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Abstract

For any TU game and any ranking of players, the set of all preimputations compat-

ible with the ranking, equipped with the Lorenz order, is a bounded join semi-lattice.

Furthermore the set admits as sublattice the S-Lorenz core intersected with the region

compatible with the ranking. This result uncovers a new property about the structure

of the S-Lorenz core. As immediate corollaries we obtain complementary results to the

findings of Dutta and Ray, Games Econ. Behav., 3(4) p. 403-422 (1991), by showing

that any S-constrained egalitarian allocation is the (unique) Lorenz greatest element

of the S-Lorenz core on the rank-preserving region the allocation belongs to. Besides,

our results suggest that the comparison between W- and S-constrained egalitarian

allocations is more puzzling than what is usually admitted in the literature.
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1. Introduction

The Lorenz criterion is widely accepted to compare profiles of revenues on the ground of

egalitarianism. A profile Lorenz dominates another if its cumulative distribution, from rich

to poor, is lower than the other one. But the use of that rule as a social value may be

conflicting with the maximizing behavior of agents. The cooperative game theory provides

an appropriate framework to assess whether individual interest and egalitarianism can be

accommodated together (see, e.g., Arin and Feltkamp, 2002; Arin and Inarra, 2001; Dutta,

1990; Dutta and Ray, 1989, 1991; Hougaard et al., 2001; Jaffray and Mongin, 2003; Llerena

et al., 2008; Roth et al., 2005) and complements the classical analysis of inequality measure-

ment (see, e.g., Atkinson and Bourguignon, 1982; Dasgupta et al., 1973; Kolm, 1977).1

We consider here the solution concepts defined by Dutta and Ray (1989, 1991) in cooper-

ative games with transferable utility. The root concept is given by the notion of Lorenz core,

defined recursively, that embody egalitarianism and maximizing behavior together with the

property of robustness against credible multilateral deviations of coalitions of players. The

Lorenz core is defined in two manners depending whether the weak or strong domination

relation is chosen in the definition of deviation (W-Lorenz core and S-Lorenz core in the

remainder). The central solution in the analysis of Dutta and Ray (1989, 1991) is given by

the Constrained Egalitarian Allocation, also defined in two manners according to the chosen

relation. A WCEA (resp. SCEA) is a Lorenz undominated allocation in the W-Lorenz core

(resp. S-Lorenz core). Hence, the distinction between the two definitions of a constrained

egalitarian allocation is tight. However, it leads to contrasted results.

The sets of WCEAs and SCEAs are not comparable in general (see Dutta and Ray,

1991, for a list of examples). Both solutions have also different qualitative properties. For

the WCEA, Dutta and Ray (1989) find that the solution is unique, while its existence is

1The Lorenz criterion has been also appraised in other frameworks. For instance, Chatterjee et al. (1993)

explore the non-cooperative foundations of the egalitarian solution; Goel et al. (2009) provide a fairness

ratio combining egalitarianism and efficiency; Kets et al. (2011) study the interplay between the degree of

inequality and the structure of social networks.
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not granted, except for convex games. In addition they show that the solution is the Lorenz

greatest allocation of the core in convex games, but not necessarily the greatest of the W-

Lorenz core. For the SCEA, Dutta and Ray (1991) find that the solution exists under

the mild assumption of weak superadditivity but is not unique in general. The outcome

is therefore very sensitive to the choice of the domination criterion and, in practice, the

trade-off between uniqueness and existence may lead to a dilemma.

We complement some of the findings of Dutta and Ray (1991). Our conclusions derive

from an abstract (though not difficult!) result which underpins the structure of the S-Lorenz

core. For any TU game and any ranking of players, the set of all preimputations compatible

with the ranking, equipped with the Lorenz order, is a bounded join semi-lattice. Further-

more the set admits as sublattice the S-Lorenz core intersected with the region compatible

with the ranking (Theorem 2). The result allows to compare easily S-Lorenz core allocations

and to construct new allocations that Lorenz dominate others in the S-Lorenz core. As an

immediate corollary, we obtain that the set of SCEAs is either empty or a singleton on each

rank-preserving region (Corollary 1). As a by-product result, we also obtain that the set

of SCEAs is finite, and what is more, the cardinality of the set can be made more precise

according to the location of some SCEAs (Corollary 2). The underlying property beyond

these results is that each SCEA is the Lorenz greatest element of the S-Lorenz core on the

rank-preserving region of the allocation.

The note is organized as follows: Section 2 is devoted to notations and basic definitions;

Section 3 presents the lattice structure result and its corollaries; in Section 4 we discuss briefly

the implications of the lattice structure property; the proof of our main result, Theorem 2,

is postponed to Appendix.

2. Preliminaries

Let N = {1, ..., n} be a finite set of players and v be a real valued function defined over the

nonempty subsets of N . The pair (N, v) is called a cooperative game with transferable utility

(TU game for short). A preimputation for S is a vector x ∈ RS such that
∑

i∈S xi = v(S).
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Let F S be the set of preimputations of S (we use F instead of FN and preimputation instead

of preimputation of N). For each coalition S ⊆ N , a(S) := v(S)
|S| is the equal division payoff

of S. Player i is at least as desirable as j in the game v, denoted by i d(v) j, if for all

S ⊆ N \ {i, j}, v(S ∪ {i}) ≥ v(S ∪ {j}). Coalition S is an equity coalition if a(S) ≥ a(T )

for all T ⊆ S. A partition of S ⊆ N is a family π = {S1, . . . , Sm} where ∪mk=1Sk = S, and

Sk∩S` = ∅ for any k, ` ∈ {1 . . . ,m}, k 6= `. The set of all partitions of S is denoted P (S). A

game (N, v) is weakly superadditive if, for each partition π ∈ P (N), v(N) ≥
∑m

i=1 v(Si). Let

Σ be the set of all bijective functions from N to itself (an element σ ∈ Σ is a permutation of

N). We use the notation xσ to define the transformation of x according to σ, i.e. (xσ)i = xσ(i)

for every i = 1, . . . , n.

Consider now the following domain A ⊆ {x ∈ RT |
∑

i∈T xi = v} where T ⊆ N , |T | = t,

and v ∈ R. For any x ∈ A, x̄ is the vector obtained by permuting the indices such that

x̄1 ≥ x̄2... ≥ x̄t. The allocation y ∈ A weakly Lorenz dominates x ∈ A, y �L x, if

j∑
i=1

ȳi ≤
j∑
i=1

x̄i for all j = 1, . . . , t,

and Lorenz dominates x ∈ A, y �L x, if the inequalities hold with at least one strict

inequality for some j. Let EA be the set of allocations x ∈ A such that there is no y ∈ A

that Lorenz dominates x.

3. Structure of the S-Lorenz core and SCEAs

The Lorenz core and constrained egalitarian allocations are defined recursively by Dutta

and Ray (1989, 1991). An important feature of their solution is that the Lorenz criterion

is part of the objectives of the whole population of players and also of any subgroup of

the population taken separately. Given this consensus among the players, every coalition

can still weigh on the final outcome via the threat of credible blocking (which accounts

for egalitarianism). Thus it worths pointing out that the solution differs from a narrower

view of egalitarianism within the core that considers simply as solution concept the Lorenz
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undominated allocations of the core, and where, consequently, blocking does not account

for any egalitarian requirement (see, e.g., Arin and Feltkamp, 2002; Arin and Inarra, 2001;

Hougaard et al., 2001).

The S-Lorenz core and SCEAs are defined as follows.

Definition 1 The S-Lorenz core of a singleton coalition {i} is L∗({i}) = v({i}). The S-

Lorenz core of a coalition of S is then defined by:

L∗(S) =
{
x ∈ F S | there is no T ⊆ S, y ∈ EL∗(T ) s.t. yi > xi ∀i ∈ T

}
.

The set of SCEAs is EL∗(N).2

Dutta and Ray (1991) show that the SCEA is not always unique, contrary to the set of

WCEAs, which is either empty or a singleton as shown by Dutta and Ray (1989). Never-

theless they alleviate this drawback by producing a set of sufficient conditions under which

the locations of SCEAs can be inferred precisely (Dutta and Ray, 1991, Theorem 3). Let us

recall their result.

Theorem 1 (Dutta and Ray, 1991) Suppose (N, v) is a weakly superadditive game sat-

isfying any one of the following conditions: (1) the relation d(v) is complete; (2) |N | ≤ 3;

(3) N is an equity coalition. Then all SCEAs have the same Lorenz curve.3

The conclusion of Theorem 1 has two interesting implications. First, two different SCEAs,

say x and y, cannot produce the same ranking of players with respect to their payoffs since

two different allocations x and y with the same Lorenz curve satisfy necessarily xi > xj and

yi < yj for some i, j = 1, . . . , n. Second, the set of SCEAs is necessarily finite. We obtain

those two properties, without any assumption on the TU game, as immediate corollaries of

our main result.

The following example illustrates how one can even strengthen the conclusion of Theorem

1.
2The WCEA is obtained by requiring yi ≥ xi ∀i ∈ T , with y 6= x, instead of yi > xi ∀i ∈ T , in the

definition of the S-Lorenz core (that is, the W-Lorenz core).
3Two allocations x and y are on the same Lorenz curve if x̄ = ȳ.
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Example 1 Consider the following example taken from Dutta and Ray (1991, Example 1)

where N = {1, 2, 3}, v(N) = v({1, 2} = 2.2, v({1, 3} = v({2, 2}), v({1}) = v({2}) = 1,

v({3}) = 0 (clearly the game satisfies the assumptions of Theorem 1). Then

L∗(N) =
{
x ∈ R3 | (x1 ≥ 1.1, x2 ≥ 1) or (x1 ≥ 1, x2 ≥ 1.1) and x1 + x2 + x3 = 2.2

}
and EL∗(N) = {x1, x2} where x1 = {1.1, 1, 0.1) and x2 = (1, 1.1, 0.1).4 One easily checks

that x1 �L x for all x ∈ L∗(N) ∩ R1 and x2 �L x for all x ∈ L∗(N) ∩ R2, where R1 = {x ∈

R3 | x1 ≥ x2 ≥ x3} and R2 = {x ∈ R3 | x2 ≥ x1 ≥ x3}. In other words, each SCEA is

the (unique) greatest Lorenz element of the S-Lorenz core on the region that preserves the

ranking of players it belongs to. Again, this property holds in general for any TU game and

can be deduced from our main result.

We turn now to the formal statement of the announced results. First, we make precise

what we mean by rank-preserving regions.

Definition 2 Given a permutation σ ∈ Σ, the rank-preserving region Rσ (according to σ)

is the subset of RN defined by

Rσ = {x ∈ RN | xσ(1) ≥ · · · ≥ xσ(N)}

Two vectors x and y belong to the same region if, and only if, x, y ∈ Rσ for some σ ∈ Σ.5

Let R = {Rσ | σ ∈ Σ} be the family of all rank-preserving regions. First, it is an easy

matter to verify that there is a bijection between R and Σ. Second, it holds that ∪RR = RN ,

|R| = n! and (x, . . . , x) ∈ ∩RR for every x ∈ R. Next, given R ∈ R, the relation �L defined

over F ∩R is a partial order, in particular �L is antisymmetric on F ∩R.6

A set P equipped with a partial order � defined on P is said to be a partially ordered

set (poset for short). A poset (P,�) is a join semi-lattice if for any x, y ∈ P , the least

4In general, the SCEAs do not have the same Lorenz curve (see for instance Dutta and Ray, 1991,

Example 4).
5Note that x belongs to the same region as y is not a transitive relation.
6Lorenz relation �L is only a partial preorder on F .
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upper bound of {x, y}, denoted by x ∨ y, exists. A join sublattice of (P,�) is (M,�), with

∅ 6= M ⊆ P , such that x ∨ y ∈M for any x, y ∈M .7

We state now the main result of the paper. Its proof is postponed to Appendix.

Theorem 2 Let (N, v) be a TU game and R ∈ R.

1. The poset L := (F ∩R,�L) is a join semi-lattice, with greatest element the vector with

components a(N).

2. If L∗(N) ∩R 6= ∅ then the poset (L∗(N) ∩R,�L) is a join sublattice of L.8

The proof consists in providing the algebraic definition of the least upper bound operator

∨. This operator will be defined as follows. Let x, y be two preimputations that belong to

the same rank-preserving region Rσ∗ ; define z1 := min{x̄1, ȳ1} and, for each i = 2, ..., n,

zi := min

{
i∑

j=1

x̄j;
i∑

j=1

ȳj

}
−

i−1∑
j=1

zi.

Let x ∨ y be the vector zσ∗−1 . We show through a sequence of short claims that ∨ is the

least upper bound operator for the poset L := (F ∩ R,�L). In addition, we show that if

x, y ∈ L∗(N) then x∨y also belongs to L∗(N), that is L∗(N)∩R forms a join sublattice of L

if L∗(N) ∩ R is nonempty. These facts will lead us to the statements 1. and 2. of Theorem

2.

The next example illustrates better how natural is the construction of the least upper

bound x ∨ y, in a simple case.

Example 2 Consider Table 1 where the ordered profiles x̄ and ȳ of seven players have

been reported together with the profile z. The allocations x = (4, 0.5, 5, 4, 12, 1.5, 9) and

y = (3, 0, 9, 6, 9, 0, 9) belong to a same rank-reserving region but are not Lorenz comparable.

7See Davey and Priestley (2002) for more details.
8Note that L∗(N) ∩ R is different, and a priori not comparable, from the S-Lorenz core of the game

restricted to imputations FS ∩RS for every S, where RS ∈ RS is the region preserving the ranking of players

in S given by R. We have not explored further that solution.
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It can be read immediately in Table 1 that the resulting allocation zσ∗−1 Lorenz dominates

both x and y.

player

payoff
5 7 3 4 1 6 2

x̄ 12 9 5 4 4 1.5 0.5

ȳ 9 9 9 6 3 0 0

z 9 9 8 4 4 1.5 0.5

Table 1: Construction of the least upper bound x ∨ y

Remark 1 (only) From a theoretical point of view, finding the greatest lower bound opera-

tor would be of interest to define fully a lattice structure. Here the natural candidate is the

following operator x ∧ y := z̃σ∗−1 , where z̃1 := max{x̄1, ȳ1} and, for each i = 2, ..., n,

z̃i := max

{
i∑

j=1

x̄j;
i∑

j=1

ȳj

}
−

i−1∑
j=1

z̃i.

But x∧ y does not belong F ∩R as shown in the example reported in Table 2 (with σ = Id).

player

payoff
1 2 3 4

x̄ 5 5 5 0

ȳ 8 3 2 2

z̃ 8 3 4 0

Table 2: x ∧ y does not exist in F ∩R

As a direct consequence of Theorem 2, two Lorenz undominated allocations x, y of the S-

Lorenz core cannot coexist in the same rank-preserving region. For otherwise, z constructed

as above would Lorenz dominate x and y and belong to the S-Lorenz core, which cannot be
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the case. What is more, the unique Lorenz undominated allocation is necessarily the Lorenz

greatest element of the S-Lorenz core on the region it belongs to (by using a similar argu-

ment). This leads to the following straightforward corollaries, which provide new features

on the SCEAs and complements Theorem 1.

Corollary 1 Let (N, v) be a TU game. For every rank-preserving region R ∈ R, if there is

an SCEA x ∈ R then x is the greatest Lorenz element of L∗(N) ∩R.

Hence the set of SCEAs is finite and contains at most n! elements (the number of rank-

preserving regions), and even more precisely at most #{R ∈ R : L∗(N)∩R 6= ∅} elements.9

The previous statement can be reinforced if an SCEA belongs to several adjacent regions

(typically if some components of the vector are equal).

Corollary 2 Let (N, v) be a TU game. If there is an SCEA x such that x ∈ ∩TR for some

subfamily T ⊆ R then x is the greatest Lorenz element of L∗(N) ∩ (∪TR).

If the above condition is fulfilled, there are at most n! − |T | + 1 SCEAs. For the polar

case T = R, the set of SCEAs is a singleton, equal to the vector with components a(N).

Corollaries 1 and 2 are probably the most eloquent results to be deduced from Theorem

2, so we do not state any further variations in the same spirit.

Finally, note that above properties are not satisfied by the W-Lorenz core (i.e., with a

weak domination relation) and the WCEAs. Dutta and Ray (1989, Example 5) construct

a convex game where there exists a W-Lorenz core allocation, in the same region R as the

unique WCEA, that is not Lorenz dominated by the WCEA (and thus this W-Lorenz core

allocation must be Lorenz dominated by another W-Lorenz core allocation). The example

is striking at first glance, but it simply says that the W-Lorenz core intersected with R, and

equipped with the Lorenz order, is not a sublattice of (F ∩R,�L).

9Using a different strategy, Llerena et al. (2008) show that the set of SCEAs is finite for any TU game.
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4. Concluding remarks

Our main result deals with the structure of the S-Lorenz core. We did not use here any

formal result of lattice theory but we have shown that embedding the S-Lorenz core into

lattices leads to a better understanding of the location of these allocations. To the best

of our knowledge, such feature has never been suggested before for any core-like solutions

in cooperative games, except of course in the specific setting of two-sided matching models

where the lattice structure of stable matchings plays a great role, (see, e.g., Knuth, 1981;

Roth and Sotomayor, 1990).10

Our approach provides also a handy framework to derive qualitative properties of the

SCEAs and identify better the differences between the WCEAs and SCEAS. If we follow

an admitted view by comparing them in terms of qualitative properties – existence (SCEA)

versus uniqueness (WCEA) – our results show that the comparison is more puzzling than

expected.11 Indeed, on any given rank-preserving region, we have shown that the SCEA is

the unique greatest Lorenz element of the S-Lorenz core, while it is known that the unique

WCEA does not necessarily Lorenz dominate every other element of the W-Lorenz core

(Dutta and Ray, 1989, Example 5).

Dutta and Ray (1989) obtain their main positive results for convex games à la Shapley

(1971). Recall that convexity in a cooperative game simply refers to the supermodularity of

the characteristic function of the game. Besides, supermodularity is also known to be the

baseline for comparative statics in lattice-embedded environments (see, e.g., Milgrom and

Shannon, 1994, 1996). It is therefore tempting to ask how supermodularity operates with

respect to the lattice framework based on the Lorenz order.

10Grabisch and Funaki (2012) adopts the lattice framework to define a value for games in partition function

form.
11See also the discussion Dutta and Ray (1991, p.405 & 415).
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5. Appendix: proof of Theorem 2

Let σ∗ ∈ Σ be the permutation such that x̄ = xσ∗ and ȳ = yσ∗ for every x, y ∈ F ∩R. Given

x, y ∈ F ∩R, the join operator ∨ is defined recursively as follows:

z1 = min {x̄1, ȳ1}

For each i = 2, ...n,

zi = min

{
i∑

j=1

x̄j;
i∑

j=1

ȳj

}
−

i−1∑
j=1

zi

and

x ∨ y := zσ∗−1

where (zσ∗−1)i := zσ∗−1(i) for every i = 1, . . . , n.

Without loss of generality, assume from now on that σ∗ = Id and let x, y ∈ F ∩ R be

fixed once and for all in the remaining part of the proof.

Claim 1 x ∨ y ∈ F .

Proof. From the definition of (x∨y)n, we obtain that
∑n

j=1(x∨y)i = min{
∑n

j=1 xi;
∑n

j=1 yj} =

v(N). �

Claim 2 x ∨ y ∈ R.

Proof. It suffices to show that, for each i = 2, ..., n, (x∨y)i ≤ (x∨y)i−1. Remark that for each

i = 2, ..., n, (x∨y)i−(x∨y)i−1 = (
∑i

j=1(x∨y)j−
∑i−1

j=1(x∨y)j)−(
∑i−1

j=1(x∨y)j−
∑i−2

j=1(x∨y)j).

From the definition of x ∨ y this can be restated as:

(x ∨ y)i − (x ∨ y)i−1 = (min{
∑i

j=1 xj;
∑i

j=1 yj} −min{
∑i−1

j=1 xj;
∑i−1

j=1 yj})

−(min{
∑i−1

j=1 xj;
∑i−1

j=1 yj} −min{
∑i−2

j=1 xj;
∑i−2

j=1 yj})

= min{
∑i

j=1 xj;
∑i

j=1 yj} − 2 min{
∑i−1

j=1 xj;
∑i−1

j=1 yj}

+ min{
∑i−2

j=1 xj;
∑i−2

j=1 yj}

≤ min{2
∑i−2

j=1 xj + xi−1 + xi; 2
∑i−2

j=1 yj + yi−1 + yi}

−2 min{
∑i−1

j=1 xj;
∑i−1

j=1 yj}
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Since xi ≤ xi−1 and yi ≤ yi−1, it follows that 2
∑i−2

j=1 xj + xi−1 + xi ≤ 2
∑i−1

j=1 xj and

2
∑i−2

j=1 yj + yi−1 + yi ≤
∑i−1

j=1 yj. Therefore: (x ∨ y)i − (x ∨ y)i−1 ≤ 0. �

Claim 3 if neither x �L y nor y �L x then x ∨ y �L x and x ∨ y �L y.

Proof. From the definition of ∨: for all i = 1, ..., n,
∑i

j=1(x ∨ y)j ≤
∑i

j=1 xj and
∑i

j=1(x ∨

y)i ≤
∑i

j=1 yj. Since x �L y does not hold, there is k such that
∑k

j=1 x̄j >
∑k

j=1 yj. It

follows that x ∨ y �L x. The symmetric reasoning leads to the same conclusion for y. �

Claim 4 x �L y iff x ∨ y = x.

Proof. Obvious from the definition of Lorenz dominance and the construction of z. �

Claim 5 if z �L x and z �L y then z � x ∨ y.

Proof. Suppose not then
∑i

j=1(x ∨ y)i = min{
∑i

j=1 xj;
∑i

j=1 yj} <
∑i

j=1 zj for some

i = 1, . . . , n, which contradicts that z �L x and z �L y. �

The above 5 claims prove statement 1. of Theorem 2 (and observe that aN �L x for

every x ∈ F ).

Claim 6 (x ∨ y)i ≥ min{xi, yi}, i = 1, ..., n.

Proof. It is true for i = 1, for i ≥ 2 it suffices to remark that from the definition of (x∨y)i and

(x∨ y)i−1, it holds that
∑i

j=1(x∨ y)j = min{
∑i

j=1 xj;
∑i

j=1 yj} ≥ min{
∑i−1

j=1 xj;
∑i−1

j=1 yj}+

min{xi; yi} =
∑i−1

j=1(x ∨ y)j + min{xi; yi}. It follows that (x ∨ y)i ≥ min{xi; yi}. �

We show now the statement 2. of Theorem 2. Suppose by way of contradiction that

x, y ∈ L∗(N) ∩ R and x ∨ y /∈ L∗(N). Dutta and Ray (1991, Theorem 1, p. 411) prove the

following:

L∗(N) = {x ∈ F | for no S ⊆ N : a(S) > xi ∀i ∈ S}

Hence there exists S ⊆ N such that a(S) > (x∨y)i for all i ∈ S. Since min{xi; yi} ≤ (x∨y)i

for all i ∈ N (from Claim 6), it holds that min{xi∗ ; yi∗} ≤ (x∨y)i∗ for some i∗ such that i∗ ≤ j
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for any j ∈ S. Suppose that min{xi∗ ; yi∗} = xi∗ . Then it holds that xi∗ ≤ (x ∨ y)i∗ < a(S).

Since σ∗ = Id, it also holds that xi < a(S) for all i ∈ S (recall that the components of

the vector x are non increasing). It follows that x does not belong to L∗(N), which is a

contradiction.
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