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Abstract 
This paper aims to study the structure of international trade. It establishes, through a simple 
formalization of exchange coefficients, that many theorems can be proved on a function of the 
macroscopic structure (the determinant of the matrix). This determinant is the cornerstone of 
indicators to analyze the evolution of trade between countries and regions. The objective is to 
introduce new tools to rigorously measure the characteristics and effects of globalization. The 
structural analysis proposed in this way can be applied to many other areas. 
 
 
 
Dominance, dépendance et interdépendance dans les structures linéaires 
Modèle théorique et application aux flux du commerce international 
 
Résumé 
L’objet de cet article est d’étudier la structure du commerce international. A partir d’une 
formalisation simple des coefficients d’échange, il propose une série de théorèmes fondés sur 
les propriétés du déterminant matriciel. Ce déterminant est la pierre angulaire d’une série 
d’indicateurs permettant l’analyse du commerce entre les pays et les régions. Ces indicateurs 
nous conduisent à identifier les caractéristiques et les effets de la globalisation des échanges. 
Cette analyse structurale peut être appliquée à de nombreux autres domaines. 
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Introduction 

 

Social scientists deal with quantified relationships networks between “activity centers” or 

“sectors” in an extensive meaning (for economists, industrial sectors, industrial groups, 

regions, countries and, for sociologists, individuals, social groups, etc.). In the graphs of 

influence, these sectors are represented by the vertices. The vertices are linked by physical 

exchange flows, or financial ones, information ones, power relationships, etc. In order to 

simplify the representation, we assume that the relations between sectors may be considered 

as linear ones (Leontief, 1951)1. There are two justifications for this approach: 

− First, in some economic structures, the relationships between sectors have a long term 

stability (cf. e.g. de Mesnard and Dietzenbacher, 1995). 

− Second, some indicators may be used to describe the static structure or to compare two 

states of an evolutive structure at two different times (cf. e.g. Lahr and Yang, 2011). 

 

One of the main objectives of this paper is to define indicators in order to understand the 

general architecture of the structure: what is the dominance of one sector upon another one 

(Hurwicz, 1955, Leontief, 1986, Miller and Blair, 1986)? What is its degree of dominance on 

the whole structure (Perroux, 1948, 1973)? Is there any part of the structure in a dominant 

position, on another one or on some other ones (Aujac, 1960, Ponsard, 1969, 1972)? Are 

sectors more or less self-sufficient, interdependent, or/and dependent on some of them (Sonis 

and Hewings, 1998)? Is the structure more or less turned towards its outside (Goldwyn, 1960, 

Sonis and Hewings, 2001)? 

 

This approach may be applied to various issues. For example, rectangular IO tables (Joyal, 

1973), interregional relationships (Isard and Ostroff, 1960), capital movements (Lequeux, 

2002), information flows (Gallo, 2006). It seems to be particularly relevant for the study of 

the international trade flows (Hewings et al., 2002, Lebert, 2010). Reichardt and White 

(2007), for example, use blockmodeling techniques to identify differentiated "roles" for 

countries participating in the international trade. The authors’ goal is to group countries with 

close structural characteristics and analyze hierarchical relationships between these sets. 

Barigozzi et al. (2009) investigate the degree of similarity between the trade structures for a 

                                                 
1 About the structure of linear models, see for example Solow (1952). 
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hundred of agricultural and industrial goods. They assume that there exists "intrinsic 

correlations" between products. This assumption means that products with close 

characteristics are expected to have close international trade structures. These intrinsic 

correlations differ from "revealed correlations" which measure the empirical similarity of 

trade structures. Any movement of the revealed correlations is interpreted as the result of 

changes in the institutional organization of the international trade. Finally, Hidalgo et al. 

(2007) study the evolution of the historical positions of countries within an evolving product 

space. This product space is a representation of the distances between the structures of 

international trade flows for all products. Historical positioning of the countries in this space 

uses specific revealed comparative advantage indices. The authors insert these indices in a 

theoretical argument based on the notion of "capability" of countries: the complexity of the 

national productive structure determines the country’s potential to promote its own 

development.  

 

A constraint that we set ourselves is to combine quantitative and qualitative relationships: 

a sector can strongly influence one or two others, while another can influence many of them 

more weakly. Below, we avoid to weight explicitly quantitative and qualitative aspects 

(Lantner, 1974, 20022, Gazon, 1976, Defourny et Thorbecke, 1984). In order to solve this 

problem, we prove and use some particular properties of the determinant of some matrices 

which lead us to an endogenous combination of quantities and qualities (in another way, cf. 

Maybee et al., 1989). 

 

The first section of the paper is devoted to the way we represent the structure of exchanges. 

The second section focuses on the properties of the determinant of the matrix representing the 

structure; many important theorems are introduced. The third and fourth sections offer 

elements which expand the theoretical and operational scope of the approach (structural 

indicators, partition of the structure). The fifth section analyzes the structure of the 

international trade using the influence graph theory. 

  

                                                 
2 See also Lantner (1972a, 1972b, 1976), Lantner and Carluer (2004). 
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1. Definition and representation of the structure 

 

In order to give a very simple idea of the model, let us consider for instance a national 

productive structure (table of inter-industry trade). In this example, let the sales from sector i 

to sector j (𝑖, 𝑗 ∈ [1,𝑛]) be denoted by 𝑥𝑖𝑗 ∈ ℝ+. From the point of view of demand, it comes: 

 

(𝑆1)  𝑖, 𝑗 ∈ [1,𝑛]:   𝑋𝑖 −�𝑥𝑖𝑗

𝑛

𝑗=1

= 𝑌𝑖 

 

where Xi is the production of the ith sector and Yi the demand of the outside of the structure to 

this sector (given data). 

 

Symmetrically, from a supply point of view: 

 

(𝑆2)   𝑖, 𝑗 ∈ [1,𝑛]:   𝑋𝑗 −�𝑥𝑖𝑗

𝑛

𝑖=1

= 𝑊𝑗     

 

where Wj if the value added in the jth sector. 

 

Let the column vector of production (Xi) be denoted by X, the column vector of external 

demand (Yi) be denoted by Y, and the matrix whose terms are 𝑎𝑖𝑗 = 𝑥𝑖𝑗 𝑋𝑗⁄  (called “technical 

coefficients”; ∀𝑖, 𝑗: 0 ≤ 𝑎𝑖𝑗 ≤ 1 and ∑ 𝑎𝑖𝑗𝑛
𝑖=1 ≤ 1) be denoted by a. From (S1) we draw (S3): 

 

(𝑆3)   𝐴𝑋 = 𝑌 

 

where 𝐴 = [𝐼 − 𝑎] is the Leontief matrix. 

 

By construction of A, its inverse exists, and: 

 

(𝑆3′)   𝑋 = 𝐴−1𝑌 
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In parallel, the terms 𝑡𝑖𝑗 = 𝑥𝑖𝑗 𝑋𝑖⁄  (with: ∀𝑖, 𝑗: 0 ≤ 𝑡𝑖𝑗 ≤ 1 and ∑ 𝑡𝑖𝑗𝑛
𝑗=1 ≤ 1) are called “trade 

coefficients”. If the matrix whose terms are 𝑡𝑖𝑗 is denoted by t and the complementary matrix 

[𝐼 − 𝑡] is denoted by T, we have: 

 

(𝑆4)   𝑋𝑅𝑇𝑇 = 𝑊𝑅 

 

where 𝑋𝑅 is the row vector of Xi, 𝑊𝑅 the row vector of Wi and 𝑇𝑇 the transposed matrix of T. 

 

Matrices A and T have the same diagonal coefficients, resulting from the sectoral auto-

consumptions. By definition: 

 

𝑖 ∈ [1,𝑛]: ℓ𝑖 ≡ 1 − 𝑎𝑖𝑖 = 1 − 𝑡𝑖𝑖 

 

The influence graph of the exchange structure is a directed graph (“digraph”) defined as 

follows (on graph theory, see for example Busacker and Saaty, 1965, Harary et al., 1966, 

Berge, 1970, Roy, 1970; on signal-flow graphs, see for example Coates, 1959, Chow and 

Cassignol, 1962): 

1. Each country, sector, industrial group, social group, individual, etc. corresponds to a vertex 

i. 

2. Each exchange xij is represented by an arc; all the arcs are oriented in the direction of the 

“dominant influence”: either from the demand to the supply, or from the supply to the 

demand. 

3. The arcs of the graph are valuated either by the technical coefficient aij or by the trade 

coefficient tij, and the “loops” (corresponding to the diagonal terms of the A or T matrices) are 

valuated by the coefficients ℓ𝑖 = (1 − 𝑎𝑖𝑖) = (1 − 𝑡𝑖𝑖). 

4. To each vertex is associated a centrifugal or a centripetal arc of the graph linking the 

structure to its outside. The orientation of the arc is given by the direction of the ‘dominant 

influence’. The weight of the arc is: 

 

𝑤𝑗 ≡ 𝑊𝑗 𝑋𝑗⁄ = �1 −� 𝑎𝑖𝑗
𝑛

𝑖=1
� ≥ 0 

 

if the weights of the other arcs are the technical coefficients 𝑎𝑖𝑗. 
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It is: 

 

𝑦𝑖 ≡ 𝑌𝑖 𝑋𝑖⁄ = �1 −� 𝑡𝑖𝑗
𝑛

𝑗=1
� ≥ 0 

 

if the weights of the other arcs are the trade coefficients 𝑡𝑖𝑗. 

 

 

The influence graph with technical coefficients The influence graph with trade coefficients 

a12

a21

a13

a31

a32

a23

w1

w2

w3

l1  = 1 – a11 1

2

3

l2  = 1 – a22

l3  = 1 – a33

 

t12

t21

t13

t31

t32

t23

y1

y2

y3

1

2

3l1 = 1 – t11

l2 = 1 – t22

l3 = 1 – t33

  
 

The difference with physical graphs lies in the coefficients of the loops 
 

Graph of physical flows endowed with 
technical coefficients 

Graph of physical flows endowed with trade 
coefficients 

a12

a21

a13

a31

a32

a23

w1

w2

w3

a11 = t11 1

2

3

a22 = t22

a33 = t33

 

t12

t21

t13

t31

t32

t23

y1

y2

y3

1

2

3t11 = a11

t22 = a22

t33 = a33

 
 

Representative matrices of the structures are respectively: 
 

𝐴 = �
ℓ1 −𝑎12 −𝑎13
−𝑎21 ℓ2 −𝑎23
−𝑎31 −𝑎32 ℓ3

� 

 

𝑇 = �
ℓ1 −𝑡12 −𝑡13
−𝑡21 ℓ2 −𝑡23
−𝑡31 −𝑡32 ℓ3

� 

 

 

The technical coefficients and the trade coefficients are two representations of the same 

structure of exchange. For example, if we want to compute the effect of Δ𝑋𝑖 on the total 
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output 𝑋𝑖 of the change Δ𝑌𝑗 in the final demand for sector j’s products, it is easier to use the 

matrix A (technical coefficients), which provides the “absolute global effect” (or “sensitivity”) 

Δ𝑋𝑖 Δ𝑌𝑗⁄ . Symmetrically, using T (trade coefficients) would provide the “relative global 

effect” (or “elasticity”) (Δ𝑋𝑖 𝑋𝑖⁄ ) �Δ𝑌𝑗 𝑌𝑗⁄ �⁄  (cf. appendix 3). 

 

Why do we persist in using both graph theory and matrices to deal with such issues? The 

advantage of using graph theory is not “to see” (or even “to show” or “to draw”) the 

arrangement of the structure of intersectoral flows. It is only to discover new properties of the 

architecture of the structure, to prove new theorems, and to find new structural indicators 

(autarky, dominance/dependence, interdependence). 

 

Matrix calculation allows to compute the global effects of changes from the environment of 

the structure, but it can be convenient for an observer of the structure to know the main 

“direct” effects (carried on by the paths from vertex j to vertex i in the influence graph) and, 

for each one of those effects, the value of its amplification by circuits and feedbacks. Instead 

of being aware only of the final effects, the observer is able to understand the whole sequence 

of consequences of his actions and to know the way and, if we endow each arc with a transit 

time, the potential approximate schedule of those consequences. Graph theory and “micro-

path analysis” are a way to build a strongly micro-founded meso-analysis of feedback effects 

in all kind of structures as described by relations (S1) and (S3), or (S2) and (S4). But the most 

important reason of using graph theory is that, from a macro point of view, it can lead 

us to nice structural indicators such as circularities, triangularities, dominance/ 

dependence, interdependence, and autarkies. 

 

2. Properties of the determinant of the structure: some theorems 

 

Let us now focus on the properties of the determinant D, which is the same for A and T (cf. 

appendix 2). One might think that the determinant is too complicated as a descriptor of the 

structure to be worth analyzing. Indeed, the determinant is a function of all the terms of the 

matrix and cannot be very simple. However, because its value is associated with the circuits in 

the influence graph, it becomes a meaningful indicator of the arrangement of the structure. 
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Theorem 1: Theorem of the loops and circuits. 

 

Let us denote as “Hamiltonian” any set of circuits and loops of the influence graph where 

each vertex belongs once and only once to the set. Let us call those Hamiltonian sets 

“Hamiltonian Partial Graphs” (HPG) of the influence graph. The number of the circuits with 

two or more arcs in the hth HPG is denoted by 𝑐ℎ. The “signed product” of the coefficients of 

all its loops and arcs is called the “value” of the hth HPG and is denoted by 𝑉ℎ ≡ (−1)𝑐ℎ𝑣ℎ, 

where 𝑣ℎ is the product of the (all positive) coefficients of the loops and circuits of the hth 

HPG. Then: 

 

𝐷 = � 𝑉ℎ
ℎ

 

 

The determinant D is equal to the sum of the values of the HPG in the digraph representing 

the structure (“theorem of the loops and circuits”). 

 

Proof: see appendix 1. 

 

Theorem 2: Theorem of the circuit. 

 

Each circuit in the influence graph leads to a decrease in the value of the determinant D. 

 

Proof: Let us call 𝐶𝑗 a circuit of the influence graph and 𝒥 the set of vertices belonging to 𝐶𝑗. 

𝒥𝑐 is the set of all the other vertices which do not belong to 𝐶𝑗. The set of HPG can be divided 

in two subsets: the one which does not include the circuit 𝐶𝑗 and the one which includes it. 

The contribution of the circuit 𝐶𝑗 to the expression of the determinant D is carried on by all 

the HPG including circuit 𝐶𝑗 and only by them. In order to assess the impact or effect of the 

circuit 𝐶𝑗 on the value of the determinant D, we need to consider this subset of HPG only. 

 

Let us take the circuit 𝐶𝑗 out of all the HPG of this subset. Their remaining parts exactly 

coincides with the HPG of the subgraph [𝒥𝑐], the vertices of which belong to 𝒥𝑐. As the 

product of the coefficients of circuit 𝐶𝑗 is denoted by π𝑗, the contribution of circuit 𝐶𝑗 to the 
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value of determinant D is equal3 to (−1)π𝑗𝑚𝑗, where mj is the “multiplier” of the circuit 𝐶𝑗. 

This multiplier is exactly the sum of the value of all the HPG in the subgraph [𝒥𝑐]. 

 

Hence, from theorem 1 (of the loops and circuits), this multiplier mj is equal to the 

determinant 𝐷𝒥𝑐 of the submatrix corresponding to the subgraph [𝒥𝑐]. Therefore, the part of 

the value of the determinant D explained by the circuit 𝐶𝑗 taken separately is (−1)π𝑗𝐷𝒥𝑐. As 

the product π𝑗 is positive and the determinant of any subgraph of the influence graph is 

positive, the theorem of the circuit is proven: each circuit in the influence graph leads to a 

decrease in the value of the determinant D. 

 

Theorem 3: Theorem of the flowers. 

 

The minimal value of the determinant D is equal to the product of the proportion yi of 

deliveries to final demand. 

𝐷 ≥�𝑦𝑖

𝑛

𝑖=1

 

 

Proof: Let us consider a particular case where every vertex is in autarky, except for 

relationships with final demand (see the next figure). The physical coefficients tii are maximal 

and the loops of the influence graph ℓ𝑖 are minimal. 

 

ℓ𝑖 = 1 − 𝑡𝑖𝑖 = 𝑦𝑖 

 

There is a unique HPG made of the set of the n loops. The determinant D is given by: 

 

𝐷 = � ℓ𝑖
𝑛

𝑖=1
= � 𝑦𝑖

𝑛

𝑖=1
 

 

Let notice that a symmetric proof could lead to the expression 𝐷 ≥ ∏ 𝑤𝑗𝑛
𝑗=1 . 

 

Now, suppose one adds an arc to the flower structure. Before the addition of the new arc we 

had: 

                                                 
3 (- 1) because each circuit changes the parity of 𝑉ℎ. 
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ℓ1 = 1 − 𝑡11 

 

with 𝑡11 = 1 − 𝑦1, giving ℓ1 = 𝑦1. We have now: 

 

ℓ1′ = 1 − 𝑡11′  

 

with 𝑡11′ = 1 − 𝑦1 − 𝑡12 because that is all that remains when you take away from the supply 

of vertex 1 not only y1 (given) but t12 too. Therefore: 

 

ℓ1′ = 1 − 𝑡11′ = 𝑦1 + 𝑡12 > 𝑦1 

 

and the value of D (= ∏ ℓ𝑖𝑛
𝑖=1 ) is increased. If one adds other arcs it will be the same, and the 

value of the determinant D will be increased. 

 

Another proof of the same theorem is given below. 

 

 

y1 y2 y3

1 2 3t11 = 1 – y1 t22 = 1 – y2 t33 = 1 – y3

 
Structure of ‘physical flows’ with no inter-sectoral flow 

 
 

y1 y2 y3

1 2 3

t12

t11 = 1 –(y1 + t12) t22 = 1 – y2 t33 = 1 – y3

 
Structure of ‘physical flows’ with an additional inter-sectoral flow t12 
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Theorem 4: The triangular structure. 

 

A HPH is a set of loops and circuits. A triangular structure has only one HPG made of the 

loops. As it is well known, its determinant DT is given by the product of the diagonal terms: 

 

𝐷𝑇 = � ℓ𝑖
𝑛

𝑖=1
 

 

It follows that: 

1. According to the theorem of the loops and circuits, for given values of yi (or wj) every 

change in the coefficients without creation of one or more HPG will not lead to a change in 

the value of the determinant DT. According to the theorem of the circuit, every change 

creating one or more circuit(s) will lead to a decrease in the value of the determinant DT. 

Therefore, 𝐷𝑇 = ∏ ℓ𝑖𝑛
𝑖=1  is an upper bound of the determinant D. The determinant D is 

smaller than or equal to the product of the coefficients of the loops in the influence graph: 

 

𝐷 ≤� ℓ𝑖
𝑛

𝑖=1
 

 

2. In a triangular structure, there is at least one vertex sending deliveries only to itself and to 

the final demand. Let us assign the number 1 to this vertex. It comes ℓ1 = 1 − 𝑡11 = 𝑦1, and 

as 𝐷𝑇 = ∏ ℓ𝑖𝑛
𝑖=1 , 𝐷𝑇 = 𝑦1 ∏ ℓ𝑖𝑛

𝑖=2 ≤ 𝑦1 (given data). The determinant of a triangular matrix is 

smaller than the share of deliveries sent to final demand of the vertex that transmits nothing to 

the other vertices of the structure. 

 

Theorem 5: theorem of the pure short-circuit. 

 

Ceteris paribus, every pure short-circuit of an existing circuit leads to a decrease in the value 

of the determinant D. 

 

Consider the following digraph. 
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1

2

3

t12 t23

n

 
 

The determinant is equal to 𝐷 = ∑ 𝑉ℎ (ℎ ∈ [1,𝐻])ℎ . This formula can be decomposed in two 

parts: 

− the HPG which contain all the circuits including the path [t12,t23]. Let us denote their value 

by V1; 

− the HPG which do not contain t12 and t23. Let us denote their value by V2. 

 

To create a pure oriented short-circuit, we have to change at least one coefficient. Let us 

introduce a short-circuit t13. The arc t13 carries directly a part of the flow from the vertex 1 to 

the vertex 3. Therefore, the value of the arc t12 decreases by t13. 

 

1

2

3

t12 - t13 t23

t13

n
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By definition, V2 is not affected by the change in the coefficient t12. Regarding V1, the circuits 

from the relevant HPG can be decomposed into two parts: 

− circuits containing the path [(t12 – t13), t23]; 

− (the same) circuits containing the arc t13. 

 

According to the theorem of the circuit, each circuit in the influence graph leads to a decrease 

in the value of the determinant. Let us analyze the variation ∆𝐷 of the determinant D as a 

result of the creation of the short circuit t13. The multiplier of initial arcs including the path 

[t12, t23] can be denoted by K. Therefore, V1 can be written 𝐾𝑡12𝑡23. Taking into account the 

short circuit t13, this value changes as follow: 𝐾[(𝑡12 − 𝑡13)𝑡23 + 𝑡23]. The weight of every 

circuit is negative. Hence: 

 

∆𝐷 = (−1)𝐾[𝑡13(1 − 𝑡23)] 

 

which is negative. This result comes from the upper “weight” of the circuits including the arc 

t13 compared to the circuits including the path [(t12 – t13), t23]. 

 

1

2

3

t12 - t13 t23

t13

n

k

 

1

2

3

t12 - t13 t23

t13

n

t2k

k

 
t13 is a “pure” short circuit t13 is not a “pure” short circuit 
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Another proof for the theorem of the flowers: 

 

It will be sufficient to remark that a loop is always a pure short circuit. As a pure short circuit 

leads to a decrease in the value of the determinant and as it is not possible to get shorter 

circuit than the loops, the theorem is proven. 

 

Theorem 6: The upper bound of the determinant. 

 

With proportions yi (𝑖 ∈ [1,𝑛]) sent to final demand, the upper bound of the determinant D of 

an I-O matrix is a simple function of the proportion yi: 

 

𝐷 ≤ 1 −∏ (1 − 𝑦𝑖)𝑛
𝑖=1 . 

 

1

2

3

t12 t23

t13

n

 
 

Proof: Consider the case of an exchange structure with only one simple circuit and n loops. It 

follows that 𝑡𝑖𝑗 = 1 − 𝑦𝑖. Since auto-consumptions do not exist in this structure, 𝑡𝑖𝑖 = 0. 

Hence: 

 

∏ ℓ𝑖𝑛
𝑖=1 = ∏ (1 − 𝑡𝑖𝑖)𝑛

𝑖=1 = 1. 

 

The definition of the determinant is given by the theorem 1 (“loops and circuits”). Let us call 

it 𝐷′. Since there are only two HPG, it immediately derives: 
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𝐷′ = � ℓ𝑖
𝑛

𝑖=1
−� (1 − 𝑦𝑖)

𝑛

𝑖=1
= 1 −� (1 − 𝑦𝑖)

𝑛

𝑖=1
 

 

Any change of a coefficient in accordance with 1 −∑ 𝑡𝑖𝑗𝑛
𝑗=1 = 𝑦𝑖 (given data) would create at 

least one arc which would be a pure short-circuit in the structure and lead to a smaller value of 

the determinant. Thus, the determinant 𝐷′ is a maximal value of the determinant D. 

 

3. Structural indicators 

 

Taking into account the point of view of Leontief, and according to the previous theorems, we 

try to define simple values, or indicators, which are not “mathematical measures”, of: 

interdependence (on this issue, see Malinvaud, 1955), autarky, and dominance / dependence. 

 

According to the theorem of the loops and circuits, the difference the product of loops ∏ ℓ𝑖𝑛
𝑖=1  

and the determinant D derives exclusively from circuits, which are carrying on circular 

influence, that means interdependence between vertices. Thus, interdependence is smaller 

than or equal to: 

 

� ℓ𝑖
𝑛

𝑖=1
− 𝐷 

 

As proven in the previous theorems, the higher the circularities, the lower the determinant. 

Trees, or triangularities, carry on dominance/dependence. Following the intuition, 

triangularities and circularities are complementary. On the other hand, the determinant is 

always superior to a minimum value (cf. theorem of the flowers). That is why the difference 

𝐷 −∏ 𝑦𝑖𝑛
𝑖=1  which is equal to 𝐷 − 𝐷min, could be a nice indicator of dominance/dependence. 

 

In fact, there is a double scale: 

− The first one gives us indicators depending only on the given data (yi or wj): 𝐷min =

∏ 𝑦𝑖𝑛
𝑖=1  or 𝐷max = 1 −∏ (1 − 𝑦𝑖)𝑛

𝑖=1  for example. 

− The second one takes into account one of the elements of organization of the structure: the 

degrees of autarky (self-consumption aii or self-supply tii with aii = tii) of the different 

sectors or vertices of the influence graph. 
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For given values of the yi, the coefficients of the loops ℓ𝑖 for this graph may vary between yi 

(for 𝑡𝑖𝑖 = 1 − 𝑦𝑖) and 1 (for tii = 0). It follows: 

 

𝐷min ≤� ℓ𝑖
𝑛

𝑖=1
≤ 1. 

 

We suggest to take into account: 

− First: the given data yi (or wj). 

− Second: the intra-consumption or autarkies tii = aii. 

− Third: the other arcs and circuits. 

 

This way, the impact of autarkies may be assessed. At the end of the second step, the structure 

of the flowers corresponding to Dmin will not have changed. But the large circuit 

corresponding to Dmax will include a certain number of loops whose values will be different 

from 1 in the influence graph. If those values are considered as structural data, the coefficient 

of each arc from vertex i to vertex (i + 1) will be reduced to the value 1 − 𝑎𝑖𝑖 − 𝑦𝑖 = ℓ𝑖 − 𝑦𝑖. 

That means that the value of Dmax without any autarky, 𝐷max = 1 −∏ (1 − 𝑦𝑖)𝑛
𝑖=1 , will be 

𝐷max𝑎 = ∏ ℓ𝑖𝑛
𝑖=1 − ∏ (ℓ𝑖 − 𝑦𝑖)𝑛

𝑖=1  with ℓ𝑖 ≠ 1 for some i. 

 

The difference between 𝐷max and 𝐷max𝑎  appears as a good global indicator of autarky4. 

 

  

                                                 
4 For very different approaches, see for example Guccione, Gillen, Blair and Miller (1988) and Rose and Casler (1996). 
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Table of structural indicators 

 

EXTERNAL 
INFLUENCE

 of the structure
(heteroactivity)

TRIANGULARITIES
(directed trees)

Dominance/
dependence

CIRCULARITIES

Interdependence Autarkies

INTERNAL 
INFLUENCE

of the structure on 
itself

 
 

 

We will often use indifferently the terms “circularity” or “interdependence”. That is pertinent 

as long as autarkies are nil or loops clearly separated from circuits of two arcs or more. 

 

4. Partition of the structure 

 

Structural indicators previously defined provide a representation of the global properties of 

the structure. We can try to explain the theorems and the indicators proposed above by 

connecting them to the local properties of the substructures making up the overall structure5. 

 

Theorem 7: Theorem of the connected HPGs. 

 

If we call “connected HPGs” the HPGs including at least one circuit linking two parts of a 

complete partition P of the structure, and if the values of such HPGs are denoted by 𝑉𝑐, the 

sum of the values of those connected HPGs is negative or nil. Thus, these are the connected 

HPGs that lower the value of the determinant: 

 

∑ 𝑉𝑐𝑐 ≤ 0. 

 

                                                 
5 Gillen and Guccione (1990) deal with this kind of problem in a very different way. 
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Proof: Let us introduce a complete partition P of the structure, the parts being indexed by p. 

Let us divide the HPGs of the structure into two categories: the “disjoint” (d) HPGs, having 

no circuit reaching vertices of different parts of the partition P, and the “connected” (c) HPGs 

having at least one circuit linking vertices of two (or more) parts of the partition P. 

 

Taking into account the theorem of the loops and the circuits, the determinant may be written 

𝐷 = ∑ 𝑉ℎℎ = ∑ 𝑉𝑑𝑑 + ∑ 𝑉𝑐𝑐 . According to the theorem of the loops and the circuits again, the 

sum ∑ 𝑉𝑑𝑑  is the product of the determinant Dp of the submatrices defined by the partition P. 

The relation becomes: 

 

𝐷 = ∏ 𝐷𝑝𝑝 + ∑ 𝑉𝑐𝑐 . 

 

If we take into account the non-diagonal parts of the global matrix, either we add no circuit, 

and thus no HPG: 

 

∑ 𝑉𝑐𝑐 = 0, and we have 𝐷 = ∏ 𝐷𝑝𝑝 , 

 

or we add at least a circuit, and following the theorem of the circuit, 𝐷 < ∏ 𝐷𝑝𝑝 . It comes: 

 

∑ 𝑉𝑐𝑐 ≤ 0. 

 

Corollary of the theorem 7. 

 

In whatever way a square productive matrix is completely divided into square submatrices, its 

determinant is always smaller than or equal to the product of the determinants of these 

submatrices: 

 

𝐷 ≤ ∏ 𝐷𝑝𝑝 . 
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Theorem 8: A measure of partial interdependences. 

 

The measure of the linkage, or interdependence, between submatrices is given by the 

difference between the product of the determinants of the submatrices of a complete partition 

P and the determinant of the matrix of the overall structure: 

 

𝐼 = ∏ 𝐷𝑝 − 𝐷𝑝 . 

 

Indeed, without any circuit linking vertices of two parts or more of the partition P, ∑ 𝑉𝑐𝑐 = 0. 

 

Hence, the term −∑ 𝑉𝑐𝑐 ≥ 0 constitutes a consistent measure of the linkage, or 

interdependence, between the submatrices of the partition P. 

 

 

Det. D1

Det. 
D2

Det. D3

 

The determinant D of the large matrix is 
smaller than the product 𝐷1 × 𝐷2 × 𝐷3 
except if there is no circuit linking the 
vertices of two or more of the three 
submatrices defined by the partition. 
Therefore, 𝐼1−2−3 = 𝐷1 × 𝐷2 × 𝐷3 − 𝐷 

 

 

The theorem 8 is true for any part (submatrix) as well as for the whole matrix. The higher the 

level of disaggregation, the greater the number of disjoint HPGs and, hence, the greater the 

linkage (or interdependence) between parts. 

 

Theorem 9: Different measures of interdependence between parts of the structure. 

 

To each complete partition P of the structure corresponds a specific value of interdependence 

between the parts of P. 
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Proof (recurrence relation): The variables Xi can be aggregated into subset s. According to the 

theorem 8 on the measure of interdependence: 

 

𝐷𝑠 = ∏ ℓ𝑖 − 𝐼𝑠𝑖∈𝑠 . 

 

The subsets s can be aggregated into parts p. It comes: 

 

𝐷𝑝 = ∏ 𝐷𝑠 − 𝐼𝑝𝑠∈𝑝 . 

 

The determinant 𝐷𝒫 of the matrix whose elements are the parts p is: 

 

𝐷𝒫 = �𝐷𝑝 − 𝐼𝒫
𝑝∈𝒫

= �����ℓ𝑖 − 𝐼𝑠
𝑖

� − 𝐼𝑝
𝑠

�
𝑝

− 𝐼𝒫 

 

The interdependence between the parts p divided into subsets s made of variables i can be 

written: 

 

𝐼𝒫 = �����ℓ𝑖 − 𝐼𝑠
𝑖

� − 𝐼𝑝
𝑠

�
𝑝

− 𝐷𝒫 

 

Det. D{1,2}

Det. D3

 

The aggregation of two parts 1 and 2 of the 
previous partition leads to: 
 
 

𝐼{1,2}−3 = 𝐷{1,2} × 𝐷3 − 𝐷 

 

 

It is possible to increase the level of disaggregation: as many partitions, as many values of 

interdependence between the parts defined. 
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Theorem 10: The “general” interdependence between the variables of a linear system of 

equations. 

 

According to the theorem 9 addressing the measures of interdependence, the “general” 

interdependence between all the variables 𝑋𝑖 of the system of linear equations representing a 

productive structure is given by the difference between the product of the diagonal terms of 

the matrix and the determinant of this matrix: 

 

𝐺𝐼 = ∏ ℓ𝑖𝑖 − 𝐷. 

 

 

5. Application: structure and dynamics of the international trade 

 

To illustrate the operational dimension of the influence graph theory, we consider the 

international trade flows of manufactured goods during the period 1980-2004. We use the 

database TradeProd from CEPII for 28 manufactured goods, data in thousands of current US 

dollars (Mayer et al., 2008). We merge data for ex-socialist countries and isolate the giant 

component for all the 25 years; the total structure contains 171 countries. We also merge 

products flows according to their technological intensity: low (PGS), medium (MPG), and 

high (SSS). By construction, the autarkies are absent and, hence, ∏ ℓ𝑖𝑖 = 1, and the external 

flows are all included in the trade imbalances such that ∏ 𝑦𝑖𝑖 = 0 (cf. Lebert et al., 2009). 

 

The first issue results from an application of the theorems 1 to 6. We define a “relative 

interdependence index” (RII) which corresponds to the ratio between the structural 

interdependence index (= 1 − 𝐷) and the structural dependence index (= 𝐷). This relative 

index is used in order to quantify the phenomenon of trade globalization. 

 

𝑅𝐼𝐼 =
1 − 𝐷
𝐷
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First, we can see that the value of RII is increasing over the period. This growth is stronger for 

products with the highest technological content. Second, from the second half of the 1980s, 

interdependence dominates all other forms of structural relationships between countries (i.e. 

dependence), regardless the kind of products. 

 

The value of RII is decomposable by vertices (countries). The theorem 7 identifies the 

intensity of circularities that link the substructures, regardless of how these substructures are 

defined. We consider here the special case where each country is compared to the rest of the 

world. The intensity of the circularities between a vertex and the rest of the graph is quantified 

by the diagonal cofactors of the matrix. These sub-determinants are necessarily greater than, 

or equal to, the value of the matrix determinant. The greater the gap between these two 

indicators, the higher the (weighted) circularities inside the whole structure intermediated by 

the country; from this point of view, the index we present here can be named “betweenness 

centrality of countries”. It represents the strategic weight of the country in the international 

trade for manufactured goods. The contribution of a vertex i to the value of RII corresponds to 

the ratio: 

 

𝐵𝐶𝑖 =
𝑅𝐼𝐼 − 𝑅𝐼𝐼−𝑖

𝑅𝐼𝐼
=

𝐷−𝑖 − 𝐷
𝐷−𝑖(1 − 𝐷) 

 

where 𝑅𝐼𝐼−𝑖 is the value of RII for the subgraph which does not contain the vertex i, and 𝐷−𝑖 

is the determinant of the correspondent submatrix. 

1980 1985 1990 1995 2000 2004
0.5
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Relative interdependence index
International industrial flows - 1980-2004
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Betweenness centrality of countries 

 1980 2004 

Rank Global PGS MPG SSS Global PGS MPG SSS 

1 ‘DEU’ ‘DEU’ ‘USA’ ‘DEU’ ‘USA’ ‘DEU’ ‘DEU’ ‘USA’ 
2 ‘USA’ ‘FRA’ ‘DEU’ ‘FRA’ ‘DEU’ ‘USA’ ‘USA’ ‘DEU’ 
3 ‘FRA’ ‘USA’ ‘FRA’ ‘USA’ ‘FRA’ ‘FRA’ ‘FRA’ ‘CHN’ 
4 ‘GBR’ ‘NLD’ ‘CAN’ ‘GBR’ ‘ITA’ ‘ITA’ ‘ITA’ ‘JPN’ 
5 ‘NLD’ ‘BLX’ ‘BLX’ ‘NLD’ ‘GBR’ ‘BLX’ ‘ESP’ ‘FRA’ 
6 ‘ITA’ ‘ITA’ ‘GBR’ ‘ITA’ ‘JPN’ ‘NLD’ ‘CAN’ ‘GBR’ 
7 ‘BLX’ ‘GBR’ ‘ITA’ ‘BLX’ ‘CHN’ ‘ESP’ ‘BLX’ ‘SGP’ 
8 ‘CAN’ ‘JPN’ ‘NLD’ ‘JPN’ ‘BLX’ ‘GBR’ ‘GBR’ ‘MEX’ 
9 ‘JPN’ ‘CAN’ ‘SWE’ ‘CHE’ ‘NLD’ ‘CAN’ ‘MEX’ ‘NLD’ 

10 ‘SWE’ ‘AUT’ ‘JPN’ ‘SWE’ ‘CAN’ ‘MEX’ ‘NLD’ ‘ITA’ 
11 ‘CHE’ ‘HKG’ ‘CHE’ ‘CAN’ ‘MEX’ ‘AUT’ ‘CHN’ ‘BLX’ 
12 ‘DNK’ ‘SWE’ ‘AUT’ ‘DNK’ ‘ESP’ ‘CHN’ ‘JPN’ ‘KOR’ 
13 ‘AUT’ ‘CHE’ ‘NOR’ ‘AUT’ ‘SGP’ ‘SWE’ ‘AUT’ ‘TWN’ 
14 ‘FIN’ ‘DNK’ ‘FIN’ ‘IRL’ ‘KOR’ ‘CSK’ ‘SWE’ ‘MYS’ 
15 ‘HKG’ ‘IRL’ ‘ESP’ ‘NOR’ ‘AUT’ ‘DNK’ ‘CSK’ ‘CAN’ 
16 ‘ESP’ ‘CHN’ ‘DNK’ ‘FIN’ ‘CHE’ ‘POL’ ‘POL’ ‘HKG’ 
17 ‘SGP’ ‘NOR’ ‘ZAF’ ‘ESP’ ‘TWN’ ‘PRT’ ‘RUS’ ‘CHE’ 
18 ‘IRL’ ‘AUS’ ‘IRL’ ‘SGP’ ‘SWE’ ‘HKG’ ‘KOR’ ‘ESP’ 
19 ‘NOR’ ‘ARG’ ‘AUS’ ‘KOR’ ‘CSK’ ‘RUS’ ‘CHE’ ‘SWE’ 
20 ‘RUS’ ‘SGP’ ‘POL’ ‘HKG’ ‘HKG’ ‘IRL’ ‘HKG’ ‘AUT’ 

Legend: ranking of countries according to the 𝐵𝐶𝑖 index for 1980 and 2004. Colors represent different 
geographical areas (emerging countries). 

 

We observe first that the number of emerging countries in the top 20 is increasing during the 

period, from various parts of the world. Second, these countries are technologically 

specialized: Eastern European countries on low and medium tech goods, South-East Asian 

countries on high tech goods. 

 

The “catching-up of emerging countries” phenomenon in international trade can be supported 

by the normalized ratio: 

 

𝐶𝐼𝑖 =
𝐵𝐶𝑖

max
𝑖

(𝐵𝐶) − min
𝑖

(𝐵𝐶) 
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Catch-up index 

 
Legend: evolving values of 𝐶𝐼𝑖 for south-east Asian countries. 

 

All of these Asian countries are in a dynamics of catching up, particularly strong for China, 

South Korea and Malaysia, smaller for the others. As we can see in this figure, the depressive 

effect of the Asian crisis of 1997-1998 on the weight of these economies in the world trade is 

easily detectable. 

 

The value of RII is also decomposable by flows. If we consider, as in this example, a 

multiplex structure (i.e. a structure in which the vertices are linked by multiple arcs, here by 

the flows of the different industrial goods traded internationally), the measurement of RII on 

the partial multigraph omitting the flows of a particular good (“layer”) captures the 

contribution of this good to the value of the structural determinant. This contribution can be 

empirically assessed by the ratio: 

 

𝐶𝑇𝑗 =
𝑅𝐼𝐼 − 𝑅𝐼𝐼−𝑗

𝑅𝐼𝐼
=

𝐷−𝑗 − 𝐷
𝐷−𝑗(1 − 𝐷) 

 

where 𝑅𝐼𝐼−𝑗 is the value of interdependence of the multigraph not including the layer j, and 

𝐷−𝑗 is the determinant of the same multigraph. This indicator can be interpreted as a measure 

of betweenness centrality of goods in international trade. 
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To identify the sectoral trajectories of catching up, we normalize the CT value between 0 and 

1. Industrial equipment and transports are the leading sectors in the international trade. 

Overall, the secondary high-tech sectors (pharmaceuticals, computer equipment) increase 

their relative importance. 

 

Sectoral contributions index 

 
Legend: normalized 𝐶𝑇𝑗 values for main internationally traded products. 

 

Following theorems 7 through 10 (on the partition of the structure), we can isolate any group 

of countries in international trade. The group we choose here consists of countries that share a 

border with the Mediterranean Sea: Albania, Algeria, Cyprus, Egypt, Spain, France, Gibraltar, 

Greece, Israel, Italy, Lebanon, Libya, Morocco, Malta, Syria, Tunisia, Turkey and ex-

Yugoslavia. We measure the interconnectedness between this group of countries (med) and 

the rest of the world (RW) using: 

 

𝐼𝑚𝑒𝑑−𝑅𝑊 = 𝐷𝑚𝑒𝑑 × 𝐷𝑅𝑊 − 𝐷 
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Interconnectedness of the Mediterranean area 

 
Legend: interconnectedness of Mediterranean countries relatively to the rest of the world (𝐼𝑚𝑒𝑑−𝑅𝑊). 

 

The second half of the 1980s is characterized by a significant jump of circularities between 

the two groups of countries, but it has tended to decline since the early 1990s. This trend 

reversal is primarily driven by low tech and high tech products. At the single products level, 

the linkage with the rest of the world is intense for food, leather, and textiles (low tech), 

rubber, iron / steel and transport (medium tech), chemistry and, dramatically since the mid-

1990s, pharmaceuticals (high tech). 

 

The last index measures the circularities of the whole structure concentrated into the 

Mediterranean area. It is constructed by comparing the intra-Mediterranean trade when the Xi 

and Xj of the whole structure are used as deflator (“open structure”, o) to the same trade when 

the Xi and Xj are computed from the sole intra-Mediterranean trade (“closed structure”, c). The 

determinant of the sub-structure is higher in the second case (i.e. the circularities are lower), 

and the more the circularities are concentrated into the area, the more the IC ratio is close to 

unity. Ultimately, if all of the circularities of the whole structure are internalized in the group 

of Mediterranean countries, the value of IC becomes equal to 1. 

 

𝐼𝐶𝑚𝑒𝑑 =
1 − 𝐷𝑚𝑒𝑑

𝑐

1 − 𝐷𝑚𝑒𝑑
𝑜  
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where 1 − 𝐷𝑚𝑒𝑑
𝑐   is the interdependence of the “closed” Mediterranean area, and 1 − 𝐷𝑚𝑒𝑑

𝑜  

the one of the “open” Mediterranean sub-structure. 

 

Internalization of circularities – Mediterranean area 

 
Legend: value of 𝐼𝐶𝑚𝑒𝑑 for different kinds of products 

 

The value of IC has slightly declined during the first half of the 1980s. Since then, this value 

remains constant. While the concentration of circularities in the low tech and medium tech 

categories increases significantly, it decreases tendentiously for the high tech category: the 

intra-Mediterranean trade is, relatively, less and less based on the most demanded products at 

the international level. Within each category, the situations of the different products are 

specific. For example, in the low tech category, the leadership of the furniture sector had been 

replaced by that of the leather sector: the IC ratio for this last product has a value of 0.15 at 

the end of the period. 

 

 

Conclusion 

 

Theoretically, the analysis of structures raises two main problems: 

− Combining qualitative and topologic data on the one hand, and quantitative data on the 

other hand. 

− Seeing some details and substructures (nearsightedness) in their context without losing the 

overview of the overall structure (farsightedness) at the same time. 
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In this paper and in its application to international trade flows we have tried to keep far away 

from these two risks and to have a new look on the theory of structures and some of their 

possible applications. 

 

This paper can naturally lead us to some extensions. Theoretically, we are working on the 

theory of amplification and scheduled effects of a signal in a graph of influence. Empirically, 

the model seems to fit perfectly the new analysis of international trade in value added (by 

country, by large region such as EU, by economic activity, etc.). The rankings and the 

measures of dominance, dependence and interdependence will be strongly affected by the 

paradigmatic change made by OECD and WTO in the representation of international trade 

flows. 
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Appendices 

 

Appendix 1: The theorem of the loops and circuits 

 

By definition, the determinant D of a matrix �𝑑𝑖𝑗� is given by the sum of all the products of n 

terms of the matrix belonging to different rows and different columns. These products are 

multiplied by (−1)𝐼 where I denotes the number of inversions of the permutation of the index 

of the columns j when the factors are put in such a way that the index of the rows i come into 

the natural order, from 1 to n. 

 

The determinant can be written 𝐷 = ∑(−1)𝐼 𝑑1𝑎1𝑑2𝑎2 ⋯𝑑𝑛𝑎𝑛, where I is the number of 

inversion of the permutation (𝑎1,𝑎2,⋯ ,𝑎𝑛). 

 

For each substitution 𝑆 = � 1 2 ⋯ 𝑛
𝑎1 𝑎2 ⋯ 𝑎𝑛

�, a Hamiltonian Partial Graph (HPG) can be 

associated. 

 

It is easy to prove that when you draw the arcs 1 → 𝑎1, 2 → 𝑎2, …, 𝑛 → 𝑎𝑛, you find a set of 

loops and circuits which is a HPG (each vertex of the graph being reached once and only 

once). 

 

(−1)𝐼 gives the sign of the substitution S. This substitution S can be considered as a product 

of T transpositions. It is well known that (−1)𝐼 = (−1)𝑇. 

 

If one examines successively the terms of the development of the determinant D containing 

zero, one, two, …, till (n – 1) transpositions, one will find successively the unique HPG of the 

n loops, then all the HPG with only one circuit of two arcs, …, until the Hamiltonian circuits 

of n arcs (if they exist). 

 

It becomes easy to prove that: 

 

𝐷 = �(−1)𝐼 𝑑1𝑎1𝑑2𝑎2 ⋯𝑑𝑛𝑎𝑛 = �𝑉ℎ

𝐻

ℎ=1
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where h is the index of the hth existing HPG defined as follows: 

 

𝑉ℎ = (−1)𝑐ℎ𝑣ℎ 

 

with 𝑐ℎ the number of circuits of two or more arcs, and 𝑣ℎ the value of the product of the all 

positive coefficients of the loops and arcs belonging to the hth HPG. 

 

The equality: 

 

𝐷 = �𝑉ℎ

𝐻

ℎ=1

 

 

will be called the theorem of the loops and circuits. 

 

It is very useful, not in order to compute the determinant, but to understand the meaning of its 

lower and upper bounds, of its variations due to the circularities of the structures, etc. A lot of 

our issues and of our results are connected with this theorem. 

 

Appendix 2: Matrix A and matrix T have the same determinant 

 

The initial linear system is: 

 

(𝑆1)  𝑖, 𝑗 ∈ [1,𝑛]:   𝑋𝑖 −�𝑥𝑖𝑗

𝑛

𝑗=1

= 𝑌𝑖 

 

The first diagonal terms of A and T are the same: 

 

ℓ𝑖 = 1 −
𝑥𝑖𝑖
𝑋𝑖

= 𝑎𝑖𝑖 = 𝑡𝑖𝑖 

 

The other terms are: 
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𝑖 ≠ 𝑗,  𝑖, 𝑗 ∈ [1,𝑛]:   𝑎𝑖𝑗 = −𝑥𝑖𝑗
𝑋𝑗

 and 𝑡𝑖𝑗 = −𝑥𝑖𝑗
𝑋𝑖

 

 

Starting with matrix 𝒳 whose diagonal terms are (𝑋𝑖 − 𝑥𝑖𝑖) and the other terms are �−𝑥𝑖𝑗�, 

we get easily: 

 

|𝐴| =
|𝒳|

∏ 𝑋𝑗𝑛
𝑗=1

 

 

and: 

 

|𝑇| =
|𝒳|

∏ 𝑋𝑖𝑛
𝑖=1

 

 

which proves that: 

 

|𝐴| = |𝑇| = 𝐷 

 

(by definition). We will use both A and T. 

 

Appendix 3: Absolute and relative influence (“sensitivities” and “elasticities”) 

 

By definition, the absolute influence of a variation of the given data ∆𝑌𝑗 (demand) on the 

production 𝑋𝑖 is equal to the “sensitivity” 𝑠(𝑗)𝑖 = ∆𝑋𝑖
∆𝑌𝑗

. If it is required, the sensitivity of 𝑋𝑖 

when the production 𝑋𝑗 varies can be denoted 𝑠𝑗𝑖 = ∆𝑋𝑖
∆𝑋𝑗

. As 𝑎𝑖𝑗 is defined by −𝑥𝑖𝑗
𝑋𝑗

 and the 

diagonal terms of the matrix A are equal to (1 − 𝑎𝑖𝑖), we have: 

 

𝐴𝑋 = 𝑌 and 𝑋 = 𝐴−1𝑌 

 

The influence graph theory or Cramer formula gives the value of 𝑠(𝑗)𝑖. 

 

On the other hand, we can define the relative influence of a variation ∆𝑌𝑗 on the value of 

production 𝑋𝑖 by the “elasticity”: 
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𝑒(𝑗)𝑖 =
∆𝑋𝑖 𝑋𝑖⁄
∆𝑌𝑗 𝑌𝑗⁄  

 

Let 𝑃𝑖 and 𝒟𝑗 respectively denote the relative variation ∆𝑋𝑖 𝑋𝑖⁄  of production i and the relative 

variation ∆𝑌𝑗 𝑌𝑗⁄  of demand j. If it is required, the elasticity of 𝑋𝑖 when the production 𝑋𝑗 

varies can be denoted 𝑒𝑗𝑖 = ∆𝑋𝑖 𝑋𝑖⁄
∆𝑋𝑗 𝑋𝑗⁄

= 𝑃𝑖
𝑃𝑗

. 

 

Derived from the system (𝑆1), the system of variation can be written: 

 

(𝑆4)  𝑖, 𝑗 ∈ [1,𝑛]:   ∆𝑋𝑖 −�∆𝑥𝑖𝑗

𝑛

𝑗=1

= ∆𝑌𝑖 

 

As it is assumed that technical coefficients 𝑎𝑖𝑗 remains unchanged: 

 
∆𝑥𝑖𝑗
∆𝑋𝑗

=
𝑥𝑖𝑗
𝑋𝑗

= 𝑎𝑖𝑗 

 

it comes: 

 
∆𝑥𝑖𝑗
𝑥𝑖𝑗

=
∆𝑋𝑗
𝑋𝑗

= 𝑃𝑗 

 

Hence: 

 

∆𝑥𝑖𝑗 = 𝑥𝑖𝑗𝑃𝑗 

 

With the definition given to the term 𝑡𝑖𝑗: 

 

∆𝑥𝑖𝑗 = 𝑡𝑖𝑗𝑋𝑖𝑃𝑗 

 

Let us divide the general relation of the system of variations (𝑆4) by 𝑋𝑖: 
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𝑃𝑖 −� 𝑡𝑖𝑗𝑃𝑗
𝑛

𝑗=1
=
∆𝑌𝑖
𝑌𝑖

𝑌𝑖
𝑋𝑖

= 𝑦𝑖𝒟𝑖 

 

(by definition of 𝑦𝑖). Using matrices, it comes with column vectors P and 𝒟∗ where: 

 

𝒟∗ ≡ �
𝑦1𝒟1
⋮

𝑦𝑛𝒟𝑛

� 

 

𝑇𝑃 = 𝒟∗, or 𝑃 = 𝑇−1𝒟∗ 

 

The relative influences, or elasticities, 𝑒(𝑗)𝑖 are given by the influence graph theory or by the 

Cramer formula. 

 

Appendix 4: Leontief and Ghosh 

 

The Leontief matrix is A, with 𝑎𝑖𝑗 = 𝑋𝑖𝑗
𝑋𝑗

. It is generally linked with the computation of the 

effects of the variation of the vector of demands �∆𝑌𝑗� on the vector of production (∆𝑋𝑖). 

 

Assuming that demand is dominant, it comes: 𝐴𝑋 = 𝑌, or 𝑋 = 𝐴−1𝑌. Economists often call 

“sensitivities” the quotient ∆𝑋𝑖 ∆𝑌𝑗⁄ , and “elasticities” the “relative” quotient ∆𝑋𝑖 𝑋𝑖⁄
∆𝑌𝑗 𝑌𝑗⁄

. 

 

There is no “Ghosh matrix”. The name of Ghosh is associated with the hypothesis that supply 

is dominant (Ghosh, 1960). 

 

Concerning computational point of view, it seems easier to use the technical coefficient 𝑎𝑖𝑗 to 

get the “absolute influences” or “sensitivities” ∆𝑋𝑖 ∆𝑌𝑗⁄ , and the trade coefficients 𝑡𝑖𝑗 to get 

the “relative influences” or elasticities. 

 

The arcs of the influence graph may be directed as well from demand to supply or from 

supply to demand, but those two orientations must not be mixed in the same graph. 
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