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Abstract

With the emergence of the chaos theory and the method of surrogates data, nonlinear approaches
employed in analysing time series typically suffer from high computational complexity and lack
of straightforward explanation. Therefore, the need for methods capable of characterizing time
series in terms of their linear, nonlinear, deterministic and stochastic nature are preferable. In
this paper, we provide a signal modality analysis on a variety of exchange rates. The analysis is
achieved by using the recently proposed ’delay vector variance’ (DVV) method, which examines
local predictability of a signal in the phase space to detect the presence of determinism and
nonlinearity in a time series. Optimal embedding parameters used in the DVV analysis are
obtain via a differential entropy based method using wavelet-based surrogates. A comprehensive
analysis of the feasibility of this approach is provided. The empirical results show that the DVV
method can be opted as an alternative way to understanding exchange rates dynamics.

Keywords: Nonlinearity analysis, Exchange Rates, Surrogates, Delay vector variance (DVV)
method, Wavelets
JEL: C14, C22, C40, F31

1. Introduction

In real-world applications of economic time series analysis, the process underlying the gen-
erated signal, which is the time series, are a priori unknown. These signals usually contain
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both linear and nonlinear, as well as deterministic and stochastic components, yet it is a com-
mon practice to model such processes using suboptimal, but mathematically tractable models.
In general, performing a nonlinearity analysis in a modelling or signal processing context can
lead to a significant improvement of the quality of the results, since it facilitates the selection
of appropriate processing methods, suggested by the data itself. Interestingly, there has been
an increasing concerns on the forecasting performance of some nonlinear models in modelling
economic variables. Nonlinear models often provide superior in-sample fit, but rather poor out-
of-sample forecast performance (Stock and Watson, 1999). In cases were the nonlinearity is
suprious or relevant for only a small part of the observations, the use of nonlinear models will
lead to forecast failure (Terasvirta, 2011, Buncic, 2009). It is, therefore, essential to investigate
the intrinsic dynamical properties of economic time series in terms of its deterministic/stochastic
and nonlinear/linear components which reveal important information that otherwise remains not
clear in using conventional linear methods of time series analysis.

Several methods for detecting nonlinear nature of a signal have been proposed over the past
few years. The classic ones include the ’deterministic versus stochastic’ (DVS) plots (Casdagli,
1994), the Correlation Exponent and ’δ-ε’ method (Kaplan, 1994). For our purpose, it is desir-
able to have a method which is straightforward to visualize, and which facilitates the analysis of
predictability, which is a core notion in online learning. In this paper, we adopt to the recently
proposed phase space based ’delay vector variance’ (DVV) method (Gautama, 2004a), for signal
characterisation, which is more suitable for signal processing application because it examines
the nonlinear and deterministic signal behaviour at the same time. This method has been used
for the qualitative assessment of machine learning algorithms, analysis of functional magnetic
resonance imaging (fMRI) data, as well as analysing nonlinear structures in brain electrical ac-
tivity and heart rate variability (HRV) (Gautama, 2004b). Optimal embedding parameters will be
obtained using a differential entropy based method proposed in Gautama (2003), which allows
for simultaneous determination of both the embedding dimension and time lag. Surrogate gener-
ation used in this study will be based on a recently refined Iterative Amplitude Adjusted Fourier
Transform (iAAFT) using a wavelet-based approach, denoted WiAAFT (Keylock, 2006).

In this paper, we provide a novel procedure in understanding exchange rate dynamics based
on a phase space ’delay vector variance’ (DVV) method. The empirical results on a variety of
exchange rates shows that this new approach can be opted as an alternative way to understanding
exchange rates dynamics. The paper is organised as follows: In section2, we discuss wavelets
and wavelet transforms and then give an overview on recent types of surrogate generation. An
entropy-based method for determining the embedding parameters of the phase-space of a time
series is presented. We then provide the ’Delay Vector Variance’ methodology with an illus-
tration. In section3, we present a comprehensive analysis of the feasibility of this approach to
characterizing a variety of exchange rates: real effective exchange rate of euro, five bilateral real
exchange rate series relative to US dollar and then eight bilateral real exchange rate series relative
to the euro.

2. Background and ’Delay Vector Variance’ Method

The Characterization of signal nonlinearities, which emerged in physics in the mid–1990s,
have been successfully applied in predicting survival in heart failure cases and also adopted in
practical engineering applications (Ho et al. (1997); Chambers and Mandic (2001)). We adopt to
some terminologies given by Gautama (2004b), that we will refer to in the rest of the manuscript:
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The “nature” of a signal refers to two sets of signal properties: linear/nonlinear and determinis-
tic/stochastic. We will often refer to a time series as a signal. A linear signal is generated by a
linear time-invariant system, driven by white Gaussian noise, measured by a static, monotonic,
and possibly nonlinear observation function. For instance, a linear signal can be generated by
an autoregressive (AR) model driven by normally distributed, white noise. Signals that cannot
be generated in such a way are considered nonlinear. A signal is considered deterministic if it
can be precisely described by a set of equations; otherwise it is considered stochastic. Surrogate
time series, or ’surrogate’ for short, is non-parametric randomised linear version of the original
data which preserves the linear properties of the original data. There exist many methods for
generating surrogates (for an overview, Schreiber and Schmitz (2000)).

2.1. Wavelet-based Surrogates
For identification of nonlinear/linear behavior in a given time series, the null hypothesis that

the original data conform to a linear Gaussian stochastic process is formulated. An established
method for generating constrained surrogates conforming to the properties of a linear Gaussian
process is the Iterative Amplitude Adjusted Fourier Transform (iAAFT), which has become quite
popular (Teolis (1998); Schreiber and Schmitz (1996, 2000); Kugiumtzis (1999)). This type of
surrogate time series retains the signal distribution and amplitude spectrum of the original time
series, and takes into account a possibly nonlinear and static observation function due to the
measurement process. The method uses a fixed point iteration algorithm for achieving this, for
the details of which we refer to Schreiber and Schmitz (1996, 2000).

Wavelet-based surrogate generation is a fairly new method of constructing surrogate for hy-
pothesis testing of nonlinearity which applies a wavelet decomposition of the time series. The
main difference between Fourier transform and wavelet transform1 is that the former is only lo-
calized in frequency, whereas the latter is localized both in time and frequency. The idea of a
wavelet representation is an orthogonal decomposition across a hierarchy of temporal and spatial
scales by a set of wavelet and scaling functions.

The iAAFT-method has recently been refined using a wavelet-based approach, denoted by
WiAAFT (Keylock (2006)), that provides for constrained realizations2 of surrogate data that
resembles the original data while preserving the local mean and variance as well as the power
spectrum and distribution of the original except for randomizing the nonlinear properties of the
signal. The WiAAFT-procedure follows the iAAFT-algorithm but uses the Maximal Overlap
Discrete Wavelet Transform (MODWT) where the iAAFT-procedure is applied to each set of
wavelet detail coefficients D j(n) over the dyadic scales 2 j−1 for j = 1, · · · , J, i.e., each set of
D j(n) is considered as a time series of its own.

2.2. Optimal Embedding Parameters
In the context of signal processing, an established method for visualising an attractor of

an underlying nonlinear dynamical signal is by means of time delay embedding (Hegger and
Schreiber (1999)). By time-delay embedding, the original time series {xk} is represented in the

1There are essentially two distinct classes of Wavelet transforms: the continuous wavelet transform and the discrete
wavelet transform. We refer the reader to Addison (2005); Walden and Percival (2000) for a review on Wavelet trans-
forms.

2These are surrogate realizations that are generated from the original data to conform to certain properties of the
original data, e.g., their linear properties, i.e., mean, standard deviation, distribution, power spectrum and autocorrelation
function (Schreiber and Schmitz (1996, 2000)).
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so-called ’phase space’ by a set of delay vectors (DVs) of a given embedding dimension, m, and
time lag, τ : x(k) = [xk−τ, · · · , xk−mτ]. Gautama (2003) proposed a differential entropy based
method for determining the optimal embedding parameters of a signal. The main advantage of
this method is that a single measure is simultaneously used for optimising both the embedding
dimension and time lag. We provide below an overview of the procedure:

The “Entropy Ratio” is defined as

Rent(m, τ) = I(m, τ) +
m ln N

N
, (1)

where N is the number of delay vectors, which is kept constant for all values of m and τ under
consideration,

I(m, τ) =
H(x,m, τ)
〈H(xs,i,m, τ)〉i

(2)

where x is the signal, xs,i i = 1, · · · ,Ts surrogates of the signal x, 〈·〉i denotes the average over
i, H(x,m, τ) denotes the differential entropies estimated for time delay embedded versions of a
time series, x, which an inverse measure of the structure in the phase space. Gautama (2003)
proposed to use the Kozachenko-Leonenko (K-L) estimate (Leonenko and Kozachenko (1987))
of the differential entropy given by

H(x) =

T∑
j=1

ln(Tρ j) + ln 2 + CE (3)

where T is the number of samples in the data set, ρ j is the Euclidean distance of the j-th de-
lay vector to its nearest neighbour, and CE(≈ 0.5772) is the Euler constant. This ratio criterion
requires a time series to display a clear structure in the phase space. Thus, for time series with
no clear structure, the method will not yield a clear minimum, and a different approach needs to
be adopted, possibly one that does not rely on a phase space representation. When this method
is applied directly to a time series exhibiting strong serial correlations, it yields embedding pa-
rameters which have a preference for τopt = 1. In order to ensure robustness of this method to
the dimensionality and serial correlations of a time series, Gautama (2003) suggested to use the
iAAFT method for surrogate generation since it retains within the surrogate both signal distribu-
tion and approximately the autocorrelation structure of the original signal. In this Paper, we opt
to use wavelet-based surrogate generation method, WiAAFT by in Keylock (2006), for reasons
already discussed in the previous section.

2.3. ’Delay Vector Variance’ method
The ’delay vector variance’ (DVV) method (Gautama (2004a)) is a recently proposed phase

space based method for signal characterisation. It is more suitable for signal processing applica-
tion because it examines the nonlinear and deterministic signal behaviour at the same time. The
algorithm is summarized below:

• For an optimal embedding dimension m and time lag τ, generate delay vector (DV): x(k) =

[xk−τ, · · · , xk−mτ] and corresponding target xk

• The mean µd and standard deviation, σd, are computed over all pairwise distances between
DVs, ‖x(i) − x( j)‖ for i , j.
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• The sets Ωk are generated such that Ωk = {x(i)|‖x(k)− x(i)‖≤ %d}, i.e., sets which consist of
all DVs that lie closer to x(k) than a certain distance %d, taken from the interval [min{0, µd−

ndσd}; µd +ndσd], e.g., uniformly spaced, where nd is a parameter controlling the span over
which to perform the DVV analysis.

• For every set Ωk, the variance of the corresponding targets, σ2
k , is computed. The aver-

age over all sets Ωk, normalised by the variance of the time series, σ2
x, yields the target

variance, σ∗2 :

σ∗2(%d) =

1
N

∑N
k=1 σ

2
k(%d)

σ2
x

(4)

where N denotes the total number of sets Ωk(%d)

(a) AR(2) signal (b) Henon signal

Figure 1: Nonlinear and deterministic nature of signals. The first row of Diagrams 1a and 1b are
DVV plots for a linear benchmark signal: AR(2) signal and a nonlinear benchmark signal: Henon
signal, where the red line with crosses denotes the DVV plot for the average of 25 WiAAFT-based
surrogates while the blue line denotes that for the original signal. The second row of Diagrams
1a and 1b denote the DVV scatter diagrams for those two signals, where error bars denote the
standard deviation of the target variances of surrogates.

As a result of the standardisation of the distance axis, the resulting DVV plots are easy to
interpret, as illustrated in the first row of Figure 1a and Figure 1b. The minimum target variance,
which corresponds to the lowest point of the curve, is a measure for the amount of noise which
is present in the time series. The presence of a strong deterministic component will lead to small
target variances for small spans, nd. At the extreme right, the DVV plots smoothly converge
to unity, as illustrated in Figure 1a and Figure 1b. The reason behind this is that for maximum
spans, all DVs belong to the same set, and the variance of the targets is equal to the variance of
the time series. In the following step, the linear or nonlinear nature of the time series is examined
by performing DVV analysis on both the original and 25 WiAAFT surrogate time series. Due to
the standardisation of the distance axis, these plots can be conveniently combined within a scatter
diagram, where the horizontal axis corresponds to the DVV plot of the original time series, and
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the vertical to that of the surrogate time series. If the surrogate time series yield DVV plots
similar to that of the original time series, as illustrated by the first row of Figure 1a, the DVV
scatter diagram coincides with the bisector line, and the original time series is judged to be linear,
as shown in second row of Figure 1a. If not, as illustrated by first row of Figure 1b, the DVV
scatter diagram will deviate from the bisector line and the original time series is judged to be
nonlinear, as depicted in the second row of Figure 1b.

In Figure 2 and Figure 3, we provide the structure of the DVV analysis on some simu-
lated processes such as: a self-exciting threshold autoregressive process (SETAR), linear autore-
gressive integrated moving average (ARIMA) signal, a Generalised autoregressive conditional
heteroskadastic process (GARCH), and a signal with a mean equation as Autoregressive (AR)
process and the innovations generated from a skewed Student-t APARCH (asymmetric power
autoregressive conditional heteroskadastic) process. The interpretation of the DVV analysis is
not different from the previous illustration.

(a) DVV analysis on ARIMA(1,1,0) signal (b) DVV analysis on SETAR(2,2,2) signal

Figure 2: DVV analysis on ARIMA and SETAR signals

(a) DVV analysis on GARCH(1,1) signal (b) DVV analysis on AR(1)-t-APARCH(2,1) signal

Figure 3: DVV analysis on GARCH and AR(1)-t-APARCH(2,1) signals
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3. Data Analysis

In this section, we provide a comprehensive analysis of the feasibility of the DVV method in
investigating the intrinsic dynamical properties of exchange rates. Optimal embedding parame-
ters used in the DVV analysis are obtained via the differential-entropy method. Wavelet-based
surrogate generation will be employed using the WiAAFT algorithm (Keylock (2006)). In this
study, we present results on a variety of exchange rates : real effective exchange rate of euro, five
bilateral real exchange rate series relative to US dollar and then eight bilateral real exchange rate
series relative to euro. We remark that all exchange rate time series considered in this study are
of monthly frequency. However, our approach is still applicable to understanding the dynamics
of exchange rates at different frequencies.

3.1. Application to Real Effective Exchange Rate of Euro

The monthly real effective exchange rate CPI deflated3 time series for the Euro. The data4

spans from 1980:10 to 2011:10 implying 373 observations. The logged time series is depicted
in Figure 4a. To choose the optimal embedding parameters for the DVV method, we opted for
the differential-entropy based method, previously discussed in section 2.2, which yields m = 2,
τ = 4 and Rent(m, τ) = 1.0350. From Figure 4b, the DVV scatter diagram coincides with bisector
line, indicating linear dynamics of this exchange rate series. The DVV plot also reveals that
this exchange rate series is neither strictly deterministic nor strictly stochastic, but exhibits both
characteristics. This findings suggest the use of linear models in explaining the dynamics of the
euro real effective exchange rate series.

(a) Logarithm of real effective exchange rate of Euro (b) DVV analysis

Figure 4: The figure displays the time series plot of the Logarithm of euro real effective exchange
rate (October, 1980 to October, 2011) and the associated plots from the DVV analysis which
indicates both deterministic and stochastic characteristics with linear dynamics.

3The effective exchange rates (EERs) of the euro are geometrically weighted averages of the bilateral exchange rates
of the euro against the currencies of the euro area’s main trading partners. For additional information, see the “Daily
nominal effective exchange rate of the euro” section of the ECB’s website

4Data source: European Central Bank and code: EXR.M.Z08.EUR.ERC0.A
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3.2. Application to Five Bilateral real exchange rate series relative to US Dollar

For this application, we apply our proposed procedure on the same dataset used in the paper
of Buncic (2009), in which the author discusses the forecasting failures of exponential smooth
transition autoregressive (ESTAR) models to exchange rates. Our objective is to verify if indeed
the ESTAR model, which is a nonlinear model, was appropriate for modelling the real exchange
rates considered by Buncic, 2009. The data 5 consists of five real exchange rates relative to the
US dollar corresponding to the UK, Japan, German, France and Switzerland, from January 1973
to June 2008. These real exchange rates are constructed in the standard way as qt ≡ log

( CPIhome
t

CPIUS
t S t

)
,

where S t is the home currency price of one US dollar. The time series plot of the normalised real
exchange rates over the period is shown in Figure 5a.

(a) Time series plot of the normalised real exchange rates over
the period from January 1973 to June 2008.

(b) Bilateral exchange rate of Switzerland- US

Figure 5: The DVV scatter diagram coincides with the bisector, indicating linear nature

To begin with the DVV method, we first opt to use the Differential-Entropy based method
with wavelet-based surrogates to obtain the optimal embedding parameters. In general, we obtain
embedding dimension parameter, m = 2 with different time delays, τ for all the exchange rates
considered in this study. Figure 6 shows the structure of the Differential-Entropy method for two
bilateral exchange rates: France-US and UK - US.

Looking at Figures 5b, 7, 8, the DVV analysis reveals that the five real exchange rates relative
to the US dollar are driven by linear dynamics. The DVV analysis, looking at the DVV plots,
reveals that the five exchange rate series are neither strictly deterministic nor strictly stochastic,
but exhibits both characteristics. These findings provide no support for the use of nonlinear
models such as ESTAR model to forecast such real exchange rates since they exhibit a linear
nature. In our opinion, a possible nonlinear alternative such as the SETAR model could be
considered in modelling the UK-US exchange rate series since the DVV analysis shown in Figure
8b yields a slight deviation from the bisector around the central region of the plots. Hence, our
findings are consistent with the results of Buncic (2009) on no forecast gained by ESTAR model
over linear autoregressive model.

5The data can be downloaded from http://www.mathstat.unisg.ch/buncic/data/rer data.xls
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(a) Bilateral exchange rate of France - US. (b) Bilateral exchange rate of UK - US.

Figure 6: The Optimal embedding parameters of the time series obtain via the Differential-
Entropy based method using wavelet-based surrogates. We observe a clear structure with the
parameter values indicated as an open circle.

3.3. Application to Bilateral real exchange rate series relative to Euro
We now consider eight bilateral monthly exchange rates of Australian dollar, Canadian dollar,

Swiss franc, UK pound sterling, Japanese yen, US dollar, Hong Kong dollar and SouthAfrican
rand relative to the Euro. Our data is taken from European Central Bank 6 and spans from
1999:01 to 2011:11 implying 155 observations. We obtain the same embedding dimension of
m = 2 and different time delay, τ for all the exchange rates under this section.

The results based on the DVV analysis indicates nonlinear dynamics for the bilateral ex-
change rates relative to euro: Australian dollar, Canadian dollar, Swiss franc, and SouthAfrican
rand, as shown in Figures 9a, 9b, 10a and 12b respectively. Similar interpretation of Figures 10b,
11a, 11b and 12a, provides evidence of linear dynamics7 for the other exchange rates considered
in this section.

4. Conclusion

In this study, we have provided a new procedure to characterizing the dynamics of exchange
rates. A comprehensive analysis of the feasibility of this approach is provided. The empirical
results on a variety of exchange rates shows that the ’delay vector variance’ (DVV) method can
be opted as an alternative way to understanding exchange rates dynamics.

Appendix A. Results from Differential-Entropy method

We provide a table A.1 of reported results on the optimal embedding parameters, (m, τ) and
associated entropy-ratio, Rent(m, τ) for the exchange rates considered in this study.

6Data source: ECB’s website http://www.ecb.int/stats/services/downloads/html/index.en.html
7We obtained the same dynamics for the U.S.- Euro Foreign Exchange Rate when our approach is applied to daily

rates. This unreported results is available from authors upon request.
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(a) Bilateral exchange rate of France - US (b) Bilateral exchange rate of German - US

Figure 7: The DVV Analysis plot reveals that both bilateral exchange rates exhibit linear dynam-
ics. It is clear that the DVV scatter diagrams coincides with the bisector.

(a) Bilateral exchange rate of Japan- US (b) Bilateral exchange rate of UK - US

Figure 8: The DVV scatter diagrams for both exchange rates series almost coincides with bisec-
tor, indicating linear dynamics.
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(a) Bilateral exchange rate of Australia- Euro (b) Bilateral exchange rate of Canada- Euro

Figure 9: The DVV analysis reveals nonlinear dynamics of both exchange rate series

(a) Bilateral exchange rate of Swiss -Euro (b) Bilateral exchange rate of UK-Euro

Figure 10: In diagram 10a, the DVV analysis indicates a nonlinear dynamics for the Swiss -
Euro exchange rate series. The linear nature of the UK-Euro exchange rate series is shown in
diagram 10b. The DVV analysis also indicates a presence of strong deterministic components in
the dynamics of both exchange rates.
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(a) Bilateral exchange rate of Japan-Euro (b) Bilateral exchange rate of US - Euro

Figure 11: The DVV analysis indicates linear dynamics for the Japan-Euro exchange rates. The
DVV scatter diagram of the US-Euro exchange rate series almost coincides with bisector, indi-
cating linear dynamics as shown in diagram 11b. The DVV plots reveals that both exchange rate
series are neither strictly deterministic nor strictly stochastic, but exhibits both characteristics.

(a) Bilateral exchange rate of Hong-Kong - Euro (b) Bilateral exchange rate of South Africa - Euro

Figure 12: The DVV scatter plots indicates linear nature for the Hong-Kong - Euro exchange
rate series and nonlinear dynamics for the South Africa - Euro exchange rate series.

12
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Exchange Rate m τ Rent(m, τ)
REER 2 4 1.0350
France-US 2 3 1.0247
German-US 2 8 1.0168
Japan-US 2 4 1.0162
UK-US 2 5 1.0119
SW-US 2 3 1.0115
Aust-Euro 2 1 1.1273
Cand-Euro 2 5 1.1385
Swiss-Euro 2 1 0.9862
Uk-Euro 2 2 1.1071
Jap-Euro 2 9 1.0804
US-Euro 2 8 1.0788
HK-Euro 2 7 1.1294
SA-Euro 2 10 1.0466

Table A.1: The Differential-Entropy based method for the Exchange Rates. The real effective
exchange rate of euro is denoted REER on the first row. The second row denotes five bilateral real
exchange rate series relative to US dollar corresponding to the UK, Japan, German, France and
Switzerland respectively. The last row represents eight bilateral real exchange rate series relative
to the euro : Australian dollar, Canadian dollar, Swiss franc, UK pound sterling, Japanese yen,
US dollar, Hong Kong dollar and SouthAfrican rand.
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