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Abstract

The widely used Oaxaca decomposition applies to linear models. Extending it to
commonly used nonlinear models such as binary choice and duration models is not
straightforward. This paper shows that the original decomposition using a linear
model can be obtained as a first order Taylor expansion. This basis provides a means
of obtaining a coherent and unified approach which applies to nonlinear models,
which we refer to as a Taylor decomposition. Explicit formulae are provided for the
Taylor decomposition for the main nonlinear models used in applied econometrics
including the Probit binary choice and Weibull duration models. The detailed
decomposition of the explained component is expressed in terms of what are usually
referred to as marginal effects and a remainder. Given Jensen’s inequality, the latter
will always be present in nonlinear models unless an ad hoc or tautological basis for

decomposition is used.



Introduction

Much applied work in economics is devoted to analyzing the sources of differences
between individuals and groups. The Oaxaca decomposition (Oaxaca, 1973) is a
method of expressing the difference between the mean values of a variable — usually
the logarithm of earnings — for two groups based on the coefficients obtained from
two group-specific linear regressions!. The difference is expressed in terms of two
components that contribute to the divergence in group means: the explained part or
‘composition effect’ due to differences in the mean characteristics of the two groups,
and an unexplained component or ‘structure effect’ due to differences in the
estimated coefficients in the group equations. A very similar decomposition was
proposed by Blinder (1973), in the same year but after the publication of Oaxaca’s
article?. The technique was originally developed in order to establish the existence
and extent of wage and other forms of discrimination and is widely used in labour
economics and to some extent other areas. It can also be applied to analyze group
differences, in general. Surveys of this and other decomposition methods are
provided by Beblo, Beninger, Heinze and Laisney (2003) and Fortin, Lemieux and
Firpo (2011).

Attempts have been made to use the Oaxaca approach to decompose group
differences using specific nonlinear models, such as the logit and probit models
(Nielsen, 1998; Yun, 2000; Fairlie, 2005; Powers and Pullum, 2006), hazard or
duration models (Wagstaff and Nguyen, 2001; Powers and Yun, 2009) and Tobit-type
models (Neumann and Oaxaca; 2004,Yun, 2007; Wolff, 2012). More recently, Bauer
and Sinning (2008) have proposed a generalization of the Oaxaca approach based on

the sample means of estimated functions for nonlinear specifications. However, the

It is possible to obtain the same estimates in a pooled regression with group specific coefficients and dummy variables.

2 . . . .
In private correspondence with these authors, it emerges that the two papers were prepared independently but the authors
had met and discussed their research beforehand.



latter basis is problematic for the identification of certain components of interest in
the Oaxaca approach since it is not defined in terms of a counterfactual specified in
terms of mean characteristics. A key property of the Oaxaca decomposition is the
identification and measurement of discrimination based on assuming that two

groups have the same average characteristics.

The current paper has the aim of providing a unified and coherent generalization of
the Oaxaca decomposition to nonlinear models by recognizing that the original
decomposition can be obtained from a first order Taylor expansion of one group’s
function around the means of the other group’s explanatory variables. The paper
begins in section 1 with an examination of the basis of the Oaxaca decomposition and
the difficulties encountered when seeking to generalize this approach to nonlinear
relations. In the following section, an alternative interpretation of the Oaxaca
decomposition is presented as a starting point for the elaboration of a unified
generalization applicable to nonlinear relations. This is based on the fact that the
original Oaxaca decomposition can be obtained from a first order Taylor expansion
and this key result is presented in section 2. The resulting Taylor decomposition is
proposed as a means of extending the Oaxaca-linear technique to the decomposition
of group differences based on nonlinear functions. It differs from the Oaxaca-linear
method since the expansions involve a remainder which contains (weighted)
polynomial terms that go beyond the first order. Interestingly, the polynomial terms
only concern the “explained” component, while the “structure” effect is completely
defined. In section 3, explicit forms for the Taylor decomposition of some widely
used nonlinear models for binary choice and duration analysis are presented, before

illustrating the methodology with two applications in section 4.



I Extending the Oaxaca method to nonlinear relations

It is important to note from the outset that the basic Oaxaca decomposition has a
certain number of features which limit the extent to which the method can be directly
generalized. First and foremost, it applies to an explicitly linear framework which is
specified as follows. The dependent variable for member i of group g is y,, (often this
is the logarithm of earnings). The explanatory variables are represented in vector

form, x,, (which contains k elements and x,, is its transpose) and the error term is

gi’

&,. The decomposition applies to two groups g=M,F. The group-specific

gl

parameters are S, and the linear relationship used is

ygi:x;ﬂg—i_ggi g:M’F (1)

The Oaxaca decomposition is obtained by first estimating the parameters using

ordinary least squares (hereafter OLS) to obtain ﬁg for each group, and then by

defining a counterfactual fitted value of the dependent variable as x, B, (or X f3,.)
where X,, and Xx,, are vectors of the respective means of the right hand side variables

for the two groups. Defining the difference

A= )?]C[ﬂM _f}:ﬁF

and adding and subtracting this counterfactual term, results in the following additive

decomposition :

A:)_C;(/}M _IéF)"'/;,ATl(fM _EF) 2)



The first term on the right hand side is the unexplained component or structure effect
— that is, what the person with mean characteristics in group F would have obtained
if they were a member of group M relative to what they actually have. The second
term is the explained component or composition effect — the difference due to
differences in mean characteristics. There is discrimination when Xx,, =X, and the
structure effect is non-zero. This is the original form of the decomposition presented

by Oaxaca (1973, p. 697, equation 13). It has the following properties :

(i) The decomposition is model-based. A model is specified to determine the value of

y that one group would have if it had the same mean value of x of the other group.

In other words a model is used to construct a counterfactual situation.

(ii) The original focus was on the decomposition of differences in sample means,
Yy — Vp, using estimated coefficients from a linear model. However, when the
parameters of the model are estimated by OLS, the Oaxaca decomposition is exact

only if the model contains a constant, i.e. if it is an affine function :

ygi:ﬂ0g+x;ﬂg+ugi (3)

The presence of a constant ensures that the sum and therefore the mean of the

estimated OLS residuals, u,,, are both equal to zero — or equivalently that the mean

of the fitted values is equal to the sample mean of the dependent variable. In this case
— which is the form presented explicitly in Blinder (1973, p. 439) — the decomposition

can be written as :



Fu =V = Bow + %0 By —Bor + %05, )

This property is a consequence of OLS estimation, and the equality in (4) is valid
even if the estimates are biased. Oaxaca (1973) assimilates the constant term into the

coefficient vector.

(iii) Although it was not presented in this form originally, it is common nowadays to
express the decomposition in terms of the expectations of variables for the
population relationships (for example, Fortin et al, 2011, and Rothe, 2012). The
decomposition is based on the parameters of a linear specification (1). The Oaxaca

decomposition at the population level is :

E(yMi)_E(yFi): E(xAT4i )ﬂM _E(x;i )IBM +E(x;i )ﬁM _E(x;‘ )ﬂF

— E(2) [y, - B+ IEWL, )- E 1B, )

since, by assumption, E(e,,)=E(s,)=0. In other words, the relation need not

contain a constant in order to obtain an exact two component decomposition of the
difference in group means. Note that this form of the decomposition is in terms of
population parameters, rather than OLS estimates.

in

Properties (ii) and (iii) differ since the sample mean of the estimated residual, £,

the linear model without a constant (1) will not be equal to zero.



(iv) The Oaxaca decomposition is subject to an index number problem. If the
difference is calculated around X! f3,, the unexplained component is X, (ﬁM i ),
rather than X, (/}M - ﬁF) as in equation (2). The choice of reference group
characteristics for the decomposition affects the size of the each of components,
except in the extreme case when ,BM = ,5’F in equations (2) or (4). In general, there is

no unique, unambiguous measure of the extent of discrimination in terms of an

unexplained component.

Extending the Oaxaca (linear) approach to nonlinear relations is not straightforward.
First, the presence of nonlinearities in the relation means that OLS cannot be applied
and the decomposition will not have the original Oaxaca form. The decomposition
has certain properties that are related explicitly to the use of least squares. Second,
and more importantly, when applied to nonlinear models, an Oaxaca-type
decomposition of differences in either sample means or expectations of a variable
will not be exact, and so neither of (i) and (ii) carries over to nonlinear functions. This
is due to Jensen’s inequality, a consequence of which is that, in general, for a
nonlinear function g(x), E[g(x)]# g(E [x]). This implies that even an exact Oaxaca-
type decomposition at the population level in terms of expectations, as in (5), is
unlikely to be obtained®. Due to the (near) impossibility of obtaining an exact
decomposition of the group difference in sample means for nonlinear models in
terms of the group means of the explanatory variables, the basis for a decomposition

using a nonlinear model needs to be rigorously specified.

Call the estimated functions or fitted values for each group 7,,=M/(x,,) and
Y. = F(x,,), respectively. These functions would normally be the estimated

conditional expectations in econometric applications. The original Oaxaca

3 The equality only holds with certainty for affine functions.



decomposition of difference in the sample means of the left hand side variable,
Yy —Vr, is possible because when the functions are affine and the parameters

estimated by OLS, and the following equality is obtained* :

_ = _ = 1 &4
yM:yM:M(xM) where yM:n—ZyMl.

M i=l

The same is true for group F . This means that the group difference in any of these
means can be used as basis for a decomposition in the affine case. Thus when
extending the Oaxaca approach to nonlinear relations, the possible candidates as a

basis are the decomposition of the difference in :

(a) the sample means of the left hand side variable, y,, — ¥, ;

(b) the sample mean of the fitted values of estimated functional relationship,

— — 1 VIM - 1 nF -
Yu=—Vr =_ZyMi _n_zym =M(xMi)_F(xFi) ’

Ny i=t Foi=l

(c) the values of the group estimated functions evaluated (or fitted values) at the

means of the right hand side variables for that group, ¥,, -7, = M(%,, ) F(%, ).

In view of Jensen’s inequality, basis (a) is unlikely to prove fruitful for a
generalization. Even in the regression case (a) is appropriate only when the relation
contains a constant. The earlier approaches of Nielsen (1998) and Yun (2004) and
more recently Bauer and Sinning (2008), propose using basis (b). This produces a
decomposition of the differences in the sample means of the fitted values (or

equivalently the sample means of the estimated function) :

§M_§F:M(xMi)_M(xFi)+M(xFi)_F(xFi) (6)

* This is unsurprising given that E [ g (x )] =g (E [X ]) in the affine (and thus linear) cases.



[ g
where G(xgl.):LZG(xgi). In population terms, this corresponds to a

n, i

decomposition of the following difference : E[M(x,, )]— E[F(x,,)].

However, there are at least two reasons why (6) may be unsatisfactory as a basis for a

generalization of the Oaxaca method. Firstly, if the functions M(x,,) and F(x,,) are

not affine, then in general as a consequence Jensen’s inequality :

M()_CM)_F()_CF)iM(xMi)_F(xFi) ()

Using (b) a basis therefore entails disconnecting the decomposition from the mean
vectors x,, and X,. In other words, when the two groups have identical means, the
explained component is not equal to zero (as it is in the Oaxaca decomposition) and
the decomposition does not reduce to the structure effect. This is a serious weakness
since the identification of the latter is one of the main reasons for undertaking a
decomposition of this kind because this component is precisely that which is

associated with discrimination. Secondly, if estimated functions or fitted values are

used, there is no guarantee that ¥,, — 3, = M(x,,)— F(x,,) : this equality is not valid in
the case of the probit model for example. While the equality holds for the logit model

when there is a constant in the model and the parameters are estimated by maximum

likelihood, this is a special case.

A decomposition using basis (b) is therefore not generally expressed in terms of the
means of the variables y and x and thus diverges from the Oaxaca approach on
both sides of the equation. Using this basis with nonlinear functions will generally
involve an approximation (i.e. there will be a remainder). Some approaches, for

10



example, are explicitly based on assuming that (7) is close to being an equality (see,
Powers and Pullum, (2006), and Powers and Yun (2009)). Given the inherent
characteristics of nonlinear relations, it is preferable to recognize that it involves an

approximation and provide a precise estimate of any remainder.

In the next section, an approach derived from the original “Oaxaca-linear” method is
developed into a unified framework applicable to both linear and nonlinear
functions using basis (c), M (X, )~ F(%.). As the results of the next section show,
applying a first order Taylor expansion around the mean of x for the other group to
one of these functions (M(X,, ) or F(%,)) gives precisely the Oaxaca decomposition,
presented in equation (2), when the functions are linear. The same operation enables
a decomposition method to be derived which is applicable to any parametric

function, be it linear or nonlinear.

II Oaxaca’s decomposition as a Taylor expansion

When seeking to generalize the Oaxaca approach to models other than a linear
regression, it is important to note that a decomposition of group differences can
always be obtained using group-specific estimated functions and by defining a
counterfactual case. The decomposition is obtained by adding and subtracting the
counterfactual case on the right hand side. Thus aggregate decompositions are
“trivial” in the sense that they are identities and can be arbitrarily defined in terms of
any number of counterfactual cases. However, the major justification for undertaking
a decomposition is precisely to identify what would happen if the two groups being
studied had identical characteristics, which is precisely what is required when
examining the existence of discrimination and for which the decomposition was

originally devised. In the Oaxaca context, this is specified in terms of identical average

11



characteristics, so that x,, —x, =0 . This implies that only two counterfactuals are

relevant when decomposing differences in the first moment.

In order to obtain a coherent generalization of the Oaxaca method applicable to
nonlinear models, as pointed out above, a choice will therefore have to be made
about the basis on which a decomposition is made. Usually the objective is to
establish the existence of unjustifiable (and/or discriminatory) components in group
differences. In this case, the difference between two estimated functions evaluated at
common values of the arguments (usually one group’s mean characteristics :
M(x,, ) F(x,,)) is the component of interest. The remaining difference (the explained
component) should also be evaluated at the same value of the arguments X, ,Xx,,
which is precisely what the “Oaxaca-linear” approach does. It is clear that the
decomposition in using as a basis M(x,, )~ F(x,) will be more appropriate than that

given in (6).

An Oaxaca-type decomposition can be straightforwardly derived based on the

difference between two estimated functions M (X, )— F(%,), each evaluated at the
respective mean vector, X,, and X.. At the population level, this corresponds to the
difference M (E[x,,])— F(E[x,,]). Assuming that the first derivatives exist and
expanding one of the functions (say, M(x,,) ) around the other group’s mean vector

(in this case X,.) to the first order gives :

M(x, )=Mx,)+M'(x,) X, —X.]1+R

12



where M'(x, ) = oM(x,) OM(%) aM—(fF) is the vector of first order partial
ox, ox, 0x,

derivatives calculated for x=1Xx,, and the remainder, R, contains a sequence of
higher order polynomials in [X,, —X,]. Subtracting from F(x,) both sides gives an

equation that resembles the Oaxaca decomposition :

M()_CM)_F()?F):M(‘)—C )_F()_CF)+M'()_CF)T[)_CM _‘)—CF]+R (8)

The expansion around X, does two things in this decomposition. First it
automatically defines a counterfactual situation, M(X,), the value of y that the
average member of group F would have if they were in group M , according to the
estimated function. Secondly, the expansion creates a term involving the difference
in mean characteristics [x,, — X, ]. The remainder will also depend on this difference.
In the case of a linear function, this approach constitutes a valid representation of the

Oaxaca decomposition as the following result makes clear.

Proposition: The “Oaxaca-linear” decomposition (2) can be obtained from a first-order
Taylor expansion of one of functions around the mean vector for the other group in

the case where M(x,,)=x,, p, and F (x,)=xr B, and Bg are vectors of OLS estimates

in the equations y,, = g(xgl.)z XyB, +¢&, for g=M F5.

Proof: A (first order) Taylor expansion of the function M(xX, ) around X, and

subtracting F(X,) gives equation (8). Given the linearity of each function :

() M(x,)-F(x,)=xB, —x. B3, =X~ (,3 —ﬂ}) — which is the unexplained component.

> Yun (2004) mentions a similar property for his decomposition in equation (6) , but the result is only implicit in

his paper. He arrives at the property by a different means and he does not appear to attach much importance to it.

13



(b) M'(%.) [X,, —%:]= Blix, —%.] is the explained component.
(c) Since the function is linear, all derivatives other than the first are equal to zero,

thus R=0.

Therefore :

M()_CF)_F()?F):)?;(BM _ﬂAF)+IéA]/-[()?M _)TF)

the right hand side of which is precisely the Oaxaca decomposition in (2). =

Remark : The sum of the components of the Oaxaca decomposition is equal to the

difference in sample means, y,, —¥,, when )_ch ﬁg =, . This however is the case only
if M(x) and F(x) are affine functions (that is, one of the elements of ﬁ’g is a constant
— and thus one of elements x, of is equal to one). This fact is recognized by Oaxaca
(1973) who includes a constant in the coefficient vector ﬁ’g, while Blinder (1973)

includes a constant separately in the specification of the earnings equation.

A coherent, unified approach to extending the Oaxaca decomposition method to any
given function is proposed by extending the equivalence established in the
Proposition between the Oaxaca decomposition and a Taylor expansion of one of the
group functions evaluated at the mean values of the right hand side variables around the

mean vector for the other group. This is referred to as a Taylor decomposition.

14



Definition: a Taylor decomposition. Let 3, =M(%,) and ¥, = F(x.), where both
functions are differentiable. Then the difference between these two functions can be

decomposed in the following way® :

;M_;F :[M()_CF)_F()_CF)]+M'()_CF)T[3_CM_)_CF]+R (8,)

This formula is very similar to the Oaxaca equation and differs due to the nature of
the marginal effects (given by the first derivatives M'(X,)) and to the presence of a

remainder.

Remark: In applied work, the estimated conditional expectation of y evaluated at the
mean of x (or the fitted value of y for the mean value of x) for each group would be

used :

In the case of a single explanatory variable, the different components can be
presented in graphical form. The first term on the right hand side, which is the
unexplained component, is the vertical distance between the two functions evaluated
at the mean of group F (the distance AB in Figure 1). If y is earnings, this difference
represents the additional earnings an individual with mean characteristics in group
F would receive if they were paid on the same basis as someone in group M . This
component is usually viewed as an estimate of earnings discrimination. The second
term is the marginal effect of changing an individual with mean characteristics in

group F into one with those of someone in group M . As before, in the case of a

® Clearly the expansion could also have been undertaken around X M-
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single variable it is measured by the horizontal difference between the means of the
variables multiplied by the slope of the function for group M (the distance CD). In
the case of earnings differences, this component indicates (partly) the component of
earnings differences which is justifiable. R is the remainder and captures both the
extent of differences between the mean characteristics of the two groups and the
degree of nonlinearity in the function for group M (distance DE). Obviously, the
smaller the remainder the easier it is to interpret the Taylor decomposition. It is
interesting that the remainder term will contain polynomial terms relating only to the
explained part of group differences, [X,, —X.] i.e. it is part of the explained

component or ‘composition effect”.

It is worth emphasizing a number of properties of the Taylor decomposition.

(i) The basis of the decomposition is two estimated functions evaluated at the vector
of means for each group. At the aggregate level, the Taylor decomposition is “trivial”

in the sense that

M()_CM)_F(EF):M(EM)_M()_CF)"'M()_CF)_F()_CF)

The sum of the second and third terms on the right hand side of (8) is therefore

equal to:

M'()_CF)T[)?M —Xp]+R= [M()?H)_M(XF)]

In other words, the structure effect is exactly defined in spite of the presence of a

remainder.

” Rothe (2012) provides a full treatment of the detailed decomposition of the composition effect.
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(ii) Unlike the approaches proposed by Yun (2004) and Bauer and Sinning (2008), the
Taylor decomposition is expressed in terms of sample means for the right hand side
variables (x,). If the two groups have identical mean characteristics, the explained
component or composition effect is equal to zero, because the remainder is zero (and
the first order component is clearly equal to zero). Thus while the aggregate
decomposition is in a certain sense trivial, the Taylor decomposition shows that the
conditions under which the composition effect is zero are expressed in terms of the

difference in means x,, — X, .

The remainder will be equal to zero when X,, = X,., as can be seen from the Lagrange
form of the remainder (see Bartle and Sherbert, 2011) which in this case is the

quadratic form :

TG

where M"(¥) is the matrix of second derivatives for the vector ¥ =(%,,%,...., ¥,) Where
each ¥, lies in the interval between X,,; and X, ,, for j=12,..k. When X, =X, this

remainder is clearly zero, and the sole source of divergence is the structure effect.

(iii) The explained component or composition effect of the Taylor decomposition

provides an additive detailed decomposition as :

M'(XF)T[)?M _)_CF]+R :Ml(J_CF)[)_ClM _le]+M2()_CF)[3_CzM _)_CzF]+---+Mk(3_CF)[3_CkM _J_CkF]"'R

The remainder is there as a consequence of the nonlinearity of the estimated

functions used. The first derivative terms M ; are just the usual marginal effects for

17



group M, but evaluated at X,. In a linear model, the marginal effects are constants

and the remainder is zero.

(iv) The Taylor decomposition dissociates the method by which the parameters are
estimated from the nature of the decomposition. It does not require the estimated
residuals or fitted values to satisfy certain restrictions. For example, if the model is
linear and the data are censored in such a way that OLS is biased and inconsistent, a
reliable estimator of the function parameters can be used and the resulting estimates
plugged in to the initial linear specification. Equality of the mean of the fitted values
and the mean of the dependent variable is not required, and this would not occur in

general in any case®.

(v) Like the Oaxaca technique, the Taylor decomposition is subject to the index
number problem. The decomposition could have been obtained from an expansion of

the function F(¥,) around X, . The value of the unexplained component will be

different if the two functions are different.

The principal advantage of the Taylor decomposition is that is coherent in the sense
that it is expressed in terms of the means of the right hand side variables and applies
in the same way to any parametric function that has first or higher derivatives. If
groups have identical means, the structure effect is the only source of divergence
between groups. It is a valid extension of the Oaxaca procedure because both the
latter and the Taylor decomposition can be obtained from the same first order
expansion, that is by expanding M(X,) (respectively, F(x,)) around X,
(respectively, X,,). The first term is always the unexplained component (or structure
effect) and the second provides the first order composition effect in a detailed
manner. The presence of a remainder term is an unavoidable consequence of the

nonlinearity of the relation when a first order expansion is used, but is only of interest

8 . . .
The logit model is a rare case where this is true — see below.
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when undertaking a detailed decomposition of the composition effect. In any case, its
size can be quantified. In many situations the sample mean () is not relevant in
nonlinear models due to truncation or censoring. When it is relevant, a
decomposition of the difference in sample means of the dependent variable (y,, — y,)
the method adopted would have to be dissociated from X, and Xx,,, due to Jensen’s

inequality.

IV Examples of Taylor decompositions for nonlinear models

Compared to other methods applicable to nonlinear functions, the Taylor
decomposition has the advantage of having a coherent basis. It compares a model-
based estimate of an actual situation with a counterfactual one, where both are
specified in terms of a parametrically defined function and the vectors of group

means (X, ). This contrasts way with Yun (2004) and Bauer and Sinning (2008) who

use sums of fitted values divided by the sample size. It means that any parametric
function can be decomposed into a structure effect and a composition effect, where

the latter is equal to zero when x,, —x, =0.

Decomposing augmented linear models such as the sample selection model has
already been addressed by Neumann and Oaxaca (2001), Yun (2007) and Wolff
(2012). Since the estimated equations are linear in structure, they can be treated in
principle using the Taylor decomposition in the same way as for a linear or affine
model (the estimation method corrects for the sample selection bias)’. Other
functions of interest in applied work are probability models (in which the population
rate is decomposed) and hazard models (which involves either the hazard itself or

the average duration of a spell). In this section, we derive explicit formulae for these

? Although, as stressed by Neumann and Oaxaca (2004), this depends on how one interprets the selectivity term.
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types of model using the Taylor decomposition. Hereafter, any parameter covered by

a tilde (for example, 6 ) is assumed to be an appropriate estimate of that parameter.

(a) Logit and Probit models

Logit and probit models have the same generic form for each of the groups :

E(ygi ‘ xgl.)z Prob(ygl. = 1‘ xgl,): H()_chi,Bg), g=M,F

where H is a cumulative distribution function. Since the latter is defined on a linear

index, the vector of first derivatives has the following, straightforward form :

where / the associated density function (note that # is a scalar and B a vector of

parameters). Using parameters estimated by maximum likelihood (), the implied

Taylor decomposition for the probit model is :

JN’M _JN’F =0 ()TATmEM)_q) (f;IEF)

=o (xgﬁM)_CD (X;BF)"’ kPEMT[J_CM _)_CF]+RP

where k, =¢ ()_cgﬁM) where 0<k, <04 and ® and ¢ are the standard normal

cumulative distribution and density functions, respectively. Note that k, is fixed

20



scalar in this decomposition, in the sense that each element in the vector f,, is

multiplied by the same constant.

The function to be decomposed in the logit model has a closed form :

tfe'p)- S0k’ s)

1+exp(x’ B)

For maximum likelihood estimates of f,, the Taylor decomposition formula can be

written in the same form as for the Probit model :

where k,f3,, is the vector of the first derivatives with respect to the vector x

evaluated at x,.. This vector of marginal effects has the following special form:

kB, = L% By )= LB, )1-L(E.B, Ix B, where 0<k, <025.

Various authors have attempted to decompose the difference in sample means using
logit and probit models (Nielsen (1998), Yun (2000, 2004) and Fairlie (2005)). In fact

for a logit model containing a constant term, when the parameters are estimated by
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maximum likelihood, the sample mean is related to the estimated function in the

following way™ :

This mean property can been used to obtain a “trivial” decomposition for the logit

model given by :

yM - J_/F = nLnZM:L(xM;EM )_LiL(xFiEM )+LHZFL(XF1‘EM )_LZL(XHEF)

M=l ng iz Ng iz ng iz

Note that this decomposition contains the sample means of the dependent variable

but not the means of the right hand side variables, X, and is thus subject to the

consequences of Jensen’s inequality. This form of decomposition has been used to
obtain a detailed decomposition of both the unexplained and explained components.
However, because of different sample sizes, simulation methods have to be used to
provide extra data when undertaking detailed decompositions (see Fairlie, 2005).

Such an approach cannot be applied in an exact manner to the probit model since

y ilid)(xfﬁ)
s

10 . . . .. .. . - .
This is a consequence of the first order conditions for obtaining a maximum likelihood estimate of the constant term.
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(b) Hazard functions and duration models

Using the same notation as above, where H is the cumulative distribution function
and / the associated density function for durations or spell lengths, ¢, the hazard

rate is defined as:

where § is the survivor function. The difference between this and earlier models is
the dependence of the hazard on time as well as on characteristics. In order to obtain
a two group Taylor decomposition of the difference in hazard functions, it would be
necessary to specify the means of both the vector x and the spell length ¢. This will
pose a problem in the majority of economic applications, since at least some spells
are incomplete or censored and the mean spell (completed) length is not observed or
easily calculated (see for example, Baker and Trivedi, 1993 and Bazen, Joutard and

Niang, 2012).

A more straightforward, and arguably more interesting, approach would be to

decompose differences in the expected duration'! :

The survivor function, and thus the hazard function, is linked to the average
completed spell duration through the following equality (see the Appendix for the

derivation) :

1 The effect of a variable on the duration of a completed spell is of opposite sign to its effect on the hazard rate.
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In what follows, the link between a parametric hazard specification and the
corresponding formula for the expected duration is used to obtain Taylor

decompositions for two popular hazard specifications — the Weibull and loglogistic.

One of the more widely used parametric specifications of the function is the Weibull

hazard given by :

At;x,)=a 1“7 exp(xfﬂ) a>0

In this case, the expected duration of a completed spell for an individual with the

mean value of x, is given by :

=
=
=l
e
Il
—
/N
+
K
N
@
>
ie]
|
=|
sy
R
~—

Tl s’) where 5=~
a

The first term on the right hand side is the gamma function and is independent of
both x and t. As noted in the definition of a Taylor decomposition, the basis is the
difference between two estimated functions evaluated at the means of the

explanatory variables, x.In the current case it is :
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E(T| Xy )_ E(T| Xp ) = f(5M )exp(flz"ﬁ;[ )_ F(5F )exp()?gﬁ; )+ kWE]:[T[fM - Xp]+ Ry

~

where the fixed scalar &, is given by &, = F(l "% Jexp(ﬁ i )> 0. This specification

~

Ay

contains the exponential specification as a special case when a =1, since I'(2)=1.

The Weibull specification applies only to cases where the hazard rate is monotonic —
duration dependence is either positive, o >1, or negative, 0 <a <1, but cannot be
one then the other during time spent in a given state. A hazard specification that
permits increasing, followed by decreasing duration dependence, as well as the

negative monotonic form is the log-logistic specification:

Ao y exp(x’ )t

15 expc §) 7 where y > 0.

When 0<y <1, the hazard rate is first increasing and then decreasing. For y >1,

there is negative duration dependence. The corresponding expected duration when

0<y <l isgiven by :
E(T| )_c): B(l +l, 1 —ljexp(— )?T,B)E E(y/)exp(— )_CT,B)
/4 /4

where B(.) is the beta function. This expectation formula has a similar structure to
the Weibull case, in that the first derivatives will all be defined in terms of a scalar
multiplicative factor k,, =-B(7, )exp(— x; [?M)<O which is a constant. The Taylor

decomposition thus has a similar form :
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E(T| XM)_E(T| )_CF): E(7M)exp(_ )_C;BM)_ §(7F)exp(_ )?IZ;EF)-F kLLEA;[fM - X ]+ Ry,

In all cases, the choice of method of estimation is independent of the decomposition.
Thus for example the presence of censoring does not alter the form of the
decomposition. Clearly the most appropriate procedure would be to use unbiased or

consistent estimates of the parameters that define the conditional expectation.

V' Two practical applications of the Taylor decomposition
Example 1: Male-female differences in unemployment in France

In contrast to most OECD countries, female unemployment in France has been
historically higher than that of males, both in terms of the numbers and the
proportion of the labour force (see for example, Azmat, Guell and Manning, 2006 and
Bazen, Joutard and Niang, 2012). In 2005, the French Labour Force survey indicates
that the respective unemployment rates of males and females aged between 20 and
54 were 10.2% and 12.7%. Using the same data source, the individual probability of
being unemployed is modelled using a logit specification. The right hand side
variables are: living in a couple, theoretical school leaving age corresponding to
highest diploma (see example 2 for further information), current age, number of
children and whether the person lives in large town or not. The data are for persons
aged 20 to 54 and who are members of the labour force as defined by the ILO criteria.
There are in fact few differences between the means of the variables for the two
groups : females have slightly more education, are a little older, have fewer children,
less likely to live in a couple and slightly more likely to live in a large town. These

negligible differences mean that most of the gap in the unemployment rate will be
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due to the structural component rather than the composition effect in the Taylor

decomposition.

The estimated parameters of the logit model are proportional to the marginal effects.
Thus, more education, living in a couple and being older are factors which reduce the
probability of being unemployed in France for both males and females. On the other
hand, the presence of children and living in a large town tend to increase an
individual’s probability of being unemployed. As seen above, the Taylor

decomposition for the logit model is given by :

L (fgﬁF)_L ()_C;[BJM) =L (XAZ;IIBJF)_L (EAZBM)+kLﬁFT[xF —Xy [+ R,

where k, =L ()_c T B Xl -L ()? T B )) and L (z)= exp(z)/(1+exp(z)). The counterfactual is
defined in terms of average male characteristics. The difference to be decomposed is
2.16% compared to a gross difference of 2.47% — a consequence of the nonlinearity of
the logit function (and evidence of Jensen’s inequality). The structural component
(3.31%) is greater than the gap to be decomposed. This means that were a male with
average characteristics to be treated in the same way as a female in the labour
market, he would have a higher probability of being unemployed than at present and
a higher probability than average female. As a consequence the composition effect is
negative (-1.15): a female with average characteristics treated in the same way (the
same logit function) as a male has a lower unemployment probability than that of an
average male. The detailed first-order analysis of the composition effect indicates
that education differences are a key factor. The remainder is a third of the

composition effect.
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Example 2: Duration of unemployment of young persons in France

As in many countries, youth unemployment in France is a major concern. The rate of
unemployment among the under 25s is typically more than twice the average rate. In
this example, the determinants of unemployment durations among young persons
are examined. The data used come from the Generation 2004 survey, which follows a
cohort of individuals leaving the education system in 2004. The age of the person in
that year is obviously related to the number of years spent in the education system.
However in France, the correspondence between educational attainment in terms of
the highest diploma obtained and the age at which the person leaves the system is
clouded by the widespread phenomenon of spending more than one year in a
particular grade. For example, many university students take their first year twice
over. The same occurs lower down the education ladder, where a pupil may spend
two years in a particular grade (some pupils even skip a grade). When analyzing
access to employment, this lag acts as a signal to employers. The average education
lag among those experiencing unemployment is two years (see Table 4). The
duration of unemployment is therefore modelled as a function of two education
variables: educational attainment measured as the theoretical number of years
necessary to obtain a given diploma and the education lag. In addition the overall
unemployment rate in the geographical locality of the person’s domicile in 2004 is
used to measure the influence of the state of the labour market. The duration variable
used is the number of months spent unemployed in the four years following exit
from the education system. For modelling purposes, we assume that this duration

corresponds to a single spell rather than a series of shorter spells.

A second phenomenon often associated with unemployment among young persons
is cultural and ethnic origin, and specifically whether the person has parents who are
immigrants. Among those experiencing unemployment, 18% have parents who are
not of French origin. The average duration of unemployment for the children of

immigrants is two and half months longer than those with parents who are not
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immigrants — see Table 4. There are differences in educational attainment and
education lag that also suggest that children of immigrants are likely to fare less well
in the labour market. In addition to these factors there may also be discrimination in
the recruitment and retention of young persons which favours those whose parents
are not immigrants. We therefore use a Taylor decomposition to quantify the
different components of the difference in unemployment durations between the two

groups of young persons.

The Taylor decomposition uses a model-based estimate of the mean unemployment
duration for each group and decomposes the difference between these. In the current

case, we assume that the hazard function is of the Weibull form :

At)=at exp(xT,B)

and the corresponding expected duration is (see above):

E(T|x):F(1+ajexp(xTﬁ*)=f(a)exp(xTﬁ*) where " = —g

a

The parameters are in fact obtained using an accelerated failure time model which is
estimated separately for the two groups, and the results are presented in Table 5. The
estimated Weibull shape parameters indicate that there is positive duration
dependence for both groups. The hazard function is increasing with duration but the
probability of leaving unemployment at a given duration is higher for young persons
with immigrant parents. A similar conclusion emerges from the other estimated
coefficients : more education, shorter education lag and a smaller unemployment

local unemployment reduce the duration of unemployment of children of
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immigrants compared to their French counterparts. There is a large difference
between the estimated constant terms for the two groups which suggests that there is

discrimination in access to employment in favour of those of French origin.

The Taylor decomposition of the estimated expected duration of unemployment (in
months and not logarithms) using the average French origin characteristics in the

counterfactual is :

N()?N)_F()_CF): f(&N)eXp(fgﬁ;)_F(&F)exp(f;:ﬁ;)
+ kﬁ;{r(fN _)_CF)"' R

k=N, )=T(@, )exp(! ;)

where F (N) stands for individuals whose parents are (not) of French origin. The
difference to be decomposed is the difference between two model-based estimates of
the average duration corresponding to the mean characteristics of the respective
groups. This is 2.36 months (see Table 6) compared to the gross difference of 2.54
months (the divergence is evidence of Jensen’s inequality). The structural component
of this gap is 0.7 months — or 30%. The composition effect, the part due to differences
in characteristics, therefore accounts for the majority of the gap. The first order part
of the composition effect is 0.8 months and the remainder, which picks up the higher
order parts due to the nonlinearity of the function, is 0.86 months — more half the
overall composition effect. The results suggest that improving the educational
performance (on both fronts) of children whose parents are immigrants will reduce
the expected duration of unemployment and thereby the gap in durations between

the two groups.
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VI Conclusion

By recognizing that the Oaxaca technique can be obtained from a first order Taylor
expansion, a new decomposition method applicable to nonlinear models is proposed.
The Taylor decomposition provides a coherent, unified basis for decomposing
differences in estimated functions (evaluated at their respective means) rather than
differences in sample means. It provides a decomposition based on counterfactuals
using the means of the right hand side variables on the basis of group differences in
titted values. In this decomposition the unexplained component or ‘structure effect’
is completely defined, and a first-order additive, detailed decomposition of the
‘composition effect’ is provided. When a nonlinear function is defined on a linear
index — a common feature of many widely used nonlinear econometric models — the
Taylor decomposition has a very attractive form. Explicit formulae for
decompositions of the binary logit and probit models and duration models based on
the Weibull and log-logistic hazard specifications are presented. The technique can
be used with any smooth nonlinear function for a single left hand side variable such
as the CES and Box-Cox. The proposed method — being based on a first order Taylor
expansion of a nonlinear function — includes a non-zero remainder when a detailed
decomposition is sought. This is a necessary feature of a first order Taylor expansion
of a nonlinear function and, in terms of decompositions involving the mean, is a

consequence of Jensen’s inequality.
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Table 1 Means and standard deviations of variables used

Female Males Difference

Unemployed 0.127 0.102 0.025
(0.33) (0.302)

Education level 17.80 17.42 0.38

(age at end of full- (2.45) (2.41)

time education)

Couple 0.675 0.698 -0.023
(0.47) (0.46)

Age 37.35 37.16 0.19
(9.74) (9.70)

Children 0.81 0.84 -0.03
(0.979) (1.06)

Lives in large town | 0.791 0.781 0.01
(0.41) (0.41)

Sample size 12,746 14,226
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Table 2 Logit model of the probability of being unemployed

Females Males
Constant 3.079 1.148
(0.28) (0.27)
Education level -0.201 -0.144
(0.013) (0.013)
Couple -0.533 -0.992
(0.058) (0.068)
Age -0.044 -0.027
(0.003) (0.003)
Children 0.154 0.087
(0.028) (0.031)
Live in large town | 0.343 0.769
(0.074) (0.085)
Sample size 12,746 14,226

Estimated standard errors in parentheses
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Table 3 Taylor decomposition of the gender difference in unemployment rates (in

percentages)
L (% 5,) 10.61
L (% 4,) 8.45
Difference to be decomposed : 2.16
L (%4, 11.76
Structural component 3.31
Composition effect -1.15
First order effects -0.761
education level -0.790
lives in a couple 0.128
age -0.087
children -0.048
lives in large town 0.036
Remainder -0.389
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Table 4 Means and standard deviations of variables used

Parents French Parents Not French | Difference
Unemployment 9.57 12.11 2.54
duration (months) (8.56) (9.83)
Education level 13.05 12.30 -0.75
(years) (2.86) (2.87)
Education lag 1.97 2.51 0.54
(years) (1.71) (1.72)
Local 8.78 9.24 0.36
unemployment (2.27) (2.15)
rate
Sample size 13,507 2,998

Table 5 Accelerated Failure Time model estimates for unemployment durations

Parents French Parents Not French | Difference

Constant 2.449 2.979 0.53
(0.045) (0.092)

Education level -0.045 -0.065 -0.02
(0.002) (0.005)

Education lag 0.032 0.030 -0.002
(0.004) (0.009)

Local 0.043 0.031 -0.012

unemployment (0.003) (0.007)

rate

Weibull parameter | 1.184 1.265 0.081
(0.008) (0.018)

Sample size 13,507 2,998

Estimated standard errors in parentheses
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Table 6 Taylor decomposition of group difference in unemployment duration (in

months)

N, )=T(@, expl¥] B;) 11.793

Fl%,)=T(@, )exp(¥’ ;) 9.437
Ditference to be decomposed : 2.356

N, )=T(@, )exp(*. 3y )= k 10.130
Structural component 0.693
Composition effect 1.663

First order effects 0.803
education level 0.496
education lag 0.162
local unemployment rate 0.145

Remainder 0.860

38




Figure 1 Graphical representation of the Taylor decomposition for a nonlinear function
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Appendix The expected duration of completed spell is equal to the integral of the survival

function.

The expected value of a (non-negative) random variable over its whole support

[0, Z ] is defined as

The integral of the survivor function is equal to right-hand side of this expression.

From the definition of the survivor function

S(¢)=1-F()

The integral of the survivor function is then :
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