003 0.159 0.000 0.015 0.222 0.287 0.093 0.174 0.013 0.019
ρ = 0 ρ = 0.4

n = 512 Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
δ = 0.4 γ = 0 δ = 0.6 γ = 0.4 δ = 0.6 γ = 0 δ = 0.4 γ = 0 δ = 0.6 γ = 0.4 δ = 0.6 γ = 0

LSE -0.000 0.016 -0.001 0.061 -0.000 0.009 0.241 0.242 0.204 0.212 0.081 0.084
NBLS 0.000 0.030 -0.002 0.085 -0.000 0.012 0.059 0.065 0.151 0.170 0.017 0.021

FMNBLS 0.000 0.038 -0.003 0.130 -0.000 0.013 0.038 0.052 0.097 0.154 0.014 0.019
δ = 0.4 γ = 0.2 δ = 0.8 γ = 0.6 δ = 0.8 γ = 0.2 δ = 0.4 γ = 0.2 δ = 0.8 γ = 0.6 δ = 0.8 γ = 0.2

LSE -0.000 0.026 0.000 0.110 -0.000 0.011 0.297 0.299 0.140 0.175 0.024 0.028
NBLS -0.000 0.075 -0.001 0.085 -0.000 0.013 0.158 0.172 0.150 0.170 0.018 0.021

FMNBLS -0.000 0.102 -0.002 0.135 -0.000 0.014 0.124 0.156 0.092 0.156 0.014 0.019
δ = 0.4 γ = 0.3 δ = 1 γ = 0.8 δ = 1 γ = 0.4 δ = 0.4 γ = 0.3 δ = 1 γ = 0.8 δ = 1 γ = 0.4

LSE -0.000 0.040 0.004 0.155 -0.000 0.012 0.341 0.343 0.114 0.183 0.010 0.016
NBLS -0.001 0.126 0.001 0.084 0.000 0.012 0.253 0.278 0.149 0.168 0.017 0.021

FMNBLS -0.001 0.181 0.001 0.138 0.000 0.014 0.224 0.278 0.085 0.153 0.013 0.018

8Shimotsu (2012) notably introduces a trimming parameter in periodogram ordinates to control the objective function in Equation 8. In
simulations, we set this parameter to 0.05.
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3. Finite sample analysis

3.1. Simulation design

In this section, we investigate the finite sample properties of the aforementioned methodologies, considering

various specifications of the cointegrating system defined in Equations 1:

i) Model A: yt = βxt + ε#
1t(−γ), xt = ε#

2t(−δ), ρ = corr(ε1t, ε2t) = 0;

ii) Model B: yt = βxt + ε#
1t(−γ), xt = ε#

2t(−δ), ρ = corr(ε1t, ε2t) , 0;

Table 2: Bias and RMSE comparisons of γ estimators when ε̂1t is collected from NBLS regression

Stationary Weak Strong Stationary Weak Strong

ρ = 0 ρ = 0.4

n = 256 Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
δ = 0.4 γ = 0 δ = 0.6 γ = 0.4 δ = 0.6 γ = 0 δ = 0.4 γ = 0 δ = 0.6 γ = 0.4 δ = 0.6 γ = 0

LPR -0.018 0.213 -0.027 0.216 -0.016 0.216 -0.008 0.210 -0.025 0.213 -0.003 0.210
GSE -0.036 0.181 -0.048 0.190 -0.037 0.186 -0.028 0.177 -0.047 0.188 -0.023 0.177

2S-ELW 0.001 0.287 -0.034 0.215 0.007 0.298 0.011 0.293 -0.029 0.236 0.018 0.284
δ = 0.4 γ = 0.2 δ = 0.8 γ = 0.6 δ = 0.8 γ = 0.2 δ = 0.4 γ = 0.2 δ = 0.8 γ = 0.6 δ = 0.8 γ = 0.2

LPR -0.023 0.212 -0.010 0.217 -0.009 0.214 -0.024 0.213 -0.006 0.216 0.012 0.215
GSE -0.044 0.185 -0.031 0.184 -0.030 0.183 -0.044 0.181 -0.028 0.182 -0.012 0.182

2S-ELW -0.018 0.249 -0.013 0.224 -0.005 0.243 -0.013 0.257 -0.015 0.205 0.015 0.251
δ = 0.4 γ = 0.3 δ = 1 γ = 0.8 δ = 1 γ = 0.4 δ = 0.4 γ = 0.3 δ = 1 γ = 0.8 δ = 1 γ = 0.4

LPR -0.030 0.216 0.003 0.214 0.000 0.215 -0.031 0.213 0.001 0.214 0.022 0.217
GSE -0.049 0.186 -0.020 0.181 -0.023 0.184 -0.051 0.185 -0.022 0.181 -0.003 0.183

2S-ELW -0.034 0.232 -0.030 0.201 -0.002 0.231 -0.035 0.228 -0.031 0.204 0.018 0.232
ρ = 0 ρ = 0.4

n = 512 Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
δ = 0.4 γ = 0 δ = 0.6 γ = 0.4 δ = 0.6 γ = 0 δ = 0.4 γ = 0 δ = 0.6 γ = 0.4 δ = 0.6 γ = 0

LPR -0.011 0.167 -0.017 0.172 -0.012 0.170 -0.002 0.167 -0.019 0.172 0.004 0.170
GSE -0.028 0.143 -0.033 0.148 -0.027 0.144 -0.020 0.138 -0.033 0.147 -0.014 0.140

2S-ELW -0.019 0.177 -0.028 0.155 -0.020 0.177 -0.012 0.171 -0.030 0.151 -0.007 0.166
δ = 0.4 γ = 0.2 δ = 0.8 γ = 0.6 δ = 0.8 γ = 0.2 δ = 0.4 γ = 0.2 δ = 0.8 γ = 0.6 δ = 0.8 γ = 0.2

LPR -0.024 0.174 -0.007 0.176 -0.003 0.173 -0.021 0.173 -0.002 0.173 0.022 0.173
GSE -0.038 0.151 -0.022 0.149 -0.019 0.147 -0.035 0.148 -0.019 0.146 0.002 0.144

2S-ELW -0.031 0.171 -0.017 0.142 -0.013 0.169 -0.029 0.167 -0.016 0.139 0.011 0.174
δ = 0.4 γ = 0.3 δ = 1 γ = 0.8 δ = 1 γ = 0.4 δ = 0.4 γ = 0.3 δ = 1 γ = 0.8 δ = 1 γ = 0.4

LPR -0.017 0.173 0.005 0.174 0.005 0.177 -0.017 0.171 0.006 0.175 0.036 0.182
GSE -0.035 0.148 -0.013 0.145 -0.013 0.145 -0.034 0.146 -0.011 0.145 0.015 0.148

2S-ELW -0.031 0.158 -0.036 0.133 -0.007 0.152 -0.030 0.154 -0.035 0.134 0.020 0.153

For each model, we generate 5000 artificial series with sample sizes n = {256; 512}. We arbitrarily set β = 1 in

all models and ρ = 0.4 in model B. The model B leads to the further complication that a correlation between the

error term and the regressors is introduced at all frequencies, implying that off-diagonal elements of G are non-

null. The the stationary cointegration case is explored for δ = 0.4 and γ = {0.0, 0.2, 0.3}. Similarly, the weak

and strong cointegration cases, are investigated for γ = {0.4, 0.6, 0.8} and γ = {0.0, 0.2, 0.4} respectively, with
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δ = {0.6, 0.8, 1.0}.9 For each simulation, we report the bias and the root mean squared error (RMSE), defined by
1
I
∑I

i=1 E
(
(θ̂i − θ)2

)
:= Var(θ̂) + Bias(θ̂|θ)2 with I = 5000. All computations are performed using MATLAB 2013a.

Semi-parametric procedures rely on bandwidth parameter m = bnkc with k = {0.5, 0.8} and b.c the floor function.10

The FMNBLS are computed using m1 = bn0.6c, m2 = bn0.8c and m0 = m3 = bn0.4c. To facilitate the convergence of

β in one-step procedures, we sometimes apply a penalty parameter to likelihood functions 8, 7 and 9 (see Shimotsu ,

2012).

Table 3: Bias and RMSE comparisons of one-step procedures when ρ = 0

Stationary Weak Strong

n 256 512 256 512 256 512

Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
δ = 0.4 γ = 0 δ = 0.6 γ = 0.4 δ = 0.6 γ = 0

LWN-FC
β -0.001 0.034 0.001 0.031 0.000 0.095 0.000 0.084 -0.000 0.014 0.000 0.012
δ -0.022 0.182 -0.019 0.145 -0.015 0.179 -0.008 0.142 -0.024 0.181 -0.017 0.142
γ -0.011 0.181 -0.005 0.144 0.002 0.181 0.007 0.145 0.001 0.179 0.005 0.144

LWR-FC
β -0.001 0.034 0.001 0.031 0.000 0.095 0.000 0.084 -0.000 0.014 0.000 0.012
δ -0.023 0.183 -0.019 0.147 -0.015 0.181 -0.008 0.143 -0.025 0.182 -0.017 0.143
γ -0.012 0.183 -0.005 0.146 0.002 0.183 0.007 0.146 0.001 0.180 0.004 0.145

2S-ELW-FC
β 0.001 0.081 -0.000 0.058 -0.002 0.146 -0.002 0.118 0.000 0.050 0.000 0.031
δ -0.037 0.202 -0.028 0.157 -0.023 0.209 -0.012 0.162 -0.030 0.379 -0.026 0.149
γ 0.014 0.194 0.009 0.160 0.019 0.186 0.013 0.148 -0.030 3.252 0.011 0.140

δ = 0.4 γ = 0, 2 δ = 0.8 γ = 0.6 δ = 0.8 γ = 0.2

LWN-FC
β -0.000 0.087 -0.000 0.075 -0.000 0.096 -0.000 0.085 -0.000 0.014 0.000 0.012
δ -0.020 0.175 -0.018 0.142 -0.007 0.177 0.000 0.143 -0.020 0.182 -0.017 0.142
γ -0.008 0.178 -0.009 0.146 0.002 0.176 0.008 0.143 0.005 0.175 0.014 0.144

LWR-FC
β -0.000 0.087 -0.000 0.075 -0.000 0.096 -0.000 0.085 -0.000 0.014 0.000 0.012
δ -0.020 0.177 -0.018 0.143 -0.007 0.179 0.001 0.143 -0.020 0.184 -0.017 0.143
γ -0.008 0.180 -0.009 0.147 0.002 0.178 0.008 0.144 0.005 0.177 0.014 0.145

2S-ELW-FC
β 0.003 0.131 0.001 0.106 0.001 0.167 0.001 0.133 -0.001 0.046 0.001 0.029
δ -0.084 3.732 -0.026 0.159 -0.044 2.827 0.004 0.145 -0.072 3.750 -0.018 0.151
γ -0.039 3.775 0.002 0.164 -0.043 2.698 -0.011 0.141 -0.001 0.168 -0.004 0.140

δ = 0.4 γ = 0, 3 δ = 1.0 γ = 0.8 δ = 1.0 γ = 0.4

LWN-FC
β -0.001 0.141 0.001 0.124 -0.000 0.094 0.002 0.085 -0.000 0.014 0.001 0.012
δ -0.014 0.180 -0.015 0.142 0.003 0.177 0.004 0.141 -0.014 0.180 -0.015 0.142
γ -0.011 0.181 -0.003 0.145 -0.027 0.164 -0.014 0.127 -0.025 0.166 -0.013 0.127

LWR-FC
β -0.001 0.141 0.001 0.124 -0.000 0.094 0.002 0.085 -0.000 0.014 0.001 0.012
δ -0.014 0.181 -0.015 0.143 0.003 0.179 0.004 0.142 -0.013 0.181 -0.014 0.143
γ -0.012 0.183 -0.003 0.146 -0.026 0.166 -0.014 0.128 -0.024 0.167 -0.012 0.128

2S-ELW-FC
β 0.003 0.172 -0.000 0.146 -0.002 0.250 0.001 0.198 0.000 0.037 0.000 0.025
δ -0.019 0.208 -0.021 0.163 0.014 0.172 0.010 0.143 0.006 0.198 0.003 0.156
γ 0.010 0.208 0.010 0.167 -0.136 5.211 -0.027 0.149 -0.015 0.181 -0.014 0.147

9To generate nonstationary series (e.g. xt with δ ≥ 1/2), we simulate an intermediate process, ζt , integrated of order I(ξ = δ − 1) and cumulate
the resulting series. More formally, the procedure can be sum up to xt = ∆−1ζ#

t where ζt = et(−ξ), with et a short memory process.
10To save place, we do not report the results for k = 0.8. Anyway, conclusions are fairly similar (with smaller variances for all estimators).

Results are available upon request.
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3.2. Results

First, we discuss the estimates of β. Simulation results are reported in Table 1 (two-step procedures) and in Table

3 and 4 (one-step estimators). In absence of endogeneity (ρ = 0), the LSE estimate of β dominates in terms of RMSE

whereas the biases of all estimators are very close. In line with the theory, the finite sample performances of the LWN-

FC and the LWR-FC are fairly similar to those of the NBLS. In comparison, the two-stage procedure of Shimotsu

(2012) faces a higher RMSE. Introducing a non-zero coherence between xt and ε1t at all frequencies (that is, ρ , 0)

sharply impact the results. In the stationary case, the LSE and the NBLS become inconsistent (their RMSE does

not reduce when the sample size increases) while the FMNBLS moderately corrects the asymptotic bias. These poor

results might be due to the slow rate of convergence of this estimator and confirm that practitioners should be careful

with respect to the sample size when using semi-parametric estimators in general. Again, the results of the NBLS

and the one-step estimators are similar. In the weak and strong cointegration cases, the performance of all estimators

improves as δ increases because the non-finite variance of the observables decreases the inverse of the signal-to-noise

ratio. Interestingly, the finite sample performances of the LWN-FC and the LWR-FC are satisfactory in non-stationary

cases although they are not designed to handle it. These results suggest that the theoretical results of Velasco (1999a)

based on the pseudo-spectral density should apply to these estimators.

Now we turn to the estimates of γ. Simulation results are reported in Table 2 (two-step procedures) and in Table

3 and 4 (one-step estimators). Given that these semi-parametric estimators are
√

m-consistent, the RMSE decrease

slowly when the sample size increases. In terms of RMSE, the GSE dominates the other two-step procedures.11

Overall, the one-step procedures have better finite sample properties and among them, the LWN-FC and the LWR-FC

dominate. Again, the LWN-FC and the LWR-FC perform well in non-stationary cases.12 Finally, estimation of δ is

not required to apply the two-step methodology. 13 Conversely, the one-step approach has advantage of estimating

δ, β and γ jointly. Finite sample properties of the three estimators are good in general although the 2S-ELW-FC

sometimes estimates δ very imprecisely. Overall, the presence of endogeneity (ρ , 0) does not impact significantly

the estimates of δ and γ. In few cases, as denoted in Shimotsu (2012), the lack of block-diagonality of G improves

the 2S-ELW-FC’s RMSE.

4. Final comments

In this short article, we performed a finite sample comparison of semi-parametric estimators of bivariate fractional

cointegration. We explored two rival strategies relying either on two-step or one-step estimation. Strong, weak and

stationary fractional cointegration models are investigated. Our simulation results show that finite sample properties

of two-step procedures are not equivalent depending on the parameter space and the choice of the first step estimator.

11Note that the 2S-ELW exhibits the lower bias in small sample size.
12Surprisingly the 2S-ELW-FC performs better only infrequently in cases involving non-stationary processes.
13For practical purposes, it is necessary to estimate δ to test for the equality of integration orders of the observables.
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Table 4: Bias and RMSE comparisons of one-step procedures when ρ = 0.4

Stationary Weak Strong

n 256 512 256 512 256 512

Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
δ = 0.4 γ = 0 δ = 0.6 γ = 0.4 δ = 0.6 γ = 0

LWN-FC
β 0.056 0.064 0.059 0.066 0.152 0.176 0.151 0.170 0.016 0.021 0.017 0.021
δ -0.025 0.179 -0.022 0.144 -0.015 0.179 -0.008 0.141 -0.023 0.179 -0.021 0.145
γ -0.003 0.178 0.002 0.143 0.007 0.179 0.011 0.144 0.010 0.180 0.012 0.145

LWR-FC
β 0.056 0.064 0.059 0.066 0.152 0.176 0.151 0.170 0.016 0.021 0.017 0.021
δ -0.026 0.179 -0.021 0.143 -0.015 0.181 -0.007 0.141 -0.024 0.176 -0.020 0.143
γ -0.004 0.178 0.003 0.142 0.007 0.179 0.011 0.144 0.010 0.179 0.013 0.143

2S-ELW-FC
β 0.139 0.159 0.112 0.124 0.228 0.265 0.204 0.233 0.061 0.077 0.045 0.054
δ -0.092 3.742 -0.034 0.153 -0.059 2.252 -0.016 0.162 -0.034 0.186 -0.030 0.147
γ 0.051 0.224 0.050 0.168 0.029 0.191 0.025 0.150 0.065 0.176 0.062 0.140

δ = 0.4 γ = 0, 2 δ = 0.8 γ = 0.6 δ = 0.8 γ = 0.2

LWN-FC
β 0.156 0.176 0.157 0.172 0.150 0.175 0.152 0.171 0.017 0.021 0.018 0.021
δ -0.025 0.181 -0.016 0.146 -0.008 0.180 -0.003 0.144 -0.020 0.182 -0.021 0.145
γ -0.007 0.177 0.001 0.143 0.010 0.177 0.015 0.141 0.015 0.178 0.019 0.146

LWR-FC
β 0.156 0.176 0.157 0.172 0.150 0.175 0.152 0.171 0.017 0.021 0.018 0.021
δ -0.025 0.182 -0.016 0.146 -0.008 0.181 -0.003 0.144 -0.020 0.180 -0.021 0.143
γ -0.007 0.178 0.001 0.144 0.010 0.177 0.015 0.141 0.016 0.175 0.019 0.144

2S-ELW-FC
β 0.241 0.269 0.216 0.236 0.200 0.255 0.187 0.225 0.049 0.066 0.038 0.049
δ -0.035 0.209 -0.024 0.165 -0.005 0.186 -0.004 0.147 -0.020 0.188 -0.024 0.146
γ 0.023 0.209 0.021 0.169 0.006 0.179 0.005 0.147 0.039 0.170 0.037 0.136

δ = 0.4 γ = 0, 3 δ = 1.0 γ = 0.8 δ = 1.0 γ = 0.4

LWN-FC
β 0.248 0.280 0.254 0.278 0.148 0.173 0.150 0.171 0.016 0.020 0.017 0.021
δ -0.020 0.181 -0.017 0.144 0.002 0.177 0.005 0.141 -0.021 0.181 -0.011 0.145
γ -0.010 0.179 -0.003 0.145 -0.023 0.164 -0.015 0.129 -0.013 0.160 -0.013 0.130

LWR-FC
β 0.248 0.280 0.254 0.278 0.148 0.173 0.150 0.171 0.016 0.020 0.017 0.021
δ -0.020 0.182 -0.017 0.145 0.002 0.178 0.005 0.142 -0.022 0.180 -0.011 0.143
γ -0.010 0.181 -0.004 0.145 -0.023 0.166 -0.015 0.130 -0.014 0.158 -0.013 0.129

2S-ELW-FC
β 0.314 0.353 0.298 0.327 0.144 0.283 0.149 0.235 0.028 0.049 0.024 0.037
δ -0.029 0.208 -0.024 0.163 0.012 0.172 0.003 0.139 -0.005 0.180 -0.001 0.146
γ 0.014 0.206 0.011 0.166 -0.021 0.185 -0.014 0.147 0.015 0.169 0.016 0.141

More importantly, our results support that one-step procedures are most attractive (e.g. the local Whittle estimators of

Nielsen (2007) and Robinson (2008)). The simulation study also reveals that untapered version of these estimators

has good finite sample performances when the regressors and possibly the error term are nonstationary.
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