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Abstract:
In this paper, we propose a variance reduction method for quantile regressions with endogeneity

problems. First, we derive the asymptotic distribution of two-stage quantile estimators based on the
�tted-value approach under very general conditions on both error terms and exogenous variables.
Second, we exhibit a bias transmission property derived from the asymptotic representation of our
estimator. Third, using a reformulation of the dependent variable, we improve the e¢ ciency of
the two-stage quantile estimators by exploiting a trade-o¤ between an asymptotic bias con�ned
to the intercept estimator and a reduction of the variance of the slope estimator. Monte Carlo
simulation results show the excellent performance of our approach. In particular, by combining
quantile regressions with �rst-stage trimmed least-squares estimators, we obtain more accurate
slope estimates than 2SLS, 2SLAD and other estimators for a broad range of distributions.
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1 Introduction

This paper considers the estimation of a structural equation using quantile regression. Since the
seminal work by Koenker and Bassett (1978), the literature on quantile regression has grown rapidly.
There are two strands in the literature about quantile regression in the presence of endogeneity.
The �rst one, which we call the �structural approach,�corresponds to models speci�ed in terms of
the conditional quantile function of the structural equation and usually allows for heterogeneous
(or non-constant) quantile treatment e¤ects through nonseparable models.1 On the other hand,
the second one, which we refer to as the ��tted-value approach,�is based on the conditional quan-
tile function of the reduced-from equation. In the latter approach, the analysts substitute the
endogenous regressors with their �tted values obtained from some auxiliary regression based on
other exogenous variables.We follow the latter approach in this paper. For quantile regressions, it
is anchored on conditional quantile restrictions applied to the reduced-form equation.

Owing to its computational convenience, the �tted-value approach has been used to estimate
homogeneous (or constant) quantile treatment e¤ects.2 The theoretical foundation for the �tted-
value approach was �rst laid by Amemiya (1982) and Powell (1983) who analyze the two-stage
least-absolute-deviations estimator in a simple setting. Chen (1988) and Chen and Portnoy (1996)
investigate two-stage quantile regression in which the trimmed least squares (TLS) and least ab-
solute deviations (LAD) estimators are employed as the �rst-stage estimators, assuming that the
error terms are independent and identically distributed (IID). Kim and Muller (2004) use a sim-
ilar approach with quantile regression in the �rst stage. Although the �tted-value approach has
sometimes been used in applied work in which data are a¤ected by serial correlation and het-
eroskedasticity, no theoretical results under such general conditions have been provided.

In this paper, we make several contributions to the literature on the �tted-value approach. First,
we derive the asymptotic distribution and the variance-covariance matrix of the two-stage quantile
estimator under very general conditions on both error terms and explanatory variables. Second,
we exhibit a �bias transmission property�that characterizes the asymptotic representation of our
estimator. We use this property to facilitate the analyses of the link of reduced-form and structural
model, and to con�ne estimation bias on the intercept for some models. Third, we propose a new
method to improve the e¢ ciency of the two-stage quantile regressions. This method is based on an
idea in Amemiya (1982), who uses a composite dependent variable that is a weighted combination
of the original dependent variable and its �tted value. This composite dependent variable is used
in the second stage and the combination weight is varied to reduce the variance of the two-stage
quantile estimator.

A well-known method to reduce the variance of an estimator in statistics is to combine the
estimator with either a �xed point or another estimator, which creates the trade-o¤ between bias
and e¢ ciency. In this case, the optimal combination weight is determined by minimizing the
asymptotic variance of the combination estimator.3 This approach is di¢ cult to apply to two-stage
estimation because it generally either makes the entire estimator biased or requires the estimation
of the joint distribution of the two combined estimators. In contrast, our approach of using a
composite dependent variable implies that (i) only the intercept estimator is inconsistent with the
consistency of the slope estimator not depending on the weight parameter, and (ii) the variance

1The literature on the structural approach for quantile regressions is abundant. See for example: Kemp (1999),
MaCurdy and Timmins (2000), Sakata (2001), Abadie et al. (2002), Chen et al. (2003), Chesher (2003), Hong and
Tamer (2003), Honore and Hu (2003), Chernozhukov and Hansen (2005, 2006, 2008), Imbens and Newey (2006), Ma
and Koenker (2006), Chernozhukov, Imbens and Newey (2007), Lee (2007).

2For example, Arias et al. (2001), Garcia et al. (2001), Chevapatrakul et al. (2009) and Chortareas et al. (2012).
3For example, see James and Stein (1960), Sen and Saleh (1987), and Kim and White (2001).
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of the consistent slope estimator can be reduced by adjusting the weight parameter. The results
of our Monte Carlo simulations show that considerable e¢ ciency gains can be achieved by using
the proposed variance reduction method. This is particularly noticeable when compared to typical
estimators such as 2SLS or 2SLAD.

The paper is organized as follows. Section 2 discusses the model and the assumptions. In
Section 3, we derive the asymptotic representation of the two-stage quantile regression estimator.
We characterize the asymptotic bias of general two-stage estimators in Section 4. We analyze in
Section 5 the asymptotic normality and the asymptotic covariance matrix of two-stage quantile
estimators based on LS or TLS predictions. We also investigate the optimal weights that minimize
the asymptotic variance of two-stage quantile estimators. In Section 6, we present Monte Carlo
simulation results. Finally, Section 7 concludes. All technical proofs are collected in Appendix A.

2 The Model

We are interested in estimating the parameter (�0) in the following structural equation by quantile
regression:

yt = x01t�0 + Y
0
t 
0 + ut (1)

= z0t�0 + ut;

where [yt; Y 0t ] is a (G+ 1) row vector of endogenous variables, x
0
1t is a K1 row vector of exogenous

variables, zt = [x01t; Y
0
t ]
0, �0 = [�00; 


0
0]
0 and ut is an error term. We denote by x02t the row vector of

the K2 exogenous variables excluded from (1).
By assumption, the �rst element of x1t is 1 4. This crucial assumption will allow us to con�ne

a bias to an intercept parameter, often less interesting for analysts than the slope coe¢ cients. We
further assume that Yt can be linearly predicted from all of the exogenous variables:

Y 0t = x0t�0 + V
0
t , (2)

where x0t = [x01t; x
0
2t] is a K row vector with K = K1 + K2, �0 is a K � G matrix of unknown

parameters and V 0t is a G row vector of unknown error terms.
Using (1) and (2), yt can also be expressed as follows:

yt = x0t�0 + vt; (3)

where

�0 = H(�0)�0 with H(�0) =
��

IK1

0

�
;�0

�
(4)

and vt = ut + V
0
t 
0.

Equations (2) and (3) are the basis of the �rst-stage estimation that yields estimators �̂ and
�̂ respectively of �0 and �0. So far, we did not mention any restriction on errors. The precise
error restrictions will be introduced below in Assumptions 3 and 4 when dealing with examples of
�rst-stage estimators. This is because we wish to keep the framework as general as possible until
we deal with these examples. However, to set ideas, the reader may wish to consider conditional
quantile restriction on vt in the �tted-value approach. We now specify the data generating process.

4Using another coe¢ cient of secondary interest is possible for our argument, while it makes the presentation more
interesting by choosing the intercept.
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Assumption 1. The sequence f(x0t; ut; vt)g is ��mixing with mixing numbers f�(s)g of size
�2 (4K + 1) (K + 1).5

Studying quantile regressions with �-mixing processes is an unusual degree of generality. One
step in this direction was made by Portnoy (1991), who derived asymptotic results of quantile
estimators in dependent and even non-stationary cases, using m(n)-decomposability of random
variables.

It is generally possible to employ unbiased estimators in the �rst stage. However, in order to
exploit later on a trade-o¤ between bias and e¢ ciency, we allow in Assumption 2 for inconsistent
�rst-stage estimation with bounded asymptotic bias terms in the following assumption. This form
is convenient for including the contribution of �rst-stage estimators in the asymptotic distribution
of our �nal estimator. The precise restrictions on vt and Vt corresponding to �0 and �0 will be
brought up later on.

Assumption 2. There exist �nite bias vectors B� and B� such that
T 1=2(�̂ � �0 �B�) = Op(1) and T 1=2(�̂��0 �B�) = Op(1).

When the bias terms B� and B� are zero, the �rst-stage estimators are consistent. A case of
non-zero bias terms is when the reduced form equation in (3) is estimated by LS to produce the
�rst-stage estimator �̂, whereas the usual conditional quantile restriction (i.e. the zero quantile
restriction) is placed on vt in the same equation. In that case, the zero mean restriction on vt
cannot be simultaneously satis�ed in general. This implies that the intercept estimator, at least in
�̂, is inconsistent.

Let us now say more about two-stage quantile regressions in our setting. For any quantile
� 2 (0; 1), we de�ne ��(z) = z �(z); where  �(z) = � � 1[z�0] and 1[:] is the indicator function.
If the orthogonality conditions, E(zt �(ut)) = 0; were satis�ed, then the usual one-stage quantile
regression estimator (QR) would be consistent. However, when ut and Yt (a sub-vector of zt) are
statistically linked under weak endogeneity of Yt, these conditionsmay not be satis�ed. In that
case, the QR of �0 is generally not consistent, which is the endogeneity problem that prevents us
from using simple quantile regressions.

As an extension of Amemiya (1982), Powell (1983) and Chen and Portnoy (1996) to broader
DGPs, we de�ne, for any quantile �, the Two-Stage Quantile Regression (2SQR(�; q)) estimator �̂
of �0 as a solution to the following program:

min
�

ST (�; �̂; �̂; q; �) =
TX
t=1

��(qyt + (1� q)ŷt � x0tH(�̂)�); (5)

where ŷt = x0t�̂, q is a positive scalar constant, and �̂; �̂ are �rst-stage estimators. In the quantile
regression in (5), the dependent variable qyt+(1� q)ŷt is a weighted average of yt and of its �tted-
value ŷt obtained from the reduced form equation in (3). The combination weight q is restricted
to be positive for a technical reason discussed in the proof of Proposition 1 below. Alternatively,
as in Powell (1983), the case q negative is also possible by imposing � = 0:5, i.e., with the LAD
estimator.

The reformulation of the dependent variable as qyt + (1 � q)ŷt was originally suggested by
Amemiya (1982) to improve e¢ ciency in two-stage estimation with 0 < q < 1. The case q =

5The sequence fWtg of random variables is ��mixing if �(s) decreases towards 0 as s ! 1, where �(s) =
supt supA2F t�1;B2F1t+s

jP (A \ B) � P (A)P (B)j for s � 1 and F t
s denote the �-�eld generated by (Ws; : : : ;Wt) for

�1 � s � t � 1. The sequence is called ��mixing of size �a if �(s) = O(s�a�") for some " > 0.
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1 corresponds to the usual two-stage quantile regression estimator, while q = 0 corresponds to
the inverse regression estimator under exact identi�cation. Thus, the new dependent variable
introduces a trade-o¤ between two estimation methods. To obtain the asymptotic distribution of
the 2SQR(�; q) estimator, we impose the following usual regularity conditions.

Assumption 3. (i) H(�0 +B�) is of full column rank.
(ii) Let Ft(:jx) be the conditional cumulative distribution function (CDF) and ft(:jx) be the con-
ditional probability density function (PDF) of vt. The conditional PDF ft(�jx) is assumed to be
Lipschitz continuous for all x, strictly positive and bounded by a constant f0 (i.e., ft(�jx) < f0, for
all x).

(iii) The matrices Q = lim
T!1

E

�
1
T

TP
t=1

xtx
0
t

�
and Q0 = lim

T!1
E

�
1
T

TP
t=1

ft(0jxt)xtx0t
�
are �nite and

positive de�nite.
(iv) E( �(vt)jxt) = 0, for an arbitrary �.
(v) There exists a positive number C > 0 such that E(kxtk3) < C <1 for any t.

Assumption 3(i) is analogous to the usual identi�cation condition for simultaneous equations
models. The bias B� appears in the condition because the �rst-stage estimator converges towards
�0+B�. In the case when OLS is used for estimating �0, Assumption 3(i) ensures that E [xtYt] 6=
0. It implies similar conditions when other estimators are used. Assumption 3(ii) simpli�es the
demonstration of convergence of remainder terms to zero for the calculation of the asymptotic
representation. The second part of Assumption 3(iii) is the counterpart of the usual condition for
OLS that the sample second moment matrix of the regressor vectors converges towards a �nite
positive de�nite matrix, which corresponds to the �rst part. The last condition is akin to the one
in the conventional IV approach in that this condition is necessary for consistency and for the
inversion of the relevant empirical process to establish the asymptotic normality.

Assumption 3(iv) is the assumption that zero is the given �th-quantile of the conditional distri-
bution of vt.6 It identi�es the coe¢ cients of the model. Assumption 3(v), the moment condition
on the exogenous variables, is necessary for the stochastic equicontinuity of our empirical process
in the dependent case, which is used for the asymptotic representation. We also use it to bound
the asymptotic covariance matrix of the parameter estimators. The conditions on the exogenous
regressors are weaker than what is usually employed in the two-stage quantile regression literature.

Assumption 3(iv) is central to our �tted-value approach. The conditional quantile restriction
is placed on the reduced-form error vt and the information set used for the conditional restriction
exclusively consists of exogenous variables xt. It has been used in simpler settings in Amemiya
(1982), Powell (1981), Chen and Portnoy (1998) and Kim and Muller (2004).

Given that vt is a function of the structural error ut and the prediction equation error Vt,
it may be di¢ cult to interpret the quantile restriction in Assumption 3(iv) and to provide good
examples in which such a restriction holds. One condition to make Assumption 3(iv) plausible and
easy to interpret is the quantile-independence condition: E( �(vt)jxt) = E( �(vt)). Under the
quantile-independence condition, only constant quantile treatment e¤ect models can be speci�ed
and estimated. In that case, the intercept estimates describe the parallel shifts in the unconditional
quantiles of the error term.

Despite being limited to constant quantile treatment e¤ect models, the �tted-value approach

6 In the iid case, the term f(F�1(�))�1 typically appears in the variance formula of a quantile estimator (Koenker
and Bassett, 1978). However, due to Assumption 3(iv), F�1(�) is now zero so that we have f(0)�1 instead, in this
case.
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has several advantages worth mentioning. First, it does not involve any computational problem,
even with a large number of endogenous and exogenous variables, whereas the structural approach
cannot handle such a case. For example, the grid search method in Chernozhukov and Hansen
(2006) becomes increasingly di¢ cult to implement as the number of endogenous variables increases.
Second, considering the �tted-value approach allows us to propose a new powerful method of
variance reduction. We now study the asymptotic properties of 2SQR(�; q) in the next section.

3 The Asymptotic Representation

To derive the asymptotic representation of the 2SQR(�; q) estimator, we de�ne the following em-
pirical process.

MT (�) = T�1=2
TX
t=1

xt �(qvt � T�1=2x0t�);

where � is a K � 1 vector. Applying Theorem II.8 in Andrews (1990) yields the following lemma.
The lemma is proven only for the quantile regression case, while similar derivations can be done
for other two-stage M-estimators.

Lemma 1. Suppose that Assumptions 1 and 3 hold. Then, for any L > 0, we have the following
result:

sup
jj�jj�L

jjMT (�)�MT (0) + q
�1Q0�jj = op(1):

Combining Lemma 1 and Assumption 2 allows us to obtain the asymptotic representation for
the 2SQR(�; q) estimator with a possible bias term B� as follows7.

Proposition 1. Suppose that Assumptions 1-3 hold. Then, the asymptotic representation for the
2SQR(�; q) estimator is:

T 1=2(�̂� �0 �B�) = RT�1=2
TX
t=1

xtq �(vt)

+(1� q)RQ0T 1=2(�̂ � �0 �B�)
�RQ0T 1=2(�̂��0 �B�)
0 + op(1);

where B� = RQ0f(1�q)B��B�
0g; R = Q��1zz H(��0)
0; Q�zz = H(��0)

0Q0H(��0) and �
�
0 = �0+B�:

The asymptotic representation of 2SQR(�; q) is composed of four additive right-hand-side terms.
The �rst term does not perturb consistency under Assumption 3(iv) and corresponds to the con-
tribution of the second stage to the uncertainty of the estimator. The second and third terms
correspond to the respective contributions of �̂ and �̂ to this uncertainty. Then, when �̂ and �̂ are
consistent, it is straightforward to show that the 2SQR(�; q) is consistent. If q = 1, the in�uence of
�̂ vanishes. The presence of the contribution of �̂ may imply contradictions between some chosen re-
strictions on errors in the �rst and second stages and cause biases, which will be explained in detail
in the next section. The formula of B� is obtained as the value allowing T 1=2(�̂��0�B�) = Op(1),

7Other derivations of asymptotic representation of quantile regression estimators have been developed (Phillips,
1991, Pollard, 1991), which involve slightly di¤erent assumptions. Other possible approach to the asymptotic repre-
sentation of 2SQR is in Chen et al. (2003).
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and is derived from the �rst-order conditions of the second-stage estimation, which is discussed in
detail in Appendix A. We note that the consistency of �̂ to �0 +B� naturally follows from Propo-
sition 1.

4 The Asymptotic Bias

In this section, we discuss the relationship linking the bias terms in the �rst stage estimators
(B�; B�) and the second stage estimators (B�). We �rst state the following proposition.

Proposition 2. Suppose that both B� and B� have non-zero components only for their �rst

K1 elements; i.e., B� =
�
B�;1
B�;2

�
and B� =

�
B�;1
B�;2

�
with B�;1 and B�;1 being the �rst K1

components, and B�;2 = 0 and B�;2 = 0. Under this restriction, we have:

B� =

�
(1� q)B�;1 �B�;1
0
0G

�
;

where 0G is a G vector of zeros.

The su¢ cient stochastic assumptions for this characterization of the bias transmission are very
general, including general serial correlations and heteroskedasticity.

When the �rst-stage estimation is performed on the two reduced form equations in (2) and (3),
the explanatory or instrumental variables xt consists of vectors x1t and x2t. If a non-zero asymptotic
bias is present only in the coe¢ cients of x1t in the �rst-stage estimators (�̂ and �̂), which is the case
on which we focus, then the non-zero asymptotic bias in the second-stage estimator (�̂ = [�̂

0
; 
̂0]0)

is exclusively con�ned to the coe¢ cients of x1t; that is, only �̂ is asymptotically biased. Therefore,
the parameter (
0) for the endogenous variable Yt in the structural equation in (1), in which applied
economists are usually interested, can be consistently estimated.

This is useful because empirical researchers may often pay little attention to the intercept term,
whereas the estimates of the slope coe¢ cients often carry more explanatory meaning. One example
of such situation is when one performs the �rst-stage estimation of (2) and (3) by LS. Indeed,
under Assumption 3(iv) or under the stronger quantile-independence condition corresponding to
constant quantile treatment e¤ect models, the zero mean condition on vt is not satis�ed. Then, the
intercept LS estimator cannot be consistent (unless the probability support of vt does not include
the interval between the mean and the quantile of interest), while the remaining slope coe¢ cients
can still be consistently estimated. Moreover, depending on distributional restrictions on Vt that
the researcher is willing to impose, she may choose an estimator for �0 such that its intercept term
only is inconsistent.

We emphasize that the researcher, if she or he wishes, can eliminate the bias completely by
choosing q = 1 (i.e., not using the composite dependent variable) and by placing some suitable
restriction on Vt to make �̂ consistent. In this paper, we propose instead choosing q 6= 1 and
selecting �rst-stage estimators with bias terms con�ned only to their intercept parts in order to
allow for e¢ ciency gains for the second stage slope estimators. In that case, the slope coe¢ cients in
the structural equation can be consistently estimated while its asymptotic variance will depend on
q. This generates a trade-o¤ between the bias in the intercept estimator (i.e., the �rst element of
�̂) and the e¢ ciency of the slope estimator (i.e., all of the remaining elements of �̂). Our approach
contrasts with the statistics literature on shrinking estimators where all of coe¢ cients estimators
are biased to improve their e¢ ciency.
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Let v�t = vt�F�1vtjxt(�). Consider E( �(v
�
t )jxt) = ��P [v�t � 0jxt] = ��P

h
vt � F�1vtjxt

(�)jxt
i
=

� � � = 0, which is the conditional quantile restriction characterising v�t . As a consequence,
we obtain the reduced-form quantile regression restriction, provided we accept the introduction
in the regression of a possible nuisance bias term F�1vtjxt

(�) that may a¤ect all coe¢ cients of the
model when it is linear in xt, or even be nonlinear in xt. Let us now assume that ut and Vt are
independent of ~xt, de�ned as xt except constant variables. Since vt = ut + Vt
0, this assumption
implies F�1vtjxt (�) = F�1vt (�) and the nuisance term is con�ned to the intercept. Then, according to
Proposition 2, a bias is generated exclusively on the intercept term of the structural model.

However, this condition of independence for all � also implies constant e¤ects in the quantile re-
gressions of interest. Although the above characterisation of instrumental variables may be deemed
to be strong by some authors, it is usually the way instrumental variables are intuitively found by
empiricists: variables that are not connected at all with the model errors seen as a remainder of
the explanation of the dependent variable given the e¤ects of explanatory variables.

It is also easy to see that starting instead from E( �(vt)jxt) = 0 and assuming the independence
of vt and Vt with respect to ~xt, we can obtain the structural restriction E( �(u

�
t )jxt) = 0 for a

structural model with the right value of parameters, except perhaps for a bias on the intercept that
is incorporated in the de�nition of u�t . In that sense, under the previous independence assumption,
reduced form quantile regressions and structural quantile regressions can be seen as emerging
somehow from equivalent restrictions, with perhaps the exception of the intercept. In particular,
under the independence/constant e¤ect hypothesis, the estimates based on the conditional quantile
of the reduced form can be used to recover the slope estimator of the conditional quantile of the
structural form.

5 Asymptotic Normality and Covariances with LS and Trimmed-
LS Predictions

In this section, we examine the use of (non-robust) LS estimation and (robust) trimmed-least-
squares (TLS) estimation of �0 and �0 in the �rst stage in this section. There are several reasons
to consider LS estimation in the �rst stage. First, LS estimation is popular and can be readily used.
Second, using LS estimation in the �rst stage may improve the e¢ ciency of the �nal two-stage
quantile estimator, which may explain why empirical researchers have been using this technique.8

Alternatively, using TLS in the �rst stage guarantees the robustness of this estimation stage, while
some e¢ ciency may be lost. Using twice the same quantile regression in both stages has been
examined in Kim and Muller (2004). In that case, there is no consistency issue, but also no
opportunity for asymptotic variance reduction either as the asymptotics is invariant to the choice
of parameter q.

Since we consider constant quantile treatment e¤ect models, it is not restrictive to assume that
xt is mean-independent of vt and Vt as in Assumption 30 below. The following assumption is more
restrictive than what is necessary for Assumption 2 or for Proposition 2, given that we now wish
to con�ne the possible bias to the intercept exclusively.

Assumption 30. (i) E(vtjxt) = E(vt) and (ii) E(Vtjxt) = E(Vt):

Assumption 30 imposes the orthogonality of the reduced form errors with all non-constant

8Examples include Arias et al. (2001), Garcia et al. (2001), Chevapatrakul et al. (2009) and Chortareas et al.
(2012).
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exogenous variables. As stated before, an issue of using LS estimation in the �rst-stage is that the
condition E(vt) = 0, which makes the LS estimator �̂ in (3) consistent, con�icts with the restriction
E( �(vt)) = 0, which is implied by Assumption 3(iv); that is, the �

th quantile and the mean of vt
cannot be zero at the same time. Then, to be able to use the usual Bahadur representation of the
LS estimator, we de�ne the centered errors v�t = vt�E(vt) and V �t = Vt�E(Vt). By construction,
E(v�t jxt) = 0 and E(V �t jxt) = 0:

Under Assumption 30, the reduced form equations for Yt and yt in (2) and (3) can be rewritten
by reallocating the bias to the intercept coe¢ cient as follows:

Y 0t = x0t�
�
0 + V

0�
t ; (6)

where ��0 = �0+ B� with B� = [E(Vt)0; 00; :::; 00]0, which is a (K �G) matrix, and

yt = x0t�
�
0 + v

�
t ; (7)

where ��0 = �0 +B� with B� = [E(vt); 0; :::; 0]0, which is a (K � 1) matrix.
The bias B� is generally non-zero for q 6= 1. In contrast, B� can be non-zero or not, even with

q = 1; depending on the restrictions imposed on Vt. In the case q = 1, a natural speci�cation
suggests E(Vtjxt) = 0 when using OLS to estimate (2) and no bias at all. In other cases, B� and
B� may have to be taken into account.

Let ~� and ~� be the �rst-stage LS estimators based on (6) and (7) respectively and let ~� be the
corresponding 2SQR(�; q) estimator. The asymptotic representations of ~� and ~� are obtained and
plugged into the formula in Proposition 1 to obtain the asymptotic representation for ~� as follows:

T 1=2(~�� �0 �B�) = RT�1=2
TX
t=1

xtq �(vt)

�RQ0Q�1T�1=2
TX
t=1

xt(qv
�
t � u�t ) + op(1):

Due to the characterization ofB� in Proposition 2, we haveB� = ((1�q)E(vt)�E(V 0t )
0; 0; : : : ; 0)0.
The intercept estimator is inconsistent, while the slope estimators are not. To derive the asymptotic
normality of ~�; we impose the following additional regularity assumptions.

Assumption 4. (i) There exist �nite constants �v and �Vj such that Ejxtiv�t j3 < �v and
EjxtiV �jtj3 < �Vj ; for all i; j and t.

(ii) The covariance matrix VT = var
�
T�1=2

PT
t=1 St

�
is positive de�nite for T su¢ ciently large,

where St = (q �(vt); qv
�
t � u�t )0 
 xt; u�t = v�t � V �

0
t 
0 and 
 is the Kronecker product.

Assumption 4(i) is used to apply a CLT appropriate for the �-mixing case. It can be much
relaxed in the iid case. Assumption 4(ii) ensures the positive de�niteness of the variance in the
CLT.

Proposition 3. Suppose that Assumptions 1, 3, 30 and 4 hold. Then,

D
�1=2
T T 1=2(~�� �0 �B�)

d! N(0; I);

where DT =MVTM
0 and M = R[I;�Q0Q�1].
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The asymptotic result in Proposition 3 shows that the asymptotic variance-covariance of the
2SQR(�; q) estimator depends on the combination weight q through VT , while the consistency of the
slope estimator is not a¤ected by the presence of q. To improve e¢ ciency, q can be replaced with an
optimal value (q�) obtained by minimising the asymptotic covariance matrix shown in Proposition 3.
However, there are many ways of minimising a multi-dimensional covariance matrix. For example,
one may minimise some norm of the matrix (e.g., the mean square error). One may also minimise
the standard error for a given coe¢ cient of interest in the structural model.

For all these procedures and in some special cases (e.g., IID), the e¤ect of q onDT is concentrated
in a scalar function that gathers the contribution of all the error terms to this matrix. Then, a
unique and explicit solution q� can be obtained. In the general case, q� can also be made explicit
when the MSE is minimised. Consistent preliminary estimators of q� do not perturb the asymptotic
properties of the 2SQR, which can be characterised as a MINPIN estimator (Andrews, 1994, p.
2263), as long as a stochastic equicontinuity condition of the global empirical process is valid.

We now exhibit a case with an explicit formula for q�. Assume f(x0t; ut; vt)g is iid and ft(0jxt) =
f(0); for any t. Then, the asymptotic covariance matrix in Proposition 3 simpli�es into �20(q)Q

�1
zz ;

where �20(q) = E(�2t ); �t = qf(0)�1 �(vt) + u�t � qv�t and Qzz = H(��0)
0QH(��0). In this case, we

can easily obtain the optimal weight as in the following lemma.

Lemma 2. Suppose that Assumptions 1,3, 30 and 4 hold. In addition, we assume that f(x0t; ut; vt)g
is iid and ft(0jxt) = f(0); for any t. Then, the optimal weight minimizing the asymptotic variance
of ~� is given by:

q� =
E(v�t u

�
t )� f(0)�1E( �(vt)u�t )

f(0)�2�(1� �) + E(v�2t )� 2f(0)�1E( �(vt)v�t )
: (8)

A consistent estimator for q� is obtained by substituting a consistent kernel-estimator f̂(0) for
f(0), and residuals for error terms:

q̂ =

PT
t=1 v̂

�
t û
�
t � f̂(0)�1

PT
t=1  �(v̂t)û

�
t

T f̂(0)�2�(1� �) +
PT

t=1 v̂
�2
t � 2f̂(0)�1

PT
t=1  �(v̂t)v̂

�
t

; (9)

where û�t = v̂�t � V̂ �
0

t 
̂; v̂
�
t = yt � x0t~�; V̂ �

0
t = Y 0t � x0t ~�; v̂t = yt � x0t�̂� and �̂� = argmin

�

PT
t=1 ��(yt �

x0t�). The omitted proof for the consistency of q̂ is straightforward.
To address robustness concerns, we now propose an estimator based on a robust �rst-stage

estimator: the symmetrically trimmed-LS estimator (TLS). The TLS of � in the model y = X�+v
is �̂TLS = (X 0AX)�XAy, where A = (aij); i; j = 1; :::; p and aij = I[i=j and X0

i�̂(�)<yi<X
0
i�̂(1��)]

,

�̂(�) is the quantile regression estimator centered on a given quantile � to be chosen a priori. Chen
and Portnoy (1996) provide the TLS Bahadur representation. Let �� be the estimator built from
the TLS in the �rst stage and the quantile regression in the second stage. We adjust Assumptions
30 and 4 as follows, with analogous interpretations of the di¤erent conditions.

Assumption 300 (i) E(vtjxt)� E(t_vt)� �
�
F�1v (�) + F�1v (1� �)

�
= 0,

where t_vt � vt:I[F�1v (�)<vt<F
�1
v (1��)] is the truncated error term.

(ii) E(Vitjxt) � E(t_Vit) � �
h
F�1Vi (�) + F

�1
Vi
(1� �)

i
= 0, where Vit is the ith element of Vt and

t_Vit = Vt:I[F�1V (�)<Vt<F
�1
V (1��)] is the truncated error term.

Assumption 40 (i) There exist �nite constants �~v and � �Vj
such that Ejxti~v�t j3 < �~v and
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Ejxti ~V �jtj3 < � �Vj
, for all i; j and t, where

~v�t = vt � E(t_vt)� �
�
F�1v (�) + F�1v (1� �)

�
and ~V �jt = Vjt � E(t_Vit)� �

h
F�1Vj (�) + F

�1
Vj
(1� �)

i
:

(ii) The covariance matrix ~VT = var
�
T�1=2

PT
t=1

~St

�
is positive de�nite for T su¢ ciently large,

where ~St = (q �(vt); q~v
�
t � ~u�t )0 
 xt .

The Bahadur representation, obtained from Proposition 1, and the representation for TLS
(Ruppert and Carroll, 1980) can be used to obtain the following asymptotic representation of ��:

T 1=2(��� �0 � ~B�) = RT�1=2
TX
t=1

xtq �(vt) (10)

�RQ0Q�1T�1=2
TX
t=1

xt(q~v
�
t � ~u�t ) + op(1);

where the bias vector ~B� is such that the �rst element only is non-zero. The non-zero bias term
is given by (1 � q)fE(t_vt) + �

�
F�1v (�) + F�1v (1� �)

�
g � ~B�;1
0, where ~B�;1 is a G-row vector

whose jth element is given by E(t_Vjt)+�
h
F�1Vj (�) + F

�1
Vj
(1� �)

i
. The asymptotic representation

(10) together with Assumptions 300 and 40 delivers the following asymptotic normality of ��.

Proposition 4. Suppose that Assumptions 1,3, 300 and 40 hold. Then,

~D
�1=2
T T 1=2(��� �0 � ~B�)

d! N(0; I);

where ~DT =M ~VTM
0 and M = R[I;�Q0Q�1].

As before, if f(x0t; ut; vt)g is iid and ft(0jxt) = f(0) for any t, then the asymptotic matrix of ��

is ~�20(q) ~Q
�1
zz , where ~�

2
0(q) = E(~�

2
t );
~�t = qf(0)�1 �(vt) + ~u

�
t � q~v�t and ~Qzz = H(~��0)

0Q0H(~��0), and
~��0 = �0 +

~B�. In this case, it can be proved that the optimal value of q minimizing ~�20(q) is given
by:

q� =
E(~v�t ~u

�
t )� f(0)�1E( �(vt)~u�t )

f(0)�2�(1� �) + E(~v�2t )� 2f(0)�1E( �(vt)~v�t )
: (11)

A consistent estimator for q� is similarly obtained as follows:

q̂ =

PT
t=1 �v

�
t �u
�
t � f̂(0)�1

PT
t=1  �(v̂t)�u

�
t

T f̂(0)�2�(1� �) +
PT

t=1 �v
�2
t � 2f̂(0)�1

PT
t=1  �(v̂t)�v

�
t

; (12)

where �u�t = �v�t � �V �
0

t �
, �v
�
t = yt � x0t�̂TLS , �V

�0
t = Y 0t � x0t�̂TLS , v̂t = yt � x0t�̂� and �̂� =

argmin
�

PT
t=1 ��(yt � x0t�).

In the next section, we present Monte Carlo simulation results, notably showing how much
variance reduction can be achieved in �nite samples with our method.9

9The case where the �rst stage is a quantile regression with the same quantile as in the second stage is reported
in Kim and Muller (2004), with directly comparable tables.
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6 Monte Carlo Simulations

6.1 Simulation Set-up

The data generating process used in the simulations is described in Appendix B. We study the �nite
sample properties of our two proposed two-stage estimators: (1) the OLS plus quantile regression
estimator (2SQR1), and (2) the TLS plus quantile regression estimator (2SQR2). We impose
E ( �(vt)jxt) = 0 for each given �. That is: for each �, we regenerate the error terms such that
E ( �(vt)jxt) = 0 is satis�ed, which means that we consider models centered di¤erently according
to the di¤erent �. As explained in Appendix B, the equation of interest is assumed to be over-
identi�ed and the parameter values are set to �0 = (�0;1; �0;2) = (1; 0:2) and 
 = 0:5. We generate
the error terms by using three alternative distributions: the standard normal N(0,1), the Student-t
with 3 degrees of freedom t(3) and the Lognormal LN(0,1). The exogenous variables xt are drawn
independently from the errors from a normal distribution. For each of the 1000 replications, we
estimate the parameter values � and 
 using 2SQR1 and 2SQR2, and we calculate the deviations
of the estimates from the true values. Then, we display the sample mean and sample standard
deviation of these deviations over the 1,000 replications. The optimal value q� is obtained by
simulating the formula in (8) or (11), while q̂ is estimated through (9) or (12).

6.2 Results

We �rst discuss the results for the 2SQR1(�; q) with N(0,1), t(3) and LN(0,1) errors, shown in
Tables 1-3 for the case of iid errors.10 We �rst discuss the results when the error terms are drawn
from N(0,1) shown in Table 1. In all cases, as expected, the intercept estimate exhibits biases
that do not vanish as the sample size increases. On the other hand, the 2SQR1(�; q) estimates for
the slope parameters (�1 and 
) are unbiased for all speci�cations, all evaluations of q and all �

0s
and even with a sample size as small as 50. Using the optimal value q� dramatically improves the
accuracy of the 2SQR1(�; q) as compared to the case q = 1. The optimal values q� are close to
zero, which can be viewed as related to a kind of inverse least-squares extraction of the structural
parameters from the reduced-form parameters. This is what pushing q̂ to zero does, as can be
seen in (5). The gain is larger for the extreme quantiles (� = 0:05 and 0.95) than for the middle
quantiles (� = 0:25; 0:5 and 0.75). Even with T = 50, using q̂ can substantially improve e¢ ciency
as compared to q = 1. The estimation accuracy of q̂ and the e¢ ciency gain improve as the sample
size increases. With T = 300, using q̂ or q� is almost indi¤erent for estimating �0, although the
estimated values of q̂ are not always very close to q�.

Table 2 shows the results for the Student-t distribution case. As expected, with fat tails t(3)
errors the standard deviations of the sampling distributions of the 2SQR1(�; q) are much larger than
with normal errors. As before, the variance reductions from using q� are small for middle quantiles,
while substantial reductions can be achieved for extreme quantiles. The standard deviations are
the largest for the lognormal case, where using q� always yields outstanding e¢ ciency gains. For
right-skewed distributions, quantile regressions are typically inaccurate for large quantiles. In this
case, our method generates large e¢ ciency gains. For example, considering the case with T = 300;
the standard error for 
̂ with q = 1 is 0.91, while it is reduced to 0.25 with q = q̂. However, there
is virtually no e¢ ciency gain with small values of � less than around 0.5.

Given the generally substantial e¢ ciency gains, it is natural to ask how close the reduced
variance is to the Cramer-Rao lower bound. We have calculated the CR bound numerically for

10We have conducted the same set of simulations for the case of heteroscedastic errors and have found that the
results are qualitatively the same as in the iid case.
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each distribution in Table 4(a) for T = 50 and Table 5(a) T = 300. Table 4(a) shows the simulated
asymptotic standard deviations for 2SLS and 2SQR1(�; q̂) with � = 0:25; 0:50; 0:95, along with the
simulated CR bounds with T = 50. We only discuss the slope coe¢ cients as the intercept coe¢ cient
estimate is biased.

For a small sample size such as T = 50, the 2SLS e¢ ciency loss is not negligible even for
the normal distribution case and the e¢ ciency loss becomes surprisingly large for both t(3) and
LN(0,1). On the other hand, 2SQR1(�; q̂) attains the CR bounds at the middle quantiles such
as � = 0:25; 0:5 and 0.75 for the normal distribution case. Moving to the Student-t distribution
case, 2SQR1(�; q̂) is much more e¢ cient than the 2SLS again at the middle quantiles (� = 0:25; 0:5
and 0.75). For example, we observe approximately 24% e¢ ciency gain at � = 0:5. Finally, under
lognormality, 2SLS performs badly relative to the CR bounds, while 2SQR1(�; q̂) stays closer to
the CR bounds for small and middle quantiles than 2SLS.

When we increase the sample size to T = 300, we have qualitatively the same results as shown
in Table 5(a). For the normal errors, both 2SLS and 2SQR1(�; q̂) attain the CR bounds. However,
all the previous observations still hold for the other two error distributions t(3) and LN(0,1); i.e.,
(i) 2SQR1(�; q̂) is more e¢ cient than 2SLS at the middle quantiles for t(3), and (ii) 2SQR1(�; q̂) is
more e¢ cient than 2SLS at the low and middle quantiles for LN(0,1).

Let us now turn to 2SQR2 based on the TLS at the �rst stage.11 According to our simulations,
using the trimming value of � = 0:25 yields more accurate results than other trimming values such
as 0:05 or 0:10:12 For a large sample size such as T = 300, trimming at 0:05; 0:10 or 0:25 is almost
indi¤erent. Hence, we focus on the case � = 0:25. The results for 2SQR2 are reported in Tables
4(b) and 5(b), respectively for T = 50 and T = 300 where the two cases (q = 1 and q = q̂) are
shown and compared. As clearly demonstrated in the two tables, our proposed variance reduction
method works again very well with the 2SQR2 estimator.

The 2SQR2(�; q̂) appears to perform uniformly better than the 2SQR2(�; q = 1), except for
T = 50 at the median for t(3) and at a few low quantiles for LN(0,1) � probably because of
sampling errors since this irregularity vanishes when T = 300. The improvement from moving from
q = 1 to q = q̂ is sizeable at quantile 0.95 for symmetric errors (up to 60% reduction in standard
deviation) and at large quantiles for asymmetric errors (up to 80% reduction). The 2SQR2(�; q̂)
clearly improves on the 2SQR1(�; q̂) for both t(3) and LN(0,1), while the reverse is true for normal
errors.

Let us �nally compare the most interesting two estimators; i.e. 2SQR1(�; q̂) and 2SQR2(�; q̂) in
Tables 4 and 5. Under normal errors, the 2SQR1(�; q̂) and the 2SQR2(�; q̂) both almost reach the
CR bound, whatever the considered quantile. Here, reformulating the dependent variable is fruitful,
especially for upper quantiles for which it allows massive e¢ ciency gains. The 2SQR2(�; q = 1) is
slightly outperformed by the 2SQR1(�; q̂), perhaps because trimming here only discards informa-
tion. With Student errors, the 2SQR2(�; q̂) is often the more accurate estimator, yielding results
fairly close to the CR bound. Under lognormality, none of the studied estimators approaches the
CR bound. However, using the 2SQR2(�; q̂) generally yields the best accuracy. For upper quantiles,
reformulating the dependent variables delivers huge e¢ ciency gains.

It is interesting to re�ect on the proximity of the results of the 2SQR1(�; q̂) and the 2SQR2(�; 1)
in the light of the non-robustness of the OLS and the robustness of the TLS. Rede�ning the
dependent variable may improve the robustness of the two-stage estimator through the reduction

11We have also tried LAD in the �rst-stage, as in Chen and Portnoy (1996). However, the results are almost
identical to that of the 2SQR2 so that we do not include the results in the paper, while they are available upon
request. What seems to matter here is the robustness of the �rst stage estimator.
12One exception is the nomal distribution case with T = 50, in which case trimming at 0:25 is only slightly inferior

than 0.1.
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of the in�uence of outliers for the errors vt, even when the �rst-stage estimator is non-robust. This
e¤ect, apparent in the formula of the asymptotic representation, is con�rmed in the small sample
simulations. Thus, speci�c estimators of q could also be chosen to enhance robustness.

7 Conclusion

In this paper, we develop a new method of variance reduction for two-stage estimation procedures
and apply it to the case of two-stage quantile regression allowing for random regressors as well
as non-iid error terms. In this setting, we show that an asymptotic bias that would occur in the
�rst-stage reduced-form estimates of the coe¢ cients of the exogenous variables in the structural
equation is integrally and exclusively transmitted to the coe¢ cients of the same variables in the
second-stage. At this occasion, we show that the structural approach and the �tted-value approach
to two-stage quantile regressions amount to estimating the same structural slope coe¢ cients, under
a natural instrumental variable assumption corresponding to the constant e¤ects case of quantile
regressions.

Following an original idea in Amemiya (1982), we reformulate the dependent variable as a
weighted mean of the original dependent variable and its �tted value. Such a combination introduces
a trade-o¤ between an asymptotic bias on the intercept of the equation of interest on the one hand,
and the variance reduction of the slope estimator on the other hand. Using such a trade-o¤, we
can improve the e¢ ciency of the slope estimator at the expense of making the intercept estimator
inconsistent.

We derive the asymptotic normality and the asymptotic variance-covariance matrix of such
two-stage quantile regression estimators. Then, we apply our variance reduction method to these
speci�c two-stage quantile regression estimators. Our Monte Carlo simulation results show mas-
sive e¢ ciency gains in many cases. In particular, our new method alleviates the well-known poor
e¢ ciency of quantile regressions at extreme quantiles. Two important arguments to use quantile
regression jointly with variance-reduction are �rst that it yields more accurate or equivalent es-
timates than OLS, and second that it does not require the knowledge of the distribution shape,
which is a drawback of maximum likelihood estimators.

Let us emphasize two practical principles in our approach. First, the �rst-stage estimators
should be carefully selected so as to preserve e¢ ciency, robustness or other desired properties. Our
simulation results suggest that OLS should perform well under normality, while trimmed least-
square should be more accurate and more robust for heavy tails or asymmetric error distributions.
Second, one should reformulate the dependent variable as proposed, in such a way that a selected
variance criterion is minimized. The choice of the variance criterion may be left to the researcher,
while minimising the MSE seems to be a natural choice.

We �nally recap the computation steps for trimmed least-squares plus quantile regression: (1)
trimmed least-squares for the reduced-form equation and the ancillary equations, (2) computation
of the �tted-values for the endogenous regressors of the structural equation, (3) preliminary quantile
regression of the structural equation where the endogenous regressors are substituted with their
�tted values, (4) estimation of the density of the reduced form error at the quantile of interest, (5)
estimation of the optimal weight for the reformulation, using residuals and density estimates from
the previous stages, (6) reformulation of the dependent variable using the optimal weight, (7) �nal
quantile regression of the structural equation.

It is worth mentioning as a word of conclusion that the proposed method for variance reduction is
not necessarily limited to two-stage quantile regression. In fact, our approach might be generalized
to any two-stage regression where the use of a composite dependent variable does not disturb the
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consistency property of the �nal estimator.
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Appendix A: Mathematical Proofs

Proof of Lemma 1: LetM�
Ti(�) = T�1=2

PT
t=1m

�
i (wt; �), where � is a K�1 vector, wt = (vt; x0t)0,

m�
i (wt; �) = xti �(qvt�x0t�) and xti is the ith element in xt. We de�ne V �Ti(�) =M�

Ti(�)�E(M�
Ti(�)):

We shall show that {V �Ti(�) : T � 1g is stochastically equicontinuous. To do so, we use Theorem
II.8 in Andrews (1990) for which the following two conditions must be veri�ed; (a) m�

i (wt; �) is a
type IV class function with index p � 2; that is, for all bounded � in RK and for all L1 > 0 in a
neighborhood of zero,

sup
t�T;T>1

"
E

 
sup

�1:k�1��k<L1

jm�
i (wt; �1)�m�

i (wt; �)j
p

!#1=p
� CL 1 (13)

for some positive constants C and  and (b) {wt} is ��mixing of size � (2K+ )(K+2 )

 2
.

We �rst verify (a) for p = 2. Consider a constant L1 close to zero and a �nite value of � in RK .
Note that

jm�
i (wt; �1)�m�

i (wt; �)j = jxtijj1[qvt�x0t��0] � 1[qvt�x0t�1�0]j
� jxtijj1[A�0] � 1[B�0]j � jxtijj1[jAj�jA�Bj]j � jxtijj1[jqvt�x0t�j�jjxtjj�jj�1��jj]j;

where A = qvt � x0t� and B = qvt � x0t�1: Hence, we have

sup
�1:k�1��k<L1

jm�
i (wt; �1)�m�

i (wt; �)j
2

� x2ti sup
�1:k�1��k<L1

1[jqvt�x0t�j�jjxtjj�jj�1��jj] � x2ti1[jqvt�x0t�j�jjxtjjL1];

which implies

E

 
sup

�1:k�1��k<L1

jm�
i (wt; �1)�m�

i (wt; �)j
2

!

� E
�
x2tiPxt

�
jqvt � x0t�j � jjxtjjL1

��
= E

�
x2ti

Z U0

L0

fvjx(�jxt)d�
�

( * q > 0)

� E

�
x2ti

Z U0

L0

f0d�

�
(* Assumption 3(ii))

=
2f0
q
E
�
x2tijjxtjj

�
L1;

where Pxt is the conditional probability function given xt, U0 = q�1(x0t� + jjxtjjL1) and L0 �

q�1(x0t� � jjxtjjL1). Hence,

sup
t�T;T>1

"
E

 
sup

�1:k�1��k<L1

jm�
i (wt; �1)�m�

i (wt; �)j
2

!#1=2
� CL

1=2
1

for some constant C because of Assumption 3(v). Hence, condition (a) is satis�ed with  = 1=2.
Next, we turn to condition (b). Since  = 1=2,

�(2K +  )(K + 2 )

 2
= �

(2K + 1
2)(K + 1)
1
4

= �2 (4K + 1) (K + 1) :
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Hence, condition (b) is a consequence of Assumption 1. Therefore, by Theorem II.8 in Andrews
(1990), {V �Ti(�) : T � 1g is stochastically equicontinuous, which implies that V �T (�) is also stochas-
tically equicontinuous. Then, for any constant sequence L�T that converges to zero, we have

sup
jj�1��2jj�L�T

jjV �T (�1)� V �T (�2)jj = op(1): (14)

We now introduce a factor T�1=2 that weighs the contribution of the �rst-stage estimator in
the kernel of the empirical process. For this, we choose L�T = T 1=2L for a �xed positive number L.
Let VT (�) =MT (�)�E(MT (�)); where MT (�) = T�1=2

PT
t=1m(wt;�), m(wt;�) = xt �(qvt �

T�1=2x0t�), and � is a K � 1 vector. Since V �T (�) = VT (T
1=2�); by de�ning �1 = T 1=2�1 and

�2 = T 1=2�2, the result in (14) becomes

sup
jj�1��2jj�L

jjVT (�1)� VT (�2)jj = op(1): (15)

Setting �1 = � and �2 = 0 in (15), yields

sup
k�k<L

kMT (�)�MT (0)� fEMT (�)� EMT (0)gk = op(1): (16)

Next, we show that E(MT (�))� E(MT (0))! �q�1Q0� as follows. First, we note that

E(MT (�)) = E

(
T�1=2

TX
t=1

"
xt� � xt

Z q�1x0tT
�1=2�

�1
ft(vjxt)dv

#)
:

Therefore, we have

E(MT (�))� E(MT (0)) = �E
(
T�1=2

TX
t=1

"
xt

Z q�1x0tT
�1=2�

0
ft(vjxt)dv

#)

= �E
(
q�1T�1

TX
t=1

xtx
0
t�
Ft(q

�1x0tT
�1=2�jxt)� Ft(0jxt)

q�1x0tT
�1=2�

)
;

where Ft(�jxt) is the conditional cdf of vt. Let G(�) = q�1T�1
PT

t=1 Ft(�jxt)xtx0t�. Then, by
the Mean-Value Theorem and the continuity in Assumption 3(ii), there exists �T;t between 0 and

q�1x0tT
�1=2� such that E(MT (�))�E(MT (0)) = �EfG0(�T;t)g = �q�1EfT�1

PT
t=1 ft(�T;tjxt)xtx0tg�.

We now examine the convergence of this term:

Let QT = E

�
T�1

TP
t=1

ft(�T;tjxt)xtx0t
�
; Q0T = E

�
T�1

TP
t=1

ft(0jxt)xtx0t
�
and consider the (i; j)th

element of jQT �Q0T j, which is given by

jT�1
TX
t=1

E
�
fft(�T;tjxt)� ft(0jxt)gxtixtj

�
j

� T�1
TX
t=1

E
�
jft(�T;tjxt)� ft(0jxt)j jxtij jxtj j

�
� L0T

�1
TX
t=1

E
�
j�T;tj jxtij jxtj j

�
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for some constant L0; where the �rst result is due to Minkowski�s inequality and Jensen�s inequality
and the second result is obtained by the Lipschitz continuity in Assumption 3(ii). Next, we note
that

T�1
TX
t=1

E
�
j�T;tj jxtij jxtj j

�
� q�1T�3=2

TX
t=1

E
� ��x0t��� jxtij jxtj j�

� q�1 k�kT�3=2
TX
t=1

E
�
kxtk3

�
� q�1 k�kT�1=2C ! 0

for a constant C; where the last inequality is obtained by Assumption 3(v). Since Q0 = lim
T!1

Q0T ,

we have E(MT (�))� E(MT (0))! �q�1Q0�. QED.

Proof of Proposition 1: We de�ne �̂0 = �(1 � q)T 1=2(�̂ � �0 � B�) + T 1=2(�̂ � �0 � B�)
0.
We have �̂0 = Op(1) because of Assumption 2. Then, Lemma 1 implies that

MT (�̂0) =MT (0)� q�1Q0�̂0 + op(1), (17)

where MT is de�ned Lemma 1. The term q�1Q0�̂0 is bounded in probability because �̂0 =
Op(1): Also, MT (0) = T�1=2

PT
t=1 xt �(qvt) = T�1=2

PT
t=1 xt �(vt) because q > 0.13 Therefore,

under Assumptions 1, 3(iv)-(v) and 4(i), T�1=2
PT

t=1 xt �(vt) converges in distribution to a normal
random variable by the CLT in Theorem 5.20 of White (2001). Therefore, we have

MT (�̂0) = Op(1): (18)

Next, we de�ne �̂1(�) = H(�̂)�+�̂0 = H(�̂)��(1�q)T 1=2(�̂��0�B�)+T 1=2(�̂��0�B�)
0 for
jj�jj � L, where � 2 RG+K1 for some L > 0. Using Assumption 2 and Lemma 1, it is straightforward
to show that

sup
jj�jj�L

jjMT (�̂1(�))�MT (0) + q
�1Q0�̂1(�)jj = op(1). (19)

Before to reach the main part of the proof, we need one more result of stochastic equicontinuity.
For this, we de�ne ~MT (�) = H(�̂)0MT (�̂1(�)) and jjH(�̂)jj2 = tr(H(�̂)H(�̂)0); which is Op(1)
since �̂ converges to �0 +B� that is �nite.

We now use the argument between (A.7) and (A.8) in Powell (1983) to show that (18) and (19)
imply that for some �nite L2 > 0:

sup
jj�jj�L2

jj ~MT (�)�H(��0)0MT (�̂0) + q
�1Q�zz�jj = op(1), (20)

where Q�zz = H(��0)
0Q0H(��0). The essence of the Powell�s argument is the following. Since

jjH(�̂)jj2 = Op(1) and jjH(�̂)�H(��0)jj = op(1), we have

jj ~MT (�)�H(��0)0MT (�̂0) +Q
�
zz�jj

� jjH(�̂)jj jjMT (�̂1(�))�MT (0) + q
�1Q0�̂1(�)jj+ jjH(�̂)�H(��0)jj jjMT (0)� q�1Q0�̂0jj

+jjH(�̂)�H(��0)jj
n
jjH(�̂)jj + jjH(��0)jj

o
jjq�1Q0jjjj�jj+ jjH(��0)jj;

13For q < 0, we have  �(qvt) = � 1��(vt). Therefore, E( �(vt)jxt) = 0 does not imply E( �(qvt)jxt) = 0 in
general, except for LAD estimators (� = 1=2) or symmetric distributions. This might be one reason why authors
imposed symmetry of error terms, as in Chen (1988) and Chen and Portnoy (1996).
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which delivers the result by applying the sup-operator to both sides of the inequality above.
Next, we de�ne �̂ = T 1=2(�̂��0�B�), where the expression for B� is given in the proposition.

We wish to show that
~MT (�̂) = op(1): (21)

Note that

~MT (�̂) = H(�̂)0MT (�̂1(�̂))

= T�1=2
TX
t=1

H(�̂)0xt �(qvt � T�1=2x0t�̂1(�̂))

= T�1=2
TX
t=1

H(�̂)0xt �(qyt + (1� q)ŷt � x0tH(�̂)�̂+ Ât + B̂t);

where

Ât = x0tH(�̂)�0 � x0tH(�0)�0 + x0t�0
0 � x0t�̂
0
and B̂t = x0t[H(�̂)B� � (1� q)B� +B�
0]:

First, we have that Ât = 0 because x0tH(�̂)�0 = x01t�0 + x
0
t�̂
0 and x

0
tH(�0)�0 = x01t�0 + x

0
t�0
0:

Moreover, B̂t = 0 because of the de�nition of B�. Since Ât = 0 and B̂t = 0, it can be shown that

T 1=2 ~MT (�̂) =
h
@ST
@�

���
�=�̂

i
�
, which is the vector of left-hand-side partial derivatives of the objective

function in (5) evaluated at the solution �̂. Therefore, we obtain the desired result in (21); i.e.,
~MT (�̂) = op(1).
Next, let us show that �̂ = T 1=2(�̂ � �0 � B�) = Op(1). This will prove that B� is the

asymptotic bias of �̂. We can obtain �̂ = Op(1) by using the argument in Lemma A.4 in Koenker
and Zhao (1996). Similar arguments are in Jureckova (1977) and Hjort and Pollard (1999). To use
Lemma A.4 in Koenker and Zhao (1996) and to obtain �̂ = Op(1); we need to check the following
conditions:
(i) ��0 ~MT (��) � ��0 ~MT (�) for � � 1 and jj�jj � L3 for some L3 > 0;
(ii) jjH(��0)0MT (�̂0)jj = Op(1);
(iii) ~MT (�̂) = op(1),
(iv) Q�zz is positive de�nite.
Condition (i) is obtained by noticing that function h(�) =

PT
t=1 ��(qvt�T�1=2x0tH(�̂)���T�1=2x0t�̂0)

is convex in �, and therefore that its gradient, ��0 ~MT (��) is non-decreasing in �. Condition (ii)
comes from (18). Condition (iii) results from the �rst-order condition of the second stage, as we dis-
cussed above. Finally, condition (iv) is ensured by Assumptions 3(i) and 3(iii). Hence, by Lemma
A.4 in Koenker and Zhao (1996), we have

�̂ = T 1=2(�̂� �0 �B�) = Op(1): (22)

Therefore, we can plug �̂ into (20) in place of � to obtain the following result:

~MT (�̂)�H(��0)0MT (�̂0) + q
�1Q�zz�̂ = op(1): (23)

Note that the �rst term in (23) is op(1) because of (21). Hence, we have

q�1Q�zz�̂ = H(��0)
0MT (�̂0) + op(1) (24)

= H(��0)
0MT (0)�H(��0)0q�1Q0�̂0 + op(1), (25)
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where the second equality comes from (17). By plugging the de�nition of �̂0 and inverting q�1Q�zz,
we obtain

T 1=2(�̂� �0 �B�) = Q��1zz H(��0)
0fT�1=2

TX
t=1

xtq �(vt)

+ (1� q)Q0T 1=2(�̂ � �0 �B�)�Q0T 1=2(�̂��0 �B�)
0g+ op(1),

which completes the proof. QED.

Proof of Proposition 2: Let us decompose B� as follows: B� =
�
B�;1
B�;2

�
where B�;1 is the

vector of the K1 elements of B�. We need to show that (i) B�;1 = (1 � q)B�;1 � B�;1
0, and (ii)
B�;2 = 0G. First, we note that the de�nition of B� is given by B� = RQ0f(1 � q)B� � B�
0g

in Proposition 1. Second, we decompose matrix R as R =

�
R1
R2

�
, where R1 is the �rst K1 �K

submatrix and R2 is the remaining G�K submatrix. We decompose matrix Q0 as Q0 = [Q1; Q2]
where Q1 is the �rst K�K1 submatrix and Q2 is the remaining K�K2 submatrix. Then, we have

B� =

�
R1
R2

�
[Q1; Q2]

�
B�;1
B�;2

�
=

�
R1Q1B�;1
R2Q1B�;1

�
;

where the second equality comes from the fact that B�;2 = 0G. Therefore, if we can show that (i)
R1Q1 = IK1 , and (ii) R2Q1 = 0G�K1 , then the proof will be completed. Because of the de�nition
of R, the following identity holds.

RQ0H(�
�
0) = IK1�G: (26)

Let us decompose ��0 as �
�
0 =

�
��0;1
��0;2

�
, where ��0;1 is the K1 � G submatrix and ��0;2 is the

remaining K2 � G submatrix. With this decomposition of ��0, The left-hand-side of (26) is given
by

RQ0H(�
�
0) =

�
R1Q1 R1Q2
R2Q1 R2Q2

� �
IK1 ��0;1

0K2�K1 ��0;2

�
=

�
R1Q1 R1Q1�

�
0;1 +R1Q2�

�
0;2

R2Q1 R2Q1�
�
0;1 +R2Q2�

�
0;2

�
:

Noting that the (1,1)-block is a K1 �K1 submatrix and the (2,2)-block is a G�G submatrix, the
identity in (26) delivers the desired results: (i) R1Q1 = IK1 , and (ii) R2Q1 = 0G�K1 . QED.

Proof of Proposition 3: Replacing the asymptotic representation of the �rst-stage estimators and
collecting terms in the asymptotic representation for the 2SQR(�; q) with LS �rst-stage estimators
gives

T 1=2(~�� �0 �B�) =MT�1=2
TX
t=1

St + op(1);

where M = R[I;�Q0Q�1] and St = (q �(vt); qv
�
t � u�t )

0 
 xt. Since x0t; ut; vt are �-mixing by
assumption, and St is a measurable function of x0t; ut; vt, it follows that St is also �-mixing. Next,
E(St) = 0 by Assumptions 3(iv) and 4(ii). Finally, Assumption 4(i) provides all the moment
conditions necessary to invoke Theorem 5.20 of White (2001). Hence, we have:

V
�1=2
T T�1=2

TX
t=1

St
d! N(0; I);
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where VT = var
�
T�1=2

PT
t=1 St

�
. Hence, the proof is completed. QED.

Proof of Lemma 1: With OLS �rst-stage estimators, we have �20(q) = aq2 + 2bq + c, where
a = E

�
f(0)�1 �(vt)� v�t

�2
; b = E

��
f(0)�1 �(vt)� v�t

�
u�t
�
and c = E(u�2t ), which corresponds to

a convex parabolic curve that attains its minimum at

q� = � b
a
=

E(v�t u
�
t )� f(0)�1E( �(vt)u�t )

f(0)�2�(1� �) + E(v�2t )� 2f(0)�1E( �(vt)v�t )
;

which completes the proof. QED.

Proof of the TLS case: Since it is generated by censorship at two symmetric quantiles, the error
term in the �rst step of the calculus of the TLS estimator can be written as ~vt = F�1v (�)I[vt<F�1v (�)]+

F�1v (1� �)I[vt<F�1v (1��)] + vtI[F�1v (�)<vt<F
�1
v (1��)]. This transformation of the initial error term vt

corresponds to the trimming that is performed by using quantile regressions before applying the
least square estimator.

The terms with a negative sign in Assumption 300 is what remains from the condition E(~vt jx(j)t; j =
2; :::) = 0 that has not been cancelled, i.e. E(~vt). For the OLS estimator, this is (Evt; 0; :::; 0). For
the TLS, this yields (E(t_vt)+�(F�1v (�)+F�1v (1��)); 0; :::; 0), where t_vt = vtI[F�1v (�)<vt<F

�1
v (1��)]

is the truncated error term. Indeed, using the above formula for ~vt, we have

E~vt = F�1v (�)P [vt < F�1v (�)] + F�1v (1� �)P [vt < F�1v (1� �)] +
R F�1v (1��)
F�1v (�)

vfv(v)dv

= F�1v (�)F [F�1v (�)] + F�1v (1� �)f1� F [vt < F�1v (1� �)]g+ E(t_vt), which gives the result:�
F�1v (�) + F�1v (1� �)

�
�+ E(t_vt). QED.
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Appendix B: Simulation Design

We base our simulations on a simultaneous equation system with two simple equations. The �rst
equation, which is the equation of interest, contains two endogenous variables and two exogenous
variables including a constant. Four exogenous variables are present in the whole system. The

structural simultaneous equation system can be written B
�
yt
Yt

�
+ �xt = Ut; where

�
yt
Yt

�
is a

2 � 1 vector of endogenous variables, xt is a 4 � 1 vector of exogenous variables with the �rst
element equal to one. The error term Ut is a 2� 1 vector of error terms. We specify the structural

parameters as follows: B =

�
1 �0:5

�0:7 1

�
and � =

�
�1 �0:2 0 0
�1 0 �0:4 0:2

�
: The system is

over-identi�ed by the exclusion restrictions �13 = �14 = �22 = 0. Moreover, [ v V ] = U (B0)�1.
Hence, 
 = 0:5 and �0 = (�0; �1) = (1; 0:2).

The choice of the parameter values is led by the following considerations. Only moderate cross
e¤ects of the two endogenous variables are speci�ed so that the endogeneity problem be interesting
but not extreme. Identi�cation restrictions and the degree of over-identi�cation drive the occurrence
of exogenous variables in the equations. Moderate, while non-negligible and comparable e¤ects are
allowed for these variables.

The error v in the reduced-form equations is generated so as to satisfy Assumption 3(iv):
v = ve � F�1ve (�) where ve = �(x5t)wt, wt is generated by using alternatively the distributions
N(0; 1); t(3) and LN(0,1) with autocorrelation coe¢ cient �0:1 and x5t is generated from a distri-
bution N(0; 1) independently of other random variables and errors. Because we assume that x5t is
independent of wt and wt is iid, F�1ve (�) = �(x5t)F

�1
w (�); where F�1w (�) is the inverse cumulative

function of wt evaluated at �: The scale factor is �(x5t) = 1 + �x5t. We choose � = 0:05 under
heteroskedasticity and � = 0 under iid. The errors Vj are generated in the same way, albeit without
heteroskedasticity. Then, we draw the second to fourth columns in X from the normal distribu-
tion with mean (0:5; 1;�0:1)0, variances normalized to 1, cov(x2; x3) = 0:3; cov(x2; x4) = 0:1 and
cov(x3; x4) = 0:2, where x2; x3 and x4 are respectively the second, third and fourth components
of xt. The correlations between the exogenous variables are neither extreme nor negligible. Given
X; [ v V ] and [ �0 �0 ] = ��0(B0)�1, we generate the endogenous variables [ y Y ] by using
the reduced-form equation: [ y Y ] = X[ �0 �0 ] + [ v V ]
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Table 1(a). Simulation Means and Standard Deviations of )1,(12 =qSQR θ : N(0,1). 
                    θ            0.05           0.25           0.50           0.75           0.95 
        
 
 
T  =  50 

        
0

~β  Mean -0.75 -0.35 -0.01 0.31 0.77 
 Std    2.18 1.15 0.83 0.67 0.58 
        

1
~β  Mean 0.01 0.00 0.00 0.00 0.00 

 Std    0.35 0.23 0.21 0.23 0.35 
         γ~  Mean -0.01 0.00 0.00 0.01 0.00 
 Std    0.51 0.34 0.31 0.33 0.49 

        
 
 
T  =  300 

        
0

~β  Mean -0.84 -0.34 -0.01 0.33 0.81 
 Std    0.83 0.43 0.33 0.26 0.22 
        

1
~β  Mean 0.00 0.00 0.00 0.00 0.00 

 Std    0.14 0.09 0.09 0.09 0.13 
         γ~  Mean 0.00 0.00 0.00 0.00 0.01 
 Std    0.19 0.12 0.12 0.13 0.19 

 
Table 1(b). Simulation Means and Standard Deviations of ),(12 *qqSQR =θ : N(0,1). 
          θ  

       ( *q ) 
          0.05 
   (0.0013) 

          0.25 
  (-0.0003) 

          0.50 
   (0.0002) 

          0.75 
   (0.0003) 

          0.95 
   (0.0027) 

        
 
 
T  =  50 

        
0

~β  Mean 0.59 0.23 -0.01 -0.26 -0.62 
 Std    1.19 0.89 0.71 0.54 0.36 
        

1
~β  Mean 0.00 0.00 0.00 0.00 0.00 

 Std    0.19 0.19 0.18 0.18 0.19 
         γ~  Mean 0.00 0.00 0.00 0.00 0.00 
 Std    0.27 0.26 0.26 0.26 0.27 

        
 
 
T  =  300 

        
0

~β  Mean 0.72 0.29 -0.01 -0.31 -0.74 
 Std    0.44 0.34 0.27 0.21 0.14 
        

1
~β  Mean 0.00 0.00 0.00 0.00 0.00 

 Std    0.07 0.07 0.07 0.07 0.07 
         γ~  Mean 0.00 0.00 0.00 0.00 0.00 
 Std    0.10 0.10 0.10 0.10 0.10 

 
Table 1(c). Simulation Means and Standard Deviations of )ˆ,(12 qqSQR =θ : N(0,1). 
            θ            0.05           0.25           0.50           0.75           0.95 
 
 
 
 
 
T  =  50 

        
0

~β  Mean 0.22 0.15 -0.01 -0.20 -0.26 
 Std    1.49 0.91 0.72 0.54 0.40 
        

1
~β  Mean 0.00 0.00 0.00 0.00 0.00 

 Std    0.22 0.19 0.18 0.19 0.22 
         γ~  Mean 0.01 0.01 0.00 0.01 0.01 
 Std    0.33 0.26 0.26 0.27 0.32 

 q̂       Mean 0.19 -0.01 -0.05 0.07 0.31 
 Std    0.33 0.23 0.20 0.20 0.20 

 
 
 
 
 
T  =  300 

       
0

~β  Mean 0.62 0.25 -0.01 -0.27 -0.62 
 Std    0.46 0.34 0.27 0.21 0.16 
        

1
~β  Mean 0.00 0.00 0.00 0.00 0.00 

 Std    0.07 0.07 0.07 0.07 0.07 
         γ~  Mean 0.00 0.00 0.00 0.00 0.00 
 Std    0.10 0.10 0.10 0.10 0.10 
        q̂       Mean 0.08 0.00 -0.05 0.00 0.10 
 Std    0.09 0.11 0.12 0.11 0.09 

 



Table 2(a). Simulation Means and Standard Deviations of )1,(12 =qSQR θ : t (3). 
                    θ            0.05           0.25           0.50           0.75           0.95 
        
 
 
T  =  50 

        
0

~β  Mean -1.07 -0.34 0.01 0.42 1.36 
 Std    7.32 2.04 1.42 1.06 1.05 
        

1
~β  Mean 0.04 0.02 0.01 -0.01 -0.01 

 Std    0.88 0.33 0.28 0.34 0.85 
         γ~  Mean -0.06 -0.02 -0.01 -0.01 -0.1 
 Std    1.48 0.59 0.51 0.54 1.43 

        
 
 
T  =  300 

        
0

~β  Mean -1.18 -0.40 -0.02 0.37 1.20 
 Std    2.17 0.59 0.40 0.33 0.33 
        

1
~β  Mean 0.02 0.00 0.00 0.00 0.00 

 Std    0.29 0.11 0.10 0.12 0.30 
         γ~  Mean 0.00 0.00 0.01 0.01 0.01 
 Std    0.43 0.17 0.14 0.17 0.42 

 
Table 2(b). Simulation Means and Standard Deviations of ),(12 *qqSQR =θ : t (3). 
          θ   

       ( *q ) 
          0.05 
    (-0.079) 

          0.25 
     (0.537) 

          0.50 
     (0.835) 

          0.75 
     (0.538) 

          0.95 
    (-0.078) 

        
 
 
T  =  50 

        
0

~β  Mean 0.90 0.01 0.02 0.10 -0.74 
 Std    2.98 1.89 1.42 1.00 0.43 
        

1
~β  Mean 0.02 0.02 0.01 0.01 0.02 

 Std    0.35 0.32 0.28 0.31 0.34 
         γ~  Mean -0.03 -0.02 -0.01 -0.02 -0.03 
 Std    0.58 0.55 0.51 0.50 0.53 

        
 
 
T  =  300 

        
0

~β  Mean 0.87 -0.06 -0.02 0.02 -0.92 
 Std    0.94 0.56 0.40 0.32 0.16 
        

1
~β  Mean 0.00 0.00 0.00 0.00 0.00 

 Std    0.12 0.11 0.10 0.11 0.12 
         γ~  Mean 0.01 0.01 0.01 0.01 0.01 
 Std    0.18 0.16 0.14 0.16 0.18 

 
Table 2(c). Simulation Means and Standard Deviations of )ˆ,(12 qqSQR =θ : t (3). 
            θ            0.05           0.25           0.50           0.75           0.95 
 
 
 
 
 
T  =  50 

        
0

~β  Mean -0.19 0.10 0.07 -0.01 -0.22 
 Std    13.6 2.02 1.66 1.04 0.86 
        

1
~β  Mean 0.03 0.01 0.01 0.01 0.01 

 Std    0.56 0.30 0.31 0.31 0.52 
         γ~  Mean 0.07 -0.01 -0.02 -0.02 -0.01 
 Std    2.74 0.58 0.59 0.52 1.19 

 q̂       Mean 0.19 0.30 0.32 0.32 0.29 
 Std    0.54 0.30 0.27 0.28 0.37 

 
 
 
 
 
T  =  300 

       
0

~β  Mean 0.80 0.01 -0.01 -0.04 -0.87 
 Std    1.02 0.57 0.40 0.33 0.29 
        

1
~β  Mean 0.00 0.00 0.00 0.00 0.00 

 Std    0.12 0.11 0.10 0.11 0.13 
         γ~  Mean 0.01 0.01 0.00 0.00 0.01 
 Std    0.19 0.16 0.15 0.16 0.19 

q̂       Mean 0.01 0.45 0.57 0.44 0.04 
 Std    0.16 0.18 0.16 0.18 0.16 

 



Table 3(a). Simulation Means and Standard Deviations of )1,(12 =qSQR θ : LN(0,1). 
                    θ            0.05           0.25           0.50           0.75           0.95 
        
 
 
T  =  50 

        
0

~β  Mean -0.50 -0.35 -0.10 0.37 2.00 
 Std    1.43 1.26 1.56 2.06 3.00 
        

1
~β  Mean 0.02 0.02 0.02 0.01 0.03 

 Std    0.21 0.21 0.30 0.48 1.73 
         γ~  Mean -0.05 -0.05 -0.05 -0.05 -0.14 
 Std    0.35 0.33 0.47 0.88 2.64 

        
 
 
T  =  300 

        
0

~β  Mean -0.74 -0.57 -0.33 0.15 1.85 
 Std    0.49 0.50 0.56 0.66 1.08 
        

1
~β  Mean 0.00 0.00 0.00 0.01 0.02 

 Std    0.08 0.09 0.11 0.19 0.65 
         γ~  Mean 0.00 0.00 0.00 0.01 0.02 
 Std    0.11 0.13 0.16 0.27 0.91 

 
Table 3(b). Simulation Means and Standard Deviations of ),(12 *qqSQR =θ : LN(0,1). 
           θ   

       ( *q ) 
          0.05 
   (1.0388) 

          0.25 
     (1.051) 

          0.50 
     (0.972) 

          0.75 
     (0.167) 

          0.95 
    (-0.146) 

        
 
 
T  =  50 

        
0

~β  Mean -0.56 -0.41 -0.08 0.18 -1.25 
 Std    1.41 1.25 1.56 1.57 0.91 
        

1
~β  Mean 0.02 0.02 0.02 0.02 0.03 

 Std    0.21 0.21 0.30 0.40 0.45 
         γ~  Mean -0.05 -0.04 -0.05 -0.06 -0.07 
 Std    0.35 0.33 0.47 0.65 0.71 

        
 
 
T  =  300 

        
0

~β  Mean -0.79 -0.62 -0.31 -0.08 -1.42 
 Std    0.49 0.50 0.56 0.54 0.32 
        

1
~β  Mean 0.00 0.00 0.00 0.00 0.00 

 Std    0.08 0.09 0.11 0.16 0.18 
         γ~  Mean 0.00 0.00 0.00 0.00 0.01 
 Std    0.11 0.13 0.16 0.22 0.24 

 
Table 3(c). Simulation Means and Standard Deviations of )ˆ,(12 qqSQR =θ : LN(0,1). 
            θ            0.05           0.25           0.50           0.75           0.95 
 
 
 
 
 
T  =  50 

        
0

~β  Mean -0.39 0.04 0.18 0.21 -1.01 
 Std    1.55 1.58 2.20 2.38 1.82 
        

1
~β  Mean 0.02 0.02 0.02 0.02 0.02 

 Std    0.22 0.25 0.34 0.40 0.75 
         γ~  Mean -0.06 -0.05 -0.06 -0.07 -0.11 
 Std    0.37 0.41 0.66 1.01 2.06 

 q̂       Mean 0.92 0.65 0.55 0.28 0.02 
 Std    0.11 0.13 0.25 0.40 0.37 

 
 
 
 
 
T  =  300 

       
0

~β  Mean -0.68 -0.40 -0.23 -0.03 -1.37 
 Std    0.50 0.52 0.56 0.55 0.37 
        

1
~β  Mean 0.00 0.00 0.00 0.00 0.00 

 Std    0.09 0.09 0.11 0.16 0.18 
         γ~  Mean 0.00 0.00 0.00 0.00 0.01 
 Std    0.12 0.13 0.16 0.23 0.25 

q̂       Mean 0.96 0.85 0.85 0.38 -0.17 
 Std    0.04 0.04 0.06 0.31 0.08 

 



Table 4(a). Simulated Standard Deviations of 2SQR1 )ˆ,( qθ  and Cramer-Rao Bounds with T  = 50 
Estimator First Stage Second Stage  N(0,1) t (3) LN(0,1) 
CR bounds   1β̂  

γ̂  
0.19 
0.26 

0.20 
0.28 

0.04 
0.06 

       
2SLS 
 

LS LS 1β̂  
γ̂  

0.21 
0.30 

0.41 
0.78 

0.42 
0.70 

       
2SQR )ˆ,( qθ  LS Quantile(θ =0.05) 1β̂  

γ̂  
0.22 
0.33 

0.56 
2.74 

0.22 
0.37 

2SQR )ˆ,( qθ  LS Quantile(θ =0.25) 1β̂  
γ̂  

0.19 
0.26 

0.30 
0.58 

0.25 
0.41 

2SQR )ˆ,( qθ   LS Quantile(θ =0.50) 1β̂  
γ̂  

0.19 
0.26 

0.31 
0.59 

0.34 
0.66 

2SQR )ˆ,( qθ  LS Quantile(θ =0.75) 1β̂  
γ̂  

0.19 
0.27 

0.31 
0.52 

0.40 
1.01 

2SQR )ˆ,( qθ  LS Quantile(θ =0.95) 1β̂  
γ̂  

0.22 
0.32 

0.52 
1.19 

0.75 
2.06 

 
Table 4(b). Simulated Standard Deviations of 2SQR2 ),( qθ with T  = 50 
Estimator First Stage Second Stage  N(0,1) t (3) LN(0,1) 
Trim )(ϕ -2SQR )1,(θ  Trim(0.25) Quantile(θ =0.05) 1β̂  

γ̂  
0.36 
0.52 

0.82 
1.22 

0.15 
0.22 

Trim )(ϕ -2SQR )1,(θ  Trim(0.25) Quantile(θ =0.25) 1β̂  
γ̂  

0.24 
0.37 

0.31 
0.44 

0.17 
0.25 

Trim )(ϕ -2SQR )1,(θ  Trim(0.25) Quantile(θ =0.50) 1β̂  
γ̂  

0.23 
0.36 

0.24 
0.39 

0.23 
0.35 

Trim )(ϕ -2SQR )1,(θ  Trim(0.25) Quantile(θ =0.75) 1β̂  
γ̂  

0.24 
0.37 

0.31 
0.48 

0.42 
0.63 

Trim )(ϕ -2SQR )1,(θ  Trim(0.25) Quantile(θ =0.95) 1β̂  
γ̂  

0.35 
0.51 

0.79 
1.14 

1.63 
2.33 

       
Trim )(ϕ -2SQR )ˆ,( qθ  Trim(0.25) Quantile(θ =0.05) 1β̂  

γ̂  
0.24 
0.40 

0.51 
0.85 

0.15 
0.23 

Trim )(ϕ -2SQR )ˆ,( qθ  Trim(0.25) Quantile(θ =0.25) 1β̂  
γ̂  

0.21 
0.36 

0.26 
0.39 

0.18 
0.27 

Trim )(ϕ -2SQR )ˆ,( qθ  Trim(0.25) Quantile(θ =0.50) 1β̂  
γ̂  

0.21 
0.34 

0.24 
0.44 

0.23 
0.35 

Trim )(ϕ -2SQR )ˆ,( qθ  Trim(0.25) Quantile(θ =0.75) 1β̂  
γ̂  

0.22 
0.36 

0.26 
0.40 

0.29 
0.46 

Trim )(ϕ -2SQR )ˆ,( qθ  Trim(0.25) Quantile(θ =0.95) 1β̂  
γ̂  

0.23 
0.36 

0.36 
0.53 

0.46 
0.65 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Table 5(a). Simulated Standard Deviations of  2SQR1 )ˆ,( qθ  and Cramer-Rao Bounds with T  = 300 
Estimator First Stage Second Stage  N(0,1) t (3) LN(0,1) 
CR bounds   1β̂  

γ̂  
0.07 
0.10 

0.08 
0.12 

0.02 
0.02 

       
2SLS 
 

LS LS 1β̂  
γ̂  

0.07 
0.10 

0.12 
0.18 

0.16 
0.22 

       
2SQR )ˆ,( qθ  LS Quantile(θ =0.05) 1β̂  

γ̂  
0.07 
0.10 

0.12 
0.19 

0.09 
0.12 

2SQR )ˆ,( qθ  LS Quantile(θ =0.25) 1β̂  
γ̂  

0.07 
0.10 

0.11 
0.16 

0.09 
0.13 

2SQR )ˆ,( qθ   LS Quantile(θ =0.50) 1β̂  
γ̂  

0.07 
0.10 

0.10 
0.15 

0.11 
0.16 

2SQR )ˆ,( qθ  LS Quantile(θ =0.75) 1β̂  
γ̂  

0.07 
0.10 

0.11 
0.16 

0.16 
0.23 

2SQR )ˆ,( qθ  LS Quantile(θ =0.95) 1β̂  
γ̂  

0.07 
0.10 

0.13 
0.19 

0.18 
0.25 

 
Table 5(b). Simulated Standard Deviations of 2SQR2 ),( qθ with T  = 300 
Estimator First Stage Second Stage  N(0,1) t (3) LN(0,1) 
Trim )(ϕ -2SQR )1,(θ  Trim(0.25) Quantile(θ =0.05) 1β̂  

γ̂  
0.14 
0.20 

0.28 
0.42 

0.05 
0.07 

Trim )(ϕ -2SQR )1,(θ  Trim(0.25) Quantile(θ =0.25) 1β̂  
γ̂  

0.09 
0.13 

0.11 
0.16 

0.06 
0.08 

Trim )(ϕ -2SQR )1,(θ  Trim(0.25) Quantile(θ =0.50) 1β̂  
γ̂  

0.09 
0.12 

0.09 
0.13 

0.09 
0.12 

Trim )(ϕ -2SQR )1,(θ  Trim(0.25) Quantile(θ =0.75) 1β̂  
γ̂  

0.09 
0.13 

0.11 
0.16 

0.17 
0.24 

Trim )(ϕ -2SQR )1,(θ  Trim(0.25) Quantile(θ =0.95) 1β̂  
γ̂  

0.13 
0.19 

0.30 
0.41 

0.62 
0.89 

       
Trim )(ϕ -2SQR )ˆ,( qθ  Trim(0.25) Quantile(θ =0.05) 1β̂  

γ̂  
0.08 
0.11 

0.10 
0.14 

0.05 
0.07 

Trim )(ϕ -2SQR )ˆ,( qθ  Trim(0.25) Quantile(θ =0.25) 1β̂  
γ̂  

0.08 
0.11 

0.09 
0.13 

0.06 
0.08 

Trim )(ϕ -2SQR )ˆ,( qθ  Trim(0.25) Quantile(θ =0.50) 1β̂  
γ̂  

0.08 
0.11 

0.09 
0.13 

0.09 
0.12 

Trim )(ϕ -2SQR )ˆ,( qθ  Trim(0.25) Quantile(θ =0.75) 1β̂  
γ̂  

0.08 
0.11 

0.09 
0.13 

0.12 
0.17 

Trim )(ϕ -2SQR )ˆ,( qθ  Trim(0.25) Quantile(θ =0.95) 1β̂  
γ̂  

0.08 
0.11 

0.10 
0.14 

0.10 
0.14 
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