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Abstract

According to the last proposals of the Basel Committee on Banking Supervision, banks

under the Advanced Measurement Approach (AMA) must use four different sources of infor-

mation to assess their Operational Risk capital requirement. The fourth including "business

environment and internal control factors", i.e. qualitative criteria, the three main quantita-

tive sources available to banks to build the Loss Distribution are Internal Loss Data, External

Loss Data, and Scenario Analysis. This paper proposes an innovative methodology to bring

together these three different sources in the Loss Distribution Approach (LDA) framework

through a Bayesian strategy. The integration of the different elements is performed in two

different steps to ensure an internal data driven model is obtained. In a first step, scenarios

are used to inform the prior distributions and external data informs the likelihood component

of the posterior function. In the second step, the initial posterior function is used as the prior

distribution and the internal loss data inform the likelihood component of the second poste-

rior. This latter posterior function enables the estimation of the parameters of the severity

distribution selected to represent the Operational Risk event types.

Key words: Operational Risk, Loss Distribution Approach, Bayesian Inference, Markov

Chain Monte Carlo, Extreme Value Theory, Non-parametric statistics, Risk Measures.
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1 Introduction

Basel II requires bank to access the capital charge associated to operational risks (BCBS (2001;

2010)). There are three different approaches to measure operational risks, the basic, the stan-

dard and the advanced measurement approach (AMA), representing increasing levels of control

and difficulty of implementation. The AMA requires a better understanding of the exposure to

implement an internal model.

Basel II capital accord defines the capital charge as a risk measure obtained on an annual basis,

at a given confidence level on a loss distribution that integrates four sources of information:

internal data, external data, scenario analysis, business environment and internal control fac-

tors. The regulatory capital is given by the 99.9% percentile of the Loss Distribution and the

economical capital by a higher percentile related to the rating of the financial institution which

is usually between 99.95% and 99.98%.

The purpose of using multiple sources of information is to build an internal model based on

the largest set of data possible, in order to increase the robustness, the stability and the con-

servatism of the final capital evaluation. However, the different sources of information have

different characteristics which taken in isolation can be misleading. Internal loss data represent

the entity risk profile, external loss data characterize the industry risk profile and scenarios offer

a forward looking perspective and the unexpected loss from an internal point of view (Guégan

and Hassani (2012a)). Figure 1 illustrates this point by assuming that the internal loss data

tends to represent the body of the severity distribution, the scenarios the extreme tail and the

external data the section in between1.

This paper expands on the Frequency × Severity framework (Loss Distribution Approach), where

the Loss Distribution Function (Frachot et al. (2001), Cruz (2004) and Chernobai et al. (2007))

G is a weighted sum of γ-fold convoluted severity F distribution where γ represents the order

of convolution. The weight is provided by the frequency distribution p. Mathematically this
1External loss data usually overlap both internal data and scenario analysis and is therefore represented as a

link between the two previous components.
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Figure 1: Combination of internal loss data, external loss data and scenario analysis: depending

on the risk profile or the quantity of data available, the representation may be slightly different.
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function corresponds to:

G =
∞∑
γ=1

p(k; •)F⊗γ(x; •), x > 0, (1.1)

with

G = 0, x = 0.

⊗ denotes the convolution operator. Denoting g the density of G, we have

g =
∞∑
k=γ

p(k; •)f⊗γ(x; •), x > 0. (1.2)

Assuming a Poisson distribution to model the frequencies, the parameter is estimated by max-

imum likelihood on the internal loss data. However, as collection thresholds are being set up,

the frequency distribution parameter is adjusted using the parameterised severity distribution.

Consequently, the frequency distribution will indirectly be informed by the three different com-

ponents.

The focal point of this paper is to construct severity distributions by combining the three data

sources presented above. As the level of granularity of the risk taxonomy increases, the quantity

of data available per risk category tends to decrease. As a result, the traditional estimation

methods such as the maximum likelihood or the method of moments tend to be less reliable.

Consequently, we opted to bring together the three components within the Bayesian Inference

theoretical framework (BI) (Box and Tiao (1992), Shevchenko (2011)). Despite the numerous

hypotheses surrounding the BI, it is known to be efficient in situations where there are only a

few data points available.

In statistics, the Bayesian inference is a statistical method of inference in which Bayes’ theorem

(Bayes and Prince (1763)) is used to update the probability estimate of a proposition as addi-

tional information becomes available. The initial degree of confidence is called the prior and the

updated degree of confidence, the posterior.

Consider a random vector of loss data X = (X1, ..., Xn) whose joint density for a given vector

of parameters φ = (φ1, ..., φK), is h(x|φ). In the Bayesian approach, both observations and

parameters are considered to be random. Then the joint density is

h(x,φ) = h(x|φ)π(φ) = π(φ|x)h(x), (1.3)
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where, π(φ) is the probability density of the parameters, known as the prior density function.

Typically, π(φ) depends on a set of further parameters that are usually called "hyper" param-

eters 2. π(φ|x) is the density of parameters given data X, known as the posterior density,

h(x,φ) is the joint density of observed data and parameters and h(x|φ) is the density of ob-

servations for given parameters. This is the same as a likelihood function if considered as a

function of φ, i.e. lX(φ) = h(x|φ). h(x) is the marginal density of X that can be written as

h(x) =
´
h(x|φ)π(φ)d|φ.

The Bayesian inference approach permits a reliable estimation of distributions’ parameters even

if the quantity of data denoted n is limited. And as n becomes larger, the weight of the likeli-

hood component increases such that if n→∞, the posterior distribution tends to the likelihood

function, and consequently parameters obtained from both approaches converge. As a result,

the data selected to inform the likelihood component may lead the model and, as a consequence

the capital charge. Therefore, in our two-step approach, there is an opportunity for operational

risk managers and modelers to integrate all the aforementioned components in a way they do

not have to justify a capital charge increase due to an extreme loss an another entity would have

suffered.

This paper proposes applying two Bayesian inference approaches sequentially in order to obtain

the parameter of the statistical distribution used to characterise the severity. Scenarios are used

to build the prior distributions of the parameters denoted π(φ), which is refined using external

data to inform the likelihood component. This results in an initial posterior function (π(φ|Y ))

which is then used as a prior distribution and the likelihood part is informed by the internal

data. This leads to a second posterior distribution which allows the estimation of the parame-

ters of the severity distribution used to build the loss distribution function in the LDA approach.

The next section presents the Cascade strategy and the underlying assumption allowing a data

driven model. The third section deals with the implementation in practice using real data sets.

A fourth section presents the results and a fifth section concludes.
2These parameters are omitted here for simplicity of notation, these are the parameters of the densities used

as a prior distribution (e.g. a Gamma or Beta distribution).
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2 A Bayesian Inference in Two steps for Severity Estimation

This section outlines the two step approach to parametrize the severity distribution. The cascade

implementation of the Bayesian inference approach is justified by the following property. The

Bayesian posterior distribution implies that the larger the quantity of data used, the larger the

weight of the likelihood component. Consequently,

π(φ;x1, ..., xk) ∝ π(φ)
k∏
i=1

fi(xi|φ) k→∞→
k∏
i=1

fi(xi|φ), (2.1)

where, f is the density characterizing the severity distribution, xi a data point, and φ the set of

parameters to be estimated. As a result, the order of the Bayesian integration of the components

is significant.

This strategy is based on the construction of two successive posterior distribution functions.

The first uses the scenario values to inform the prior and the external loss data to inform the

likelihood function. Using a Markov Chain Monte Carlo algorithm (Gilks et al. (1996)), a

first posterior empirical distribution is obtained. This is used as prior distribution in a second

Bayesian approach for which the likelihood component is informed by internal loss data. Due

to the Bayesian Approach property presented above, in the worst case, the final posterior dis-

tribution is entirely driven by internal data. The method may be formalised as follows. f is the

density function of the severity distribution, yi represent the internal data, xi the external data

and φ the set of parameters to be estimated.

1. Prior π0 is informed by the scenarios and the likelihood component by external data:

π1(φ;x1, ..., xk) ∝ π0(φ)
k∏
i=1

fi(yi|φ). (2.2)

2. The aforementioned posterior π1 used as prior and the likelihood component is informed

by internal data:

π2(φ;x1, ..., xk) ∝ π1(φ)
k∏
i=1

fi(xi|φ). (2.3)

As a result, the first posterior function becomes a prior, and only a prior, limiting the impact

of the first two components on the parameters.
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Level 1 Level 2 Nb used min median mean max sd skewness kurtosis

Internal Fraud Global 665 4 137 28 165 261 475 46 779 130 1,9E+06 21,4 407,1

External Fraud Payments 1 567 4 091 12 358 36 133 1 925 000 9,2E+04 11,7 185,2

Execution, Delivery & Process Management Other 3 602 4 084 10 789 96 620 30 435 400 9,5E+05 24,8 653,8

Table 1: The table presents the statistical moments of the internal loss data used in this paper,

as well as other statistics such as the minimum value, the maximum value and the number of

data point available. NB: Level 2 "Other" gathers "Execution, Delivery & Process Management"

losses other than "Financial Instruments" and "Payments".

Level 1 Level 2 Nb used min median mean max sd skewness kurtosis

Internal Fraud Global 2 956 20 001 88 691 697 005 130 715 800 4,5E+06 17,6 387,6

External Fraud Payments 1 085 20 006 36 464 326 127 106 772 200 4,3E+06 20,8 461,2

Execution, Delivery & Process Management Other 31 126 20 004 47 428 271 974 585 000 000 4,1E+06 107,2 14068,6

Table 2: The table presents the statistical moments of the external loss data used in this paper,

as well as other statistics such as the minimum value, the maximum value and the number of

data available. NB: Level 2 "Other" gathers "Execution, Delivery & Process Management" losses

other than "Financial Instruments" and "Payments".

3 Carrying out the Cascade Approach In Practice

This section presents how the methodology may be carried out in practice. Firstly we will

introduce the data, secondly we will detail the approach and the estimation, and finally we will

present the resulting capital charges.

3.1 The Data Sets

The results presented were obtained using OpBase, the external data base developed by Aon

Limited. It captures the losses corresponding to the Operational risk claims and the losses in

the public domain(PKM). The scenarios correspond to those we obtained through a scenario

workshop process. There are many different scenario approaches that are compatible with our

approach, therefore this will not be discussed any further (Guégan and Hassani (2012a)) in this

paper. the internal loss data were provided by a first tier European bank.
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Level 1 Level 2 1 in 10 1 in 40

Internal Fraud Global 6,0E+06 5,2E+07

External Fraud Payments 1,5E+06 2,5E+07

Execution, Delivery & Process Management Other 2,5E+07 5,0E+07

Table 3: The table presents the scenario values used in this paper. 1 in 10 and 1 in 40

respectively denote the biggest loss that may occur in the next 10 and 40 years. NB: Level

2 "Other" gathers "Execution, Delivery & Process Management" losses other than "Financial

Instruments" and "Payments".

3.2 The Priors

This approach is applicable to any type of the traditional statistical distribution. In this pa-

per, Internal Fraud has been modeled using a lognormal distribution, External Fraud/Payment

via by a Weibull distribution and Execution, Delivery & Process Management / Other than

Payments is represented by a mixture model using a lognormal distribution in the body and a

Generalized Pareto Distribution at the tail (Guégan et al. (2011)).

Two criteria drive the selection of the prior distributions. They are either chosen so that their

supports are consistent with the acceptable values for the parameters, e.g. the shape parameter

of a Generalized Pareto distribution cannot be greater than 1, otherwise the infinite mean model

obtained leads to unrealistic capital values. Therefore, a beta distribution defined on a finite

support has been selected. Alternatively, the priors are selected such that the joint prior is a

conjugate distribution i.e. the posterior distribution belongs to the same family as the prior

distribution, with a different set of parameters.

In the general case, the prior π on the severity parameters can be written as:

π(φ) = π(φ1, φ2) = π(φ1|φ2)π(φ2) = π(φ2|φ1)π(φ1)

If the priors are independent then the previous function becomes

π(φ) = π(φ1, φ2) = π(φ1)π(φ2)
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Label Density Parameters

Beta Γ(α+β)
Γ(α)Γ(β)x

α−1(1− x)β−1 α = shape, β = scale

Gamma 1
Γ(α)βαx

α−1e−
x
β α = shape, β = scale

Gaussian 1
b
√

2πe
− (x−a)2

2b2 a = location, b = standardDeviation

Table 4: This table presents the priors used to parametrize: 1 - the Lognormal distribution, i.e.

the Gaussian distribution for µ and the Gamma distribution for σ, 2 - the Weibull distribution,

i.e. two Gamma distributions for the shape and the scale, 3 - the GPD, i.e. a Beta distribution

for the shape and a Gamma for the scale. These are informed by the scenarios.

Thereafter, priors are assumed to be independent.

For each distributions parameters, a set of prior distributions have been selected (Table 4 lists

the corresponding prior density functions):

• Lognormal - a Gaussian and a Gamma distribution

• Weibull - Gamma distributions for both the scale and the shape

• Generalized Pareto Distribution - A Beta distribution for the shape and a Gamma distri-

bution on the scale

3.3 Estimation

To obtain the global severity parameters3 of the selected distributions, three different approaches

may be carried out. These are listed below in order of complexity.

1. One can choose conjugate priors for the parameters in the first step of the Bayesian Infer-

ence estimation. In this case, the (joint) distribution of the posterior parameters is directly

known and it is possible to sample directly from this distribution to recreate the marginal

posterior distributions of each severity parameter. These may then be used to generate the

posterior empirical densities required to compute a Bayesian point estimator of the param-

eters. Admissible estimators are the median, mean, and mode of the posterior distribution.
3These take into account the 3 different data sources
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The mode (also called MAP, Maximum A Posteriori) can be seen as the ’most probable

estimator’ and ultimately coincides with the Maximum Likelihood Estimator (Lehmann

and Casella (1998)). Despite having good asymptotic properties, finding the mode of an

empirical distribution is not a trivial matter and often requires some additional techniques

and hypothesis (e.g. smoothing). This paper therefore uses posterior means is used as

point estimators.

To our knowledge, the only conjugate priors for continuous distributions were studied

by Shevchenko (2011), for the lognormal severity case . Conjugate approach requires

some assumptions that may not be sustainable in practice, particularly for priors that are

modelled with ’uncommon’ distributions (e.g. Inverse Chi Square). This might lead to

difficulties in the step known as "elicitation", i.e. calibrating the prior hyper-parameters

from the chosen scenario values.

2. Another solution is to release the conjugate prior assumption, and to use a Markov Chain

Monte Carlo approach in the first step to sample from the first posterior. One can then

use a parametric or non-parametric method to compute the corresponding densities. This

enables the posterior function π2 to be evaluated (see equation 2.3). Maximizing this

function directly gives the MAP estimators of the severity parameters (see above). Even if

this method is sufficient to compute values for the global parameters, it misses the purpose

of the Bayesian Inference, which is to provide a distribution as a final result instead of a

single value. Additionally, it may also suffer from all the drawbacks that an optimization

algorithm may suffer (e.g. non-convex functions, sensitivity to starting values, etc.)

3. The final alternative is to use a MCMC approach at each step of the aforementioned

Cascade Bayesian Inference. This method is more challenging to implement but is the

most powerful as it generates the entire distribution of the final severity parameters, from

which any credibility intervals and/or other statistics may be evaluated.

In this paper, the third alternative has been implemented using the Metropolis-Hasting algo-

rithm. This allows sequential sampling from the two posterior distributions. This algorithm

then enables us to build the distributions for the parameters contained in the φ vector. How-

ever, these distributions are used as priors in the next step of the cascade and as mentioned in
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the second point above, their densities are required from the sample obtained from the MCMC.

Two solutions may be carried out, a parametric and a non parametric one. The parametric

solution requires fitting statistical to empirical distributions, which may bias the construction.

In order to remain as close as possible to the empirical distributions generated, and therefore

to the data, a non parametric approach based on a Kernel density estimation has been chosen.

Using an Epanechnikov kernel and a cross validation method to calibrate the bandwidth value,

we obtain the non parametric density representing the parameter’s distributions (Appendix A

and B).

As a result, each of the different elements of the new posterior distribution have been built. The

new prior densities in the second step result from the first posterior. The new likelihood function

is informed by another data set, for instance the Internal Loss data to guarantee an internal loss

data driven model.

Remark 3.1. The innovation of this paper lies in the Cascade Bayesian Approach and its use

to combine different sources of information; consequently little emphasis has been placed on our

implementation of the MCMC with the Metropolis-Hasting algorithm, which is a known and

widespread topic in literature. The interested reader could for instance refer to Gilks et al.

(1996).

4 Results

The Cascade Bayesian approach enables the updating of the parameters of the distributions con-

sidered to model particular risk events. Table 7 presents the parameters estimated considering

the different pieces of information used to build the LDF, i.e. the parameters of the selected

distributions - for instance, the lognormal, the Weibull and the Generalized Pareto distribu-

tion - are estimated on each of these pieces of information without considering the information

brought by the others. It results in a large variance in the parameters, which once translated

into financial values may be inconsistent with the observations. For example, considering the

lognormal distribution for Internal Fraud, the median is equal to 40, 783.42 when considering

only the scenarios, 6, 047.53 using the external data and 11, 472.33 considering internal data.

The parameter implied variance of the losses is also quite different across the different elements.
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The variation is similar for the Weibull distribution that models external fraud. It may be even

worse in the case of the GPD, as the risk measures are extremely sensitive to the shape parameter.

Table 8 shows the evolution of the parameters as they are updated with respect to the different

pieces of information.

• Scenarios Severity is derived from the calibration of the priors distributions to the scenario

values. The theoretical means obtained from the calibrated priors provide scenario severity

estimates.

• Intermediate Severity refers to the estimation of the severity on the first obtained posterior,

i.e. the mean of the posterior distribution obtained from scenario values updated with

external loss data.

• Similarly, final severity represents the severity estimation on the second and last posterior

distribution, which includes scenarios, external and internal loss data. A 95% Bayesian

Confidence Interval (also known as a Credible Interval) derived from this final posterior

distribution is also provided. It is worth noticing that this interval – formally defined

as containing 95% of the distribution mass – is not unique and is chosen here as the

narrowest possible interval. It is therefore not necessarily symmetric around the posterior

mean estimator.

From implementing the Cascade approach, it results in final parameters located within the

range of values obtained from the different elements taken independently. As the dispersion of

the information increases, the variance of the theoretical losses tends to increase, as does the

theoretical kurtosis. For example, the evolution of the lognormal parameters is significant, as

the introduction of data belonging to the body (Table 7, first line) tends to decrease the mean

(the µ parameter is the mean of the log-transformed of the data), but naturally the dispersion

increases, and therefore, the variance tends to increase (the σ parameter is a representation of

the standard deviation of the log-transform of the data) (Table 8, first line). The impact of the

severity on frequency is given in Table 5. The conditional frequencies are naturally increasing

with respect to the severity distributions.
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0 400 000 000 800 000 000 1 200 000 000

Internal Fraud

External Fraud
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combined

internal data

external data

scenario

Figure 2: Comparison of Capital charge value obtained from the three components on a stand-

alone basis and in combination.

It also results in conservative capital charges considering the Value-at-Risk (Appendix D) ob-

tained from the different elements taken independently, as it tends to be a weighted average of

the VaR obtained from each part. The weights are automatically evaluated during the cascade

and directly related to the quantity and the quality of information integrated.
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As a final step, these results may be illustrated for the whole Bayesian Cascade estimation in

the simple lognormal case. Figure 3 shows the final posterior distribution obtained for µ and σ.

This is used to derive the 95% Bayesian Credible Interval given in Table 8. We also show the

results of the convergence of the posterior mean as a function of the number of MCMC iterations

for µ and σ. One can see that the values stabilize after 100 to 500 iterations in this example.

In the general case we chose to sample 3000 values and discard the first 1000 MCMC generated

values (burn-in period) to ensure the stability of our estimates.
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(a) Obtained Posterior Distribution for each severity parameter (µ and σ)

(b) Convergence of the Severity Estimation as the Posterior Mean in the MCMC Sampling

Figure 3: Posterior Distributions and Convergence of the estimations obtained on Internal

Fraud (lognormal case)

5 Conclusion

This paper presents an intuitive approach to building the loss distribution function using the

Bayesian Inference Framework and combining the different regulatory components.

This approach enables a controlled integration of the different elements through the Bayesian

Inference. The prior functions have the same role as a penalization function on the parame-

ters, and therefore behave as constraint during the estimation procedure. This results in capital

charges driven by internal data (as shown in Figure 2), that are not dramatically influenced by

external data or extreme scenarios.
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Hence, with our approach, the capital requirement calculation is inherently related to the risk

profile of the target financial institution and therefore provides senior management greater as-

surance of the validity of the results.

The next step to evaluate the financial institution global operational risk capital requirement

would be the construction of the multivariate distribution function linking the different loss

distributions which characterize the various event types through a copula. In the case, the

approach developed by Guégan and Hassani (2012b) may be of interest.
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A Appendix: Epanechnikov kernel

K(t) =


3
4

(1− 1
5 t

2)√
5 , for |t| <

√
5

0, otherwise
(A.1)

The efficiency is equal to 1, and the canonical bandwidth is equal to 15
1
5 ≈ 1.3510

B Appendix: Least Square Cross Validation

One of the most famous method to estimate the Kernel bandwidth is known as the least square

cross validation (Rudemo (1982) and Bowman (1984)). The structural idea is that the MISE

might be written has:

ζ( ˆf(x, h)− f(x)) = ζ(f̂(x;h))− 2
ˆ +∞

−∞
f̂(x;h)f(x)dx+ ζ(f(x)) (B.1)

Obviously, the last term of the equation does not depend on f therefore, we shall have the same

h minimizing the full MISE or only the first part,

ζ(f̂(x;h))− 2
ˆ +∞

−∞
f̂(x;h)f(x). (B.2)

An unbiased estimator for (B.1) is given by,

hLSCV = ζ(f̂(x, h))− 2 1
n

n∑
i=1

f̂−i(Xi;h), (B.3)

where f̂−1(x) is the density estimate constructed from all the data points except Xi:

f̂−1(x) = 1
h(n− 1)

n∑
j 6=i

K

((x−Xj)
h

)
. (B.4)

C Appendix: The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is almost a universal algorithm used to generate a Markov

chain with a stationary distribution π(φ|x). It has been developed by Metropolis et al. in

mechanical physics and generalised by Hastings in a statistical setting. It can be applied to a

variety of problems since it requires the knowledge of the distribution of interest up to a constant

only. Given a density π(φ|x), known up to a normalization constant, and a conditional density

q(φ∗|φ), the method generates the chain φ(1), φ(2), ... using the following algorithm:

20

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2013.09



1. Initialise φl=0 with any value within a support of π(φ|x);

2. For l = 1, ..., L

(a) Set φl = φl−1

(b) Generate a proposal φ∗ from q(φ∗|φ(l))

(c) Accept proposal with the acceptance probability:

p(φ(l), φ(∗)) = min
{

1, π(φ(l)|x)q(φ(∗)|φ(l))
π(φ(∗)|x)q(φ(l)|φ(∗))

}
. (C.1)

i.e. simulate U from the uniform distribution function U(0, 1) and set φ(l) = φ(∗)

if U < p(φ(l), φ(∗)). Note that the normalization constant of the posterior does not

contribute here;

3. Next l (i.e. do an increment, l = l + 1 , and return to step 2).

D Appendix: Risk Measure evaluation

For financial institutions, the capital requirement pertaining to operational risks is related to a

VaR at 99.9%. It may be defined as follows:

Given a confidence level α ∈ [0, 1], the VaR associated with a random variable X is given by the

smallest number x such that the probability that X exceeds x is not larger than (1− α)

V aR(1−α)% = inf(x ∈ R : P (X > x) ≤ (1− α)). (D.1)

And we can compare these results to those obtained based on the Expected Shortfall (ES) de-

fined as follows:

For a given α in [0, 1], η the V aR(1−α)%, and X a random variable which represents losses during

a prespecified period (such as a day, a week, or some other chosen time period) then,

ES(1−α)% = E(X|X > η). (D.2)
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Event Type Initial λ Corrected λ

Internal Fraud 133 261.5885

(Global) - lognormal

External Fraud 313.4 485.0353

(Payments) - Weibull

Event Type Initial λ body Initial λ tail Initial Global λ Corrected Global λ

Execution, Delivery, 144.08 9.2 153.28 1882.327

and Product Management

(Financial Instruments) - GPD

Table 5: Frequency distribution parameters used in the Capital charge calculations. The

standard deviations are given in brackets.

Event Type µ σ

Execution, Delivery, 8.092849 1.882122

and Product Management

(Financial Instruments) - lognormal body

Table 6: Body distribution (lognormal) parameters for Execution, Delivery, and Product Man-

agement / Financial Instruments. The standard deviations are provided in brackets.
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Label
Scenarios External Data Internal Data

φ1 φ2 φ1 φ2 Size φ1 φ2 Size

Internal Fraud 10.616031 2.024592 8.707405 2.693001 2956 9.347693 2.485755 665

(Global) - lognormal

External Fraud 0.37642 4.6951E+04 1.644924 5.4293E+04 1085 0.292442 976.922586 1567

(Payments) - Weibull

Execution, Delivery, 0.4705893 1.5309E+06 0.732526 1.1532E+06 31126 0.82231 7.0388E+05 3602

and Product Management

(Financial Instruments) - GPD

Table 7: This table presents the standalone parameters estimated for each components. Internal

Fraud severities are modelled using a lognormal distribution, External fraud / Payments using

a Weibull and Execution, Delivery, and Product Management considering a mixture model

combining a lognormal distribution in the body and a Generalized Pareto distribution in the

tail. The first column presents the initial parameters estimated for the scenarios. φ1 and

φ2 represent the severity parameters of the chosen distribution, i.e. (resp.) µ and σ for the

lognormal and shape and scale for the Weibull or GPD distribution. The second column shows

the values obtained for the external data. The third column shows the parameters obtained for

the internal data.
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Label Scenarios severity Intermediate severity Final severity

from priors (scenarios + External data) (scenarios + External data + Internal Data)

φ1 φ2 φ1 φ2 φ1 φ2

Internal Fraud (Global) - Lognormal 10.616031 2.024592 9.123964 2.539844 8.727855 2.684253

(95% Bayesian Credibility Interval) - - - - [7.98176; 9.95824] [1.23225; 4.42314]

External Fraud (Payments) - Weibull 0.3761 46942 0.38873 49942 0.39910 46622

(95% Bayesian Credibility Interval) - - - - [0.23127; 0.50673] [37632; 58981]

Execution, Delivery, and Product Management 0.4705893 1.5309E+06 0.4452626 1.5109E+06 0.6021 6.05E+05

(Financial Instruments) - GPD

(95% Bayesian Credibility Interval) - - - - [0.3313; 0.9089] [4.52E+05; 8.30E+05]

Table 8: The table presents the evolution of the parameters obtained carrying out the Cas-

cade Bayesian Approach. Internal Fraud severities are modelled using a lognormal distribution,

External fraud / Payments using a Weibull and Execution, Delivery, and Product Management

considering a mixture model combining a lognormal distribution in the body and a Generalized

Pareto distribution in the tail. The first column presents the initial parameters estimated from

the scenarios. φ1 and φ2 represent the severity parameters of the chosen distribution, i.e. (resp.)

µ and σ for the Lognormal and shape and scale for the Weibull or GPD distribution. The second

column shows the values obtained after the first refinement, i.e. after the incorporation of the

external data. The third column shows the final parameters following the second refinement,

i.e. after the integration of the internal data. The figures in brackets represent a 95% Bayesian

Credible Interval obtained from the final posterior distribution.
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Label Scenarios External Data Internal Data Combination

VaR VaR VaR VaR ES

Internal Fraud 843 445 037 855 464 158 1 143 579 396 1 106 692 211 2 470 332 812

(Global)

External Fraud Payments 128 243 367 13 664 057 3 945 116 119 637 592 126 935 364

(Payments)

Execution, Delivery, and Product Management 122 544 708 583 519 888 137 456 938 213 982 300 281 157 384

(Financial Instruments)

Table 9: This table presents the stand alone Value-at-Risk for each of the three components,

as well as the VaR and the Expected Shortfall computed by combining the three elements

by Cascade Bayesian Integration for each of the three different event types. Internal Fraud

severities are modelled using a lognormal distribution, External fraud / Payments using aWeibull

and Execution, Delivery, and Product Management considering a mixture model combining a

lognormal distribution in the body and a Generalized Pareto distribution in the tail. The

parameters of the distributions used to compute these values are shown in tables 7 and 8.
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