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Abstract A large number of non linear conditional heteroskedastic models have been
proposed in the literature and practitioners do not have always the tools to choose the
correct specification. In this article, our main interest is to know if usual choice cri-
teria lead them to choose the good specification in regime switching framework. We
focus on two types of models: the Logistic Smooth Transition GARCH model and the
Markov-Switching GARCH models. Thanks to simulation experiments, we highlight
that information criteria and loss functions can lead practitioners to do a misspeci-
fication. Indeed, depending on the Data Generating Process used in the experiment,
the choice of a criteria to select a model is a difficult issue. We argue that if selection
criteria lead to choose the wrong model, it’s rather due to the difficulty to estimate
such models with Quasi Maximum Likelihood Estimation method (QMLE).

Keywords Conditional volatility, model selection, GARCH, Regime Switching

1 Introduction

Engle (1982) developed the Autoregressive Conditional Heteroskedasticity (ARCH)
models which provide a fruitfulness framework to analyze volatility and financial
time series. From this finding, it is one of the most active research topics in financial
econometrics. In 1986, Bollerslev proposed Generalized Autoregressive Conditional
Heteroskedasticity (GARCH) models. In GARCH modeling, the volatility is a linear
function of past volatility and squared residual past shocks. These models are of the
form εt = ηt

√
ht where ht is a positive process (the volatility) and ηt an identically

and independently distributed random variable with zero mean and a unit variance.
However, some empirical works have shown that these models does not always ade-
quately fit the data over a long period of time. For example, Lamoureux and Lastrapes
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(1990) show that if structural changes are not considered, it may bias upward GARCH
estimates of persistence in variance. To circumvent this problem, practitioners could
use other types of model such as regime switching models (RS-GARCH). Several
regime switching models exist: in this paper we focus on regime switches which are
governed by a hidden Markov Chain and models with regimes switches governed
by a transition function. The main difference between these two types of model is
the nature of the regime changes: Markov Switching GARCH (MS-GARCH) mod-
els have stochastic regime switches, thereby the volatility can take different forms
depending on some probabilities, while, in smooth transition models, volatility is
time-varying because it depends on a transition variable through a peculiar transition
function. However, when practitioners study empirical data, they have to choose a
specific model to estimate and to forecast conditional volatility. A misspecification
will lead to bad forecast and a not consistent estimation.

In this article, we are interested in knowing if usual choice criteria lead the prac-
titioner to choose the good specification in regime switching framework. To provide
an answer to this question, we perform Monte Carlo experiments: we simulate data
following some Data Generating Processes (DGP) as LST-GARCH or MS-GARCH
and then, we estimate it with different specifications. We apply selection criteria to
these estimations and look at which model is chosen by the criteria. Some of our re-
sults are very surprising in the sense that, depending on the way we simulate data are
simulated, selection criteria can lead to misspecification. Does that mean that these
criteria are not suitable for regime switching conditional volatility models? Probably
not: we argue that if these criteria lead to choose a wrong specification it is rather
due to the difficulties to estimate these regime switching models with QMLE method
especially when the regimes are poorly identified in MS-GARCH models.

The remainder of this article is laid out as follow. In section 2, we explain briefly
the different types of models we explore. In section 3, we present our selection crite-
ria. In section 4 we develop our simulation experiments on estimation and highlights
the results. The section 5 gives some concluding remarks.

2 Models

In this section we describe the three models which are under our interest. The first one
is the Logistic Smooth Transition GARCH model (LST-GARCH) model of Hagerud
(1996) and González-Rivera (1998). The two other types of models belong to the
class of mixture regimes GARCH models: MS-GARCH of Klaassen (2002) and of
Haas et al (2004).

2.1 LST-GARCH model

This kind of model belongs to the class of ”asymmetric” or ”leverage” volatility
models. They have been introduced byHagerud (1996) and González-Rivera (1998)
when empirical evidences have shown that the increase in volatility is larger when
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returns are negative than when they are positive 1. This characteristic is known as
the ”leverage-effect”. The LST-GARCH model have the same dynamics as the well
know GJR-GARCH model of Glosten et al (1993): the indicator discrete function
is replaced by the logistic function. Particularly, this allows negative past shocks to
have a bigger impact than positive past shocks on the current conditional volatility. In
LST-GARCH model, the return of an asset is represented as follow for t = 1, . . . ,T
with T the sample size:

rt = εt (1)

and
εt = ηt

√
ht ; (2)

εt is the error term, ηt an identically and independent distributed random variable
with zero mean and unit variance. ht is the conditional volatility given by,

ht = ω +
q

∑
j=1

[α1 j +α2 jF(εt− j)]ε
2
t− j +

p

∑
i=1

βiht−i (3)

for a LST-GARCH(p,q) process where

F(εt− j) = (1+ exp(θεt− j))
−1− 1

2
(4)

with θ , the so-called transition parameter. Note that the more θ is large, the more
the slope is steep. In terms of regime, because this function is continuous, González-
Rivera (1998) talks about of a ”continuum” of regimes where the probability to switch
from one regime to another is one. However, the terms ”regimes” do not have the
same sense as in the two next models. Conditions to have a stationary positive pro-
cess are given in Hagerud (1996) and González-Rivera (1998). This model can be
estimated by maximizing the log-likelihood function given by L = ∑

T
t=1 lt and

lt =−
1
2

log2π− 1
2

loght −
1
2

ε2
t

ht
(5)

assuming that the εt are normally distributed. The estimation is done with standard
numerical methods but it is still dependent on the starting values used for the estima-
tion. Moreover, the starting value of the transition parameter should be set carefully.
In practice, some empirical analysis, like in Hagerud (1996), show that according
to selection criteria, this model constitutes an improvement over standard GARCH
models.

2.2 MS-GARCH models

The chapter three in the Handbook of Volatility Models and their Applications (Haas
and Paolella (2012)) gives us a complete description of these models and their prop-
erties. These models give rise to a conditional mixture distribution and deliver an
entire parametric forecast. Moreover, they allow a time-varying skewness contrary to

1 See Black (1976),Ding et al (1993), Hans and Dijk (1996), Loudon et al (2000)
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the traditional GARCH type models: asymetry exists in the conditional return distri-
bution but this asymmetry is time varying (Rockinger and Jondeau (2002)). The main
difference with the previous model is the following for t = 1, . . . ,T :

rt = εt (6)

with
rt = ηt

√
h∆t,t (7)

where ∆t is a variable which indicates the state of the world at time t. We will focus
on MS-GARCH processes, that’s mean ∆t follows a Markov chain with finite state
spaces S = 1, ...,k, and a transition matrix P. However, it exists other models where
transition probabilities have another definition. In contrast with LST-GARCH pro-
cess, probability to switch from one regime to another is no longer equal to one but
depends on the transition matrix P, given by

P =

p11 . . . pk1
... . . .

...
p1k . . . pkk


with pi j = p(∆t = j|∆t−1 = i) the probability to be in state j at time t given to be in
the state i at the time t− 1. In this sense, this type of regime switch is endogenous.
Regime specific conditional variances are

h jt = ω j +α jε
2
t−1 +β jh∆t−1,t−1, (8)

with j = 1, ...,k
Since Hamilton and Susmel (1994) and Cai (2007) who introduced MS-ARCH

processes, many models have been proposed. Gray (1996) is the first to circumvent
the path dependence problem which does not allow a generalization of MS-ARCH
models. If regime specific conditional variances are defined like in (8), the calculation
of the likelihood function for a sample of T observations is infeasible because it
requires the integration of kT possible regime paths. Gray introduces a MS-GARCH
model under the hypothesis that the conditional variance at any regime depends on the
expectation of previous conditional variance. He proposes to replace h∆t−1,t−1 by the
conditional variance of the error term εt−1 given the information up to t−2. Klaassen
(2002) enlarges the information set up to t − 1 by conditioning the expectation of
previous conditional variances on all available observations and also on the current
regime:

h jt = ω j +α jε
2
t−1 +β j

k

∑
i=1

p(∆t−1 = i|Ωt−1,∆t = j)hi,t−1, (9)

with j = 1, ...k and Ωt is the information set of the process (i.e. the return history up
to date t−1).

The model of Klaassen is the second model of interest. He still supposes that
current volatility depends on past volatility regime whatever the state of the world.
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This approach contrasts with the model of Haas et al (2004) where each specific
conditional variances depend only on its own lag, j = 1, ...,k

h jt = ω j +α jε
2
t−1 +β jh j,t−1 (10)

This model can be rewriten in matrix form:

ht = ω +αε
2
t−1 +βht−1, (11)

where ω = [ω1,ω2, ...,ω j]
′, α1 = [α1,α2, ...,α j]

′ and β = diag(β1,β2, ...,β j). ht is
thereby a vector of k× 1 components. Conditions are needed to guarantee the pos-
itivity of the variance like in classical GARCH framework. As shown in Haas et al
(2004), equation (11) can be inverted such that ht = (I− β )−1ω +∑

∞
i=1 β i−1αε2

t−1
if max{β1,β2, ...,β j} < 1. Every regimes can be represented as an ARCH(∞) which
is the direct generalization of the single-regime GARCH model. This specification
permits also to practitioners to make the same interpretations about the coefficients
as in the single regime framework: the future variance in state j is impacted by a unit
shock component α j(1−β j)

−1, the magnitude of a shock’s immediately impacted on
the next h jt is measured by α j, β j being the memory in component of the variance in
state j in response to this shock.

MS-GARCH model can be easily estimated by Quasi Maximum Likelihood fol-
lowing the work of Hamilton (1989). The log-likelihood function is given by,

L =
T

∑
t=1

log f (εt |Ωt−1) (12)

where f (εt |Ωt−1) is the conditional density of εt given the process up to time t. This
density is the sum of conditional regime densities weighted by the conditional regime
probabilities.

Bayesian methods and Generalized Method of Moments estimation have also
been developed in recent works (see Bauwens et al (2010) for example) which can
circumvent the problem of local maxima. However, by testing several starting values,
QML estimation is a good way to estimate this model.

3 Selection criteria and loss functions

In empirical analysis, the model selection reposes on different methods. Practitioners
can use a statistical test. A specification test between LST-GARCH processes and
MS-GARCH does not exist yet2; therefore, we will not consider this possibility in
this article. A second manner to choose a specification for a model is the information
criteria. We will focus on the Akaike Information Criteria (AIC) (Akaike (1974))
and the Bayesian Information Criteria (BIC) (Black (1976)). The first one is of the
following form:

AIC = 2m−2log(L̂) (13)

2 Hu and Shin (2008) have introduced a test procedure which test under the null the hypothesis of a
GARCH process against a MS-GARCH process.
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where m the number of parameters and L̂ the maximized value of the likelihood func-
tion for the estimated model. The BIC has a similar form,

BIC = m log(T )−2log(L̂) (14)

with m the number of parameters, T the sample size and L̂ the maximized value of the
likelihood function for the estimated model. AIC penalizes the number of parameters
less strongly than does BIC. Information criteria calculate the loss of information
caused by the likelihood estimation. In-sample forecasting can also be used: it con-
sists making a comparison between the real volatility and the predicted one. Loss
functions measure the difference between them. Model with the lowest loss is se-
lected. However, the volatility is a latent variable: in practice practitioners do not
observe the real volatility and they use some proxies to compute it. Since in Monte-
Carlo experiment data are simulated, the real value of the volatility is known but to
match the reality, the squared errors are also used to compute the loss functions. We
consider three loss functions are considered: the Mean Squared Error (MSE),

MSE(ht) =
1
T

T

∑
t=1

(σt −ht)
2 (15)

the QLIKE loss function,

QLIKE(ht) =
1
T

T

∑
i=1

(ln(ht)+
σt

ht
) (16)

and the Mean Absolute Error (MAE),

MAE(ht) =
1
T

T

∑
t=1
|σt −ht | (17)

where T is the sample size, σt the true volatility or a proxy and ht is the estimated
volatility computed with the estimation of the parameters. The choice of these loss
functions is based on Patton (2011) and his definition of a robust loss function:

Definition 1 A loss function, L, is ”robust” if the ranking of any two (possibly im-
perfect) volatility forecasts, h1t and h2t , by expected loss is the same wether the rank-
ing is done using the true conditional variance, ht , or some conditionally unbiased
volatility proxy.

Then, he develops a ranking of loss functions to select model in conditional volatility.
MSE and QLIKE functions are robust and return the best results whereas MAE is not
a robust loss function.

4 Simulation experiments

4.1 Design of the experiments

The main idea of the paper is to provide some Monte-Carlo experiments to see if the
classical information criteria and loss functions lead practitioners to choose the good
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specification3. When we have to select a conditional volatility model, it can be done
in two ways. First, we can estimate model with different specifications and look at
information criteria. Secondly, we can decide to choose the model using in-sample
forecasts evaluation. In this part, we focus only on estimation. The Monte-Carlo ex-
periments are the following: first data are generated following processes described in
section 2. Then, the three models are estimated by QMLE method. Finally, selection
criteria and loss functions presented in section 3 are computed. The model for which
selection criteria are minimum is selected. The percentage of choice of a specific
model done by the different criteria is reported for each experiences.

The study is limited to LST-GARCH(1,1) and MS-GARCH(1,1) with two regimes.
In each experience, T = 2000 observations are simulated. The use of ergodic proba-
bilities for the Markov Chain and sample data variance for the conditional variance is
recommended to initialize the likelihood function. The starting values of parameters
are the true generating values of these parameters when they are known. However
when a misspecified model is estimated, starting values choice is more complicated:
for MS-GARCH simulated processes, starting values of the LST-GARCH estimation
are the following:

ω =
ωMS,1 +ωMS,2

2

α1 =
αMS,1 +αMS,1

2

α2 =
|αMS,1−αMS,1|

2
and

β =
βMS,1 +βMS,1

2
where ω,α1,α2 and β are the parameters in the LST-GARCH(1,1) model given by
equation (3). Coefficients indexed by MS, j are the coefficients used to simulate the
data with MS-GARCH processes (Haas and Klaassen), with j = 1,2 the state of the
world. This choice is made on the presumption that the estimated parameters of LST-
GARCH processes will be the mean of the true values of the simulated MS-GARCH.
The starting value of the parameter θ is set in a region where the transition function
do not take on the extreme values ; however it is well known the estimation of this
parameter is really difficult. When LST-GARCH processes are simulated, we use

ωMS, j = ω

αMS, j = α1

βMS, j = β

3 Simulations and estimations are done with MATLAB and the fmincon routine. Programs used to ob-
tain results are available available upon request to he author. The data of the experiments are also available.
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for j = 1,2 the two different regimes. In contrast with previous starting values, we
have the presumption that the estimated parameters of MS-GARCH on data simulated
by a LST-GARCH will be very close in both regimes. In general, these starting values
seem to be powerful to attempt global maxima of the likelihood function.

4.2 Experiment 1: simulations of MS-GARCH processes

The data generating processes are the MS-GARCH as follows:

rt = εt , (18)

and
εt = ηt

√
ht,∆t (19)

where ηt is a random variable following a normal distribution nid(0,1) and

h jt = ω j +α jε
2
t−1 +β jht−1 (20)

j = 1,2 or in matrix form,

ht = ω +αε
2
t−1 +βht−1 (21)

with ω =

(
0.001
0.05

)
, α1 =

(
0.2
0.1

)
, β =

(
0.4 0
0 0.85

)
when data are simulated in the

sense of Haas and β =

(
0.4
0.85

)
when data are simulated with the Klaassen model.

Three transition matrices are tested: P1 =

(
0.1 0.9
0.9 0.1

)
, P2 =

(
0.5 0.5
0.5 0.5

)
and P3 =(

0.9 0.1
0.1 0.9

)
. Matrix P1 represents the case where regime switches occur often, the

second one, P2, when probabilities to stay in the same regime are equal to the proba-
bilities to switch of regime. The last case, matrix P3, represents persistent simulated
regimes. In a fourth experiment, we use different regime specifications, one regime
where the conditional variance is large but which occurs very few times and another
with a lower variance but it is the most common regime:

ω =

(
0.1
0.05

)
, α1 =

(
0.4
0.1

)
, β =

(
0.9 0
0 0.4

)
or β =

(
0.9
0.4

)
with P4 =

(
0.1 0.1
0.9 0.9

)
The first regime occurs very few times since p11 = p(∆t = 1|∆t−1 = 1) = 0.1 and
p21 = p(∆t = 1|∆t−1 = 2) = 0.1.

In Tables 1, 2, 3 and 4, we present the percentages of choices given by different
selection criteria for these four experiments. Our results show that when regimes are
difficult to identify (i.e., many regimes switches or one regime occurs few times) and
data are generated in the sense of Klaassen, information criteria and loss functions do
not find always the true DGP and can lead practitioners to make wrong choices.

In the first experiment, the matrix P1 is used to simulate the data. Results in Table
1 highlight two facts. When data are simulated in the sense of Klaassen, BIC is min-
imum 58.45% of time for LST-GARCH, that means it is the best model to estimate



Selection criteria in regime switching conditional volatility models 9

Table 1: Simulations of Markov Switching models when many switches occur.

Simulations with MS-GARCH of Haas
LST-GARCH Haas Klaassen

MSE(ht ) 0 99.95 0.05
MSE(ε2

t ) 0 13.05 86.95
QLIKE(ht ) 0 99.90 0.10
QLIKE(ε2

t ) 0 63.55 36.45
MAE(ht ) 0 99.95 0.05
MAE(ε2

t ) 0 2.85 97.15
AIC 0 100 0
BIC 0 100 0

Simulations with MS-GARCH of Klaassen
LST-GARCH Haas Klaassen

MSE(ht ) 5 16.60 78.40
MSE(ε2

t ) 0 50.25 49.75
QLIKE(ht ) 0.7 19.50 79.80
QLIKE(ε2

t ) 0 59.95 40.05
MAE(ht ) 0.4 14.55 85.05
MAE(ε2

t ) 0 50.05 49.95
AIC 2.5 49.35 48.15
BIC 58.45 20.35 21.20

Note: data are generated with the transition matrix P1
Experiments are replicated 2000 times. Each loss functions
are computed with ht the simulated volatility
and ε2

t the squared residuals of the simulated process.

such data. If we decide to select a model with respect to the AIC, the MS-GARCH of
Haas will be chosen 49.35% of time. Loss functions compute with the true volatility
seem to work better but Haas specification is still chosen about once over five. Loss
functions computed with ε2

t select often the wrong model whatever the process used
to simulate the data.

With the matrix P2 (Table 2), there are less regime switches. Again, there are no
selection problems if data are generated with MS-GARCH of Haas but if the DGP is
the Klaassen MS-GARCH, information criteria still lead to do wrong choices nearly
half the time. However, the frequency of wrong choices is lower than in the case with
many regime switches. BIC selects now 54.65% of time (21.20% in the first case)
the true specification. As in the previous case, in-sample forecasts selection method
improves the frequency of good choices. In this experiment, loss functions computed
with ε2

t return good results when data are simulated with MS-GARCH of Klaassen.
It contrast with bad results obtain where the DGP is the MS-GARCH of Haas.

This improvement of good selection is accentuated when data are generated with
persistent regimes: at least, all the decision criteria lead to do good choices (Table 3).
The error of specification falls down at about less than 5%.

In Table 4, the results are similar to the results in Table 1. The both variances
are totally different: in the first regime, the variance is very high and very low in the
second. The world is not often in the high volatility regime (10%) and, as in Table
1, choice criteria lead to choose a misspecification when MS-GARCH of Klaassen is
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Table 2: Simulations of MS-GARCH model when probabilities to stay are equal to
probabilities to switch.

Simulations with MS-GARCH of Haas
LST-GARCH Haas Klaassen

MSE(ht ) 0 99.95 0.05
MSE(ε2

t ) 0 38.90 61.10
QLIKE(ht ) 0 99.95 0.05
QLIKE(ε2

t ) 0 58.50 41.50
MAE(ht ) 0 99.80 0.20
MAE(ε2

t ) 0 32.75 67.25
AIC 0 100 0
BIC 0 100 0

Simulations with MS-GARCH of Klaassen
LST-GARCH Haas Klaassen

MSE(ht ) 0.45 29.95 69.60
MSE(ε2

t ) 0 15.20 84.80
QLIKE(ht ) 0 26.35 73.65
QLIKE(ε2

t ) 0 24.25 75.65
MAE(ht ) 0 20.80 79.20
MAE(ε2

t ) 0 15.95 84.05
AIC 0 45.35 54.65
BIC 0 45.35 54.65

Note: data are generated with the transition matrix P2
Experiments are replicated 2000 times. Each loss functions
are computed with ht the simulated volatility
and ε2

t the squared residuals of the simulated process.

the DGP. Information criteria lead to choose a model with a different regime switches
(LST-GARCH). In contrary, when the MS-GARCH model of Haas is used to generate
data, every criteria work well.

In mixture model, when there is a very small class that is hard to identify or
when two classes are very similar the estimation could be less efficient as noticed by
Frhwirth-Schnatter (2006). This phenomena is observed with the results of Tables 1,
4 and Figures 1a, 1b. They represent the non parametric density estimation4 of simu-
lated and estimated volatilities for one replication5. They highlight a large difference
between the two MS-GARCH models which can be explain by the construction of
the Klaassen MS-GARCH: although the computation of the past conditional variance
depends only on the previous state, ht is dependent of all the previous regimes. In the
MS-GARCH of Haas, regime specific variances are totally independent. That is why
simulated and estimated volatilities of MS-GARCH model of Haas et al (2004) have
bimodal densities and each modes are well distinct. The densities of the volatilities
simulate and estimate with MS-GARCH of Klaassen are more surprising: when the

4 Estimation computed with Gaussian kernel and Silverman’s rule of thumb.
5 Figure 1a is related to the 40th replication of the first experiment, BIC selects the good specification

when data are simulated with MS-GARCH of Haas but it selects the LST-GARCH model for data simu-
lated with MS-GARCH of Klaassen. Figure 1b is related to the 66th replication of the third experiment
where there is no selection problem.
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Table 3: Simulations of Markov Switching models where regime specific variances
are persistent.

Simulations with MS-GARCH of Haas
LST-GARCH Haas Klaassen

MSE(ht ) 0 98.60 1.4
MSE(ε2

t ) 0 89.20 10.80
QLIKE(ht ) 0 94.35 5.65
QLIKE(ε2

t ) 0 20.15 79.85
MAE(ht ) 0 99.65 0.35
MAE(ε2

t ) 0 61.75 38.25
AIC 0 99.40 0.6
BIC 0 99.40 0.6

Simulations with MS-GARCH of Klaassen
LST-GARCH Haas Klaassen

MSE(ht ) 0 4.55 95.45
MSE(ε2

t ) 0 2.50 97.50
QLIKE(ht ) 0 5.8 94.2
QLIKE(ε2

t ) 0 0.05 99.95
MAE(ht ) 0 1.7 98.30
MAE(ε2

t ) 0 0 100
AIC 0 3.10 96.90
BIC 0 3.10 96.90

Note: data are generated with the transition matrix P3
Experiments are replicated 2000 times. Each loss
functions are computed with ht the simulated volatility
and ε2

t the squared residuals of the simulated process.

switches of regime often occur, the density is bimodal whereas when the regimes are
persistent the density is unimodal but wider. In the first experiment, the modes are not
really distinct (Figure 1a) and the density of the estimated volatility does not recog-
nize these two modes. In the second one, the density of the estimated volatility seems
nearest to the simulated volatility. These facts illustrate why BIC does not choose
the good model (results of Tables 1 and 4): if the regimes are not well identified, the
estimation will be less accurate and the value of the likelihood function lower. This
leads to a higher AIC and BIC. The loss functions computed with the true volatility
are not affected by the likelihood value and are more efficient than the information
criteria.

Finally, depending on the loss function and the DGP, the use of ε2
t have a differ-

ent impact. For example, the frequency of good selections done by the QLIKE loss
function decreases when regimes become more persistent and the DGP is the MS-
GARCH of Haas whereas it increases when the DGP is the MS-GARCH of Klaassen.
However, this proxy works better than information criteria when data are simulated
by Klaassen MS-GARCH. A better proxy should give better results, so we encourage
practitioners to use in-sample forecasts to select RS-GARCH models in this case.
Similar remarks are made in Hansen and Lunde (2006), Patton (2011) and Laurent
et al (2009) in selection models using out-sample forecasts approach. The authors
cited above recommend the realized volatility for example.
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Table 4: Simulations of Markov Switching models when the first regime has a high
variance which occurs very few times.

Simulations with MS-GARCH of Haas
LST-GARCH Haas Klaassen

MSE(ht ) 0.001 98.35 1.549
MSE(ε2

t ) 0 98.20 1.8
QLIKE(ht ) 0 99.70 0.3
QLIKE(ε2

t ) 0 99.8 0.2
MAE(ht ) 0 99.60 0.4
MAE(ε2

t ) 0 96.25 3.75
AIC 0 100 0
BIC 0 100 0

Simulations with MS-GARCH of Klaassen
LST-GARCH Haas Klaassen

MSE(ht ) 16.25 35.2 48.55
MSE(ε2

t ) 0.05 58.7 41.25
QLIKE(ht ) 4.45 45.30 50.25
QLIKE(ε2

t ) 0.05 48 51.95
MAE(ht ) 0.05 47.2 48.75
MAE(ε2

t ) 4.05 55.9 44.00
AIC 12.4 58.60 29
BIC 79.65 14.6 5.75

Note: data are generated with the transition matrix P4
Experiments are replicated 2000 times. Each loss functions
are computed with ht the simulated volatility
and ε2

t the squared residuals of the simulated process.

This experiment highlights three main things: first, when data are simulated in
the sense of Haas, information criteria are powerful to select the good model among
these three RS-GARCH. Secondly, loss functions seem to work well when the DGP
is MS-GARCH of Klaassen. Finally, although ε2

t is not a good proxy, it gives good
results when data are generated in the sense of Klaassen. We explain these three facts
by the difficulty to estimate such models.
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Fig. 1: Non parametric density estimation of simulate and estimate volatility for one
replication in experiment 1 and 3
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Fig. 2: Logistic functions with different θ

4.3 Experiment 2: simulations of LST-GARCH processes

In a similar way, data have been simulated following LST-GARCH processes and
estimated with MS-GARCH. Data generating processes are described in section 2 by
equations (1), (2) and (3). More specially,

ht = ω +α1ε
2
t−1 +α2F(εt−1)ε

2
t−1 +βht−1 (22)

with ω = 0.05, α1 = 0.3, α2 = 0.55 and β = 0.3. F is the logistic function, F(εt−1) =
(1+exp(θεt−1))

−1− 1
2 with θ = {0.5,5}. θ is the parameter of interest since it gov-

erns the transition function. If the transition parameter is large, the transition function
becomes steep and we can see it as a ”two regimes” model as shown by the Figure 2.

The results show that all information criteria and loss functions guide the practi-
tioner to select the good specification (Table 6 and Table 5). There is though a diver-
gence between the two experiments: a wrong model is rarely chosen if θ = 5 (0% of
bad selection) whereas with θ = 0.5, a wrong model is chosen 16.9% of times if the
AIC is used to select the model to estimate. Our experiment framework shows that
the estimations of α2 and θ seem very imprecise. This fact is represented by Figures
3 and 4. We represent on these Figures the non parametric density estimation6 of α2
and θ . Figure 3a shows that α2 is very poorly estimated when the transition parame-
ter is low: although there is a mode around 0.55, the true value of α2, a second mode
appears around 0.1. More surprising, there is a third mode around −0.55 i.e. we esti-
mate sometimes an opposite asymmetric effect. A plausible explanation is that, when
the transition parameter is low, the logistic function is substantially flat, by this fact,
the estimation of the coefficient attached to the logistic function and transition param-
eter is harder. Figure 4 shows that the estimation is better when θ increases. Figures

6 Estimation computed with Gaussian kernel and Silverman’s rule of thumb.
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Table 5: Simulations of LST-GARCH models with a smooth logistic function

Simulations with LST-GARCH (θ = 0.5)
LST-GARCH Haas Klaassen

MSE(ht ) 90.90 4.30 4.8
MSE(ε2

t ) 12.20 44.75 43.05
QLIKE(ht ) 89.65 5.15 5.20
QLIKE(ε2

t ) 8.6 45.5 45.65
MAE(ht ) 89.35 5.40 5.25
MAE(ε2

t ) 8.6 45.45 45.95
AIC 83.1 11.5 5.4
BIC 99.75 0.25 0

Experiments are replicated 2000 times. Each loss functions
are computed with ht the simulated volatility
and ε2

t the squared residuals of the simulated process.

Table 6: Simulation of LST-GARCH models with a steep logistic function

Simulations with LST-GARCH (θ = 5)
LST-GARCH Haas Klaassen

MSE(ht ) 100 0 0
MSE(ε2

t ) 13.60 46.15 40.25
QLIKE(ht ) 100 0 0
QLIKE(ε2

t ) 6.25 53 40.75
MAE(ht ) 100 0 4
MAE(ε2

t ) 12.35 48.05 24.80
AIC 100 0 0
BIC 100 0 0

Experiments are replicated 2000 times. Each loss functions
are computed with ht the simulated volatility
and ε2

t the squared residuals of the simulated process.

3b and 4b represent the non parametric density estimations of θ . They highlight the
well stylized fact that the QMLE method of this parameter is inacurrate. Despite this
estimation problem, the selection model is still good, in mean, criteria select at least
about 85% of times the true model: MS-GARCH models do not capture the contin-
uum of regimes introduced by González-Rivera (1998). Finally, results show that the
loss functions computed with the proxy of the volatility do not recognize the DGP:
MSE(ε2

t ) is minimum only 12.20% of times for the LST-GARCH for example with
θ = 0.5 according to the previous experiments when the data were generated by MS-
GARCH models.
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Fig. 3: Non parametric density estimation of α2 and θ when the transition function
is steep
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Fig. 4: Non parametric density estimation of α2 and θ when the transition function
is smooth

5 Concluding remarks

The paper presents a number of simulation results regarding the properties of selec-
tion criteria in regime switching framework in the conditional volatility. Such models
are often difficult to estimate because of their complex form. MS-GARCH models
need to estimate k×(p+q+1)+(k−1) parameters where k is the number of regimes
and p and q are the lags of the GARCH part. Moreover, estimation by QML is very
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sensitive to starting values. ST-GARCH models need to estimate a transition param-
eter which is a difficult issue. For example, Chan and McAleer (2002) investigate
finite sample properties of MLE for Smooth Transition Autoregressive models with
GARCH component models. They show that the variability of the threshold value de-
pends on the magnitude of unconditional shocks for the Logistic STAR model. They
examine also the misspecification on the transition function.

Some researchers select their model based on selection criteria as AIC, BIC or in-
sample forecast performance. However, results obtain by these selection criteria are
directly impacted by the estimation performance. This paper examines the impact of a
misspecification on selection of regime switching models in the conditional volatility.
Having a good estimation of these models is an important issue. RS-GARCH models
can take account structural changes and provide good indicators to explain financial
crisis7. By Monte-Carlo experiments, we can highlight if the widely use Information
Criteria are great to choose a regime switching conditional volatility model.

In the first experiment, data are simulated following MS-GARCH models of Haas
and Klaassen with many transition matrices. When data are simulated in the sense of
Klaassen, results show that BIC could lead to select most of time LST-GARCH model
when the regimes are not persistent or one of them occurs too often. In the same
way, AIC selects MS-GARCH of Haas. Loss functions improve the good selection
of model when there are compute with the simulated volatility. However, since the
volatility is a latent variable, researchers and practitioners can not use this measure:
the use of a proxy of this volatility is needed. In this paper, we can only try the
simulated squared errors. As many authors, we find that this proxy is very imprecise
and selection criteria do not lead to good results.

In the second experiment, the underlying processes are LST-GARCH with differ-
ent transition parameter. The paper shows that, the selection criteria lead to choose the
select the right model. We note a weak improvement when this threshold is enough
large.

Results present here reflect the complex nature of RS-GARCH models. Statistical
analysis and statistical tests would be require before to use these models.

7 Brunetti et al (2008) detect currency turmoil in southeast Asia with MS-GARCH models. Chang
(2009) use Markov-Switching model to argue that macroeconomic variables have regime-dependent ef-
fects on stock return dynamics.
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González-Rivera G (1998) Smooth-transition GARCH models. Studies in Nonlinear
Dynamics & Econometrics 3(2)

Gray SF (1996) Modeling the conditional distribution of interest rates as a regime
switching process. Journal of Financial Economics 42:27–62

Haas M, Mittnik S (2006) Multivariate normal mixture GARCH. CFS Working Paper
Series

Haas M, Paolella MS (2012) Mixture and regime-switching garch models. In: Hand-
book of volatility models and their applications

Haas M, Mittnik S, Paolella MS (2004) A New Approach to Markov-Switching
GARCH Models. Journal of Financial Econometrics 2(4):493–530

Hagerud GE (1996) A smooth transition ARCH model for asset returns. Stockholm
School of Economics Working Paper

Hamilton JD (1989) A new approach to the economic analysis of nonstationary time
series and the business cycle. Econometrica 57(2):357–84



Selection criteria in regime switching conditional volatility models 19

Hamilton JD (2011) Nonlinearities and the macroeconomic effects of oil prices.
Macroeconomic Dynamics 15(S3):364–378

Hamilton JD, Susmel R (1994) Autoregressive Conditional Heteroskedasticity and
changes in regime. Journal of Econometrics 64:307–333

Hans FP, Dijk Dv (1996) Forecasting stock market volatility using (nonlinear) garch
models. Journal of Forecasting pp 229–235

Hansen PR, Lunde A (2006) Consistent ranking of volatility models. Journal of
Econometrics (24)

Hu L, Shin Y (2008) Optimal test for markov switching garch models. Studies in
Nonlinear Dynamics & Econometrics 12(3):3

Klaassen F (2002) Improving GARCH Volatility Forecasts with Regime-Switching
GARCH. Empirical Economics

Lamoureux CG, Lastrapes WD (1990) Persistence in variance, structural change, and
the garch model. Journal of Business & Economic Statistics 8(2):225–34

Laurent S, Rombouts J, Violante F (2009) Consistent ranking of multivariate volatil-
ity models

Loudon GF, Watt WH, Yadav PK (2000) An empirical analysis of alternative para-
metric arch models. Journal of Applied Econometrics 15(2):117–136

Patton AJ (2011) Volatility forecast comparison using imperfect volatility proxies.
Journal of Econometrics 160(1):246–256

Rockinger M, Jondeau E (2002) Entropy densities with an application to autoregres-
sive conditional skewness and kurtosis. Journal of Econometrics 106(1):119–142

Schwarz G (1978) Estimating the dimension of a model. The annals of statistics


	WP_AMSE-2013_39
	SelectionCriteriaRScondVolModSpringer_wp39
	Introduction
	Models
	Selection criteria and loss functions
	Simulation experiments
	Concluding remarks


