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Abstract 

This paper analyzes the cyclical behavior of Dow Jones by testing the existence of long 
memory through a new class of semiparametric ARFIMA models with HYGARCH errors 
(SEMIFARMA-HYGARCH); this class includes nonparametric deterministic trend, stochastic 
trend, short-range and long-range dependence and long memory heteroscedastic errors. We 
study the daily returns of the Dow Jones from 1896 to 2006. We estimate several models and 
we find that the coefficients of the SEMIFARMA-HYGARCH model, including long memory 
coefficients for the equations of the mean and the conditional variance, are highly significant. 
The forecasting results show that the informational shocks have permanent effects on 
volatility and the SEMIFARMA-HYGARCH model has better performance over some other 
models for long and/or short horizons. The predictions from this model are also better than 
the predictions of the random walk model; accordingly, the weak efficiency assumption of 
financial markets seems violated for Dow Jones returns studied over a long period.  
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1. Introduction 

Stock prices have specific statistical properties whose consideration is fundamental to 
address the problem of modeling. Thus, the presence of long memory in financial series has 
important implications especially concerning the property of weak efficiency of markets. 
Indeed, if a series exhibits long memory, this implies significant autocorrelations between 
observations that, although they are distant in time, can help predict future returns, which 
violates the assumption of market efficiency (see, among others, Fama 1965,  1970 and 1998; 
Grossman 1976;  Jensen 1978; Lillo and Farmer 2004; Christodoulou-Volos and Siokis 2006; 
Barkoulas and Baum 1997; Gursakal 2010). Therefore, modeling persistence in financial time 
series has been a high priority in the field of economic research. Moreover, time series often 
exhibit deterministic or stochastic trends. Thus, Beran (1999) proposed a SEMIFAR 
(Semiparametric fractional autoregressive) model; this model is interesting because it takes 
into account both short-term behavior of the series through autoregressive parameters, long-
term behavior through the parameter of fractional integration and also the nonparametric 
deterministic trend. Beran and Feng (2002a, 2002b) then introduce the moving average part 
into the SEMIFAR model, calling it SEMIFARMA (SEMIFAR Moving Average) model. The 
SEMIFARMA model thus includes the ARIMA model and the fractionally autoregressive 
process (Granger and Joyeux 1980; Hosking 1981). The assumption of white noise on the 
SEMIFARMA model residuals ignores the presence of conditional heteroskedasticity; 
however, the financial series are generally characterized by a time-varying volatility that can 
be modeled by ARCH-type models (Engle 1982; Bollerslev 1986). The SEMIFARMA-
GARCH model proposed by Feng et al. (2007) corresponds to a specific representation of 
nonlinearity allowing for simplified modeling of uncertainty. We will extend this model by 
using the HYGARCH (Hyperbolic GARCH) model (Davidson 2004) that provides a direct 
measure of persistence through the fractional integration parameter. 

The present article belongs to the field of the above mentioned research work. It is applied 
to analysis of the persistence of informational shocks and to the search for a possible long 
memory in Dow Jones returns. By studying the daily returns of this stock price over a long 
period, from 1896 to 2006 (30292 observations), we show that the SEMIFARMA-
HYGARCH model has a significant predictive superiority over all other proposed models for 
long horizons. The predictions from this model are also better than the predictions of the 
random walk model, either short term or long term; accordingly, the weak efficiency 
assumption of financial markets seems violated for Dow Jones returns studied over a long 
period. 

The rest of the paper is organized as follows. Section 2 focuses on presentation of the 
SEMIFARMA-HYGARCH model. Section 3 is devoted to empirical study of the daily series 
of Dow Jones; we compare the predictive quality of SEMIFARMA-GARCH, SEMIFARMA-
FIGARCH and SEMIFARMA-HYGARCH models with that of a random walk. We give 
some conclusions in Section 4. 
 

2. Presentation of the SEMIFARMA- HYGARCH model  
 

Some authors have used the HYGARCH model or the SEMIFAR model to study financial 
time series, but always separately. Thus, concerning the HYGARCH model, Davidson (2004) 
examines the volatility dynamics of three Asian currencies. Tang and Shieh (2006) analyze 
the value-at-risk in the case of three stock indexes (S&P 500, Dow Jones and Nasdaq 100). 
Cardamone and Folkinshteyn (2007) study the sensitivity of U.S. interest rates and exchange 
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rates. Härdle and Mungo (2008) focus on the value-at-risk of some stock indexes. McMillan 
and Kambouroudis (2009) compare the predictions of the HYGARCH model and other 
models for 31 stock indexes. Kasman et al. (2009) investigate the presence of long memory in 
eight stock indexes of countries from Central Europe and Eastern Europe. Aloui and Mabrouk 
(2010) consider the value-at-risk for oil and gas. Conrad (2010) derives the conditions for 
non-negativity of the conditional variance in a HYGARCH model and presents two empirical 
applications, one for the daily FTSE, the other for the DAX30. Wei et al. (2010) are 
concerned with the volatility of the oil market. Finally, Kwan et al. (2011) study some 
theoretical properties of the HYGARCH model and give an empirical illustration devoted to 
the exchange rates of the Korean currency. Regarding the SEMIFAR modeling, Beran and 
Ocker (1999a) apply SEMIFAR to model some European and Asian exchange rates; Beran 
and Ocker (1999b) and Feng et al. (2007) study different stock series. 

The SEMIFARMA-HYGARCH model we use is as follows (see Beran and Feng (2002a) for 
the SEMIFAR part and Davidson (2004) for the HYGARCH part). { }tY  is a fractional 
semiparametric process with hyperbolic GARCH error, called SEMIFARMA-HYGARCH, if it 
verifies the following relationship: 

                                 { } ttt
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21 and )(Bλ  denote polynomials in the lag operator with 
degrees given by p, q, r, s and ∞  respectively, with roots outside the unit circle. B is the lag 
operator, 1d  is an integer: { }1,01 ∈d , txt = is the trend and g : [0, 1] → R is the smoothing 

function. Finally, the process is stationary and invertible,
2
1 

2
1

2 <<− d , and tu  is an i.i.n. 

process. Davidson (2004) shows that the HYGARCH process generalizes the FIGARCH 
model (Baillie et al. 1996). If 1=α , the HYGARCH model corresponds to a FIGARCH 
model. The process is stationary if 10 << α  and nonstationary if 1>α . The long memory 
intervenes in the mean equation (1) (through the parameter 2d ) and in the variance equation 
(3) (through the parameter d). It is important to note that the definition of long memory is an 
asymptotic definition; in other words, what matters is how the autocorrelations converge to 
zero when the lag increases. To summarize, the distinction, in terms of autocorrelations, 
between a short memory process and a long memory process results from the speed of 
geometric or hyperbolic convergence of the autocorrelations toward zero. 

Finally, the )( txg function is a nonlinear deterministic trend. The kernel estimation in the 
case of nonparametric regression has been studied especially by Hall and Hart (1990), Ray 
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and Tsay (1997) and Beran (1999) in the case of long memory errors. We estimate g by the 
kernel method using the following model: 

                                                  ttt
d XxgYB +=− )()1( 1                                                       (6)  

It is equivalent to ttt XxgY += )(  if 01 =d  and to tttt XxgYY +=− − )(1  if 11 =d , where 

tX   is a process of long memory stationary errors if 2d >0 and short memory errors if 2d =0 ; 

the case 2d <0 is sometimes called “anti-persistence”. We consider the polynomial kernel 
defined by: 
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1)( dxxK  (see Beran and Feng (2002a and b) for details on the estimation method).  

 
3. Empirical analysis of the Dow Jones 

 

The empirical study focuses on the logarithmic series of daily Dow Jones covering a 
historical period from May 26, 1896 to August 17, 2006 (n = 30292). Unit root tests results 
(Dickey and Fuller 1981; Phillips and Perron 1988; Schmidt and Phillips 1992; Kwiatkowski 
et al. 1992; Elliott et al. 1996) show that this series is characterized by a unit root (see Table 
1). The series is finally differentiated to obtain the returns (see Figure 1). 

[Insert Table 1 here] 

[Insert Fig. 1 here] 
The assumption of normality of returns is clearly rejected (see Table 2 and Figure 2). The 

observed asymmetry may indicate the presence of nonlinearities in the evolution process of 
returns. The scatter plot of the series (Figure 3) does not appear in the form of a regular 
ellipsoid, and confirms nonlinearity. In addition, the series is heteroscedastic according to the 
results of White and Breusch-Pagan tests reported in Table 3, since the null hypothesis of 
homoscedasticity is rejected at 5%. The conditional heteroskedasticity test result shows that 
Dow Jones returns are characterized by the presence of an ARCH effect frequently 
encountered in financial time series [ )2(1114.3201 2

05.0
2 χ>=nR ]. 

[Insert Table 2 here] 

[Insert Fig. 2 here] 

[Insert Table 3 here] 

[Insert Fig. 3 here] 
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In view of Table 4, the random walk hypothesis is clearly rejected. Indeed, Mizrach 
(Mizrach 1995) and BDS (Brock et al. 1987) statistics, which test the presence of linear or 
nonlinear dependences, are strictly greater than the critical value at 5%. 

[Insert Table 4 here] 
These first tests generally highlight the presence of significant non-zero autocorrelations in 

the short term; even if these autocorrelations are significant from a statistical point of view, 
they are not significant from an economic point-of-view in that it is impossible to exploit 
these autocorrelations to establish speculative rules leading to abnormal profits. Tests lead us 
to reject the null hypothesis of no autocorrelation, but do not detect the presence of a structure 
of long-term dependence. Given this situation, we analyze the cyclical behavior of returns by 
considering longer horizons. By plotting the periodogram of this series (see Figure 4) (with 
Tuckey window), we note that the spectral density is concentrated around low frequencies and 
tends to infinity when the frequency tends to zero. This is a sign of long memory that we have 
to verify with statistical tests.  

 [Insert Fig. 4 here] 
For this reason, we choose different values for the periodogram ordinates around the 

square root of the number of observations. This choice aims to examine the stability of the 
estimators when the number of the periodogram ordinates varies. From Table 5, it is obvious 
that the series of Dow Jones returns is generated by a long memory process. Some values of 
the Student statistic (with a power of 0.8) are strictly greater than the critical value at 5%. In 
addition, the memory parameter estimated by the Andrews and Guggenberger (2003) method 
is positive and significant. The estimation result is very close to those found with the GPH 
(Geweke and Porter-Hudak 1983) method. The returns are long-term predictable: the presence 
of a long memory indicates that agents can anticipate their returns to a sufficiently long time 
horizon. Indeed, the observed movements appear as the result of lasting exogenous shocks 
which affect the New York market, i.e. the return will not come back to its fundamental value.  

[Insert Table 5 here] 
The results of the SEMIFARMA model estimation by the exact maximum likelihood 

method are shown in Table 6. After estimating the deterministic trend, the optimal window 
and the cross-validation criteria by the kernel method based on the methodology of Nadaraya-
Watson (Nadaraya 1964; Watson 1964), the results indicate that the Dow Jones series is 
characterized by a long memory: the estimated fractional integration parameter is significantly 
different from zero. This result is consistent with the different spectral method estimators.  

[Insert Table 6 here] 
We note that the residuals (Figure 5) are not characterized by a Gaussian distribution 

(Table 7) and are leptokurtic (Figure 6). The asymmetry may indicate the presence of 
nonlinearities in the residuals. However, these residuals can be modeled by GARCH models 
because the presence of an ARCH effect is confirmed by the result of the ARCH-LM test on 
residuals ( )1(1646.20 22 χ>=nR ).Thus, the spectrum of squared residuals (see Figure 7) is 
concentrated around low frequencies and tends to infinity as the frequency tends to zero. It is 
likely that the conditional variance has a persistent long memory structure. The financial asset 
prices often exhibit heteroscedastic behavior with persistence. For this reason, we will study 
the conditional variance of Dow Jones returns, to consider the possibility of lasting shocks on 
volatility.  

[Insert Fig. 5 here] 

[Insert Table 7 here] 
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[Insert Fig. 6 here] 

[Insert Fig. 7 here] 
The process followed by Dow Jones returns is then estimated by the simultaneous 
maximization of the mean and variance processes. The tests allow the adequacy of the model 
to be appraised, firstly, concerning the absence of autocorrelation and of heteroscedasticity, 
and secondly, concerning the existence of long memory and the good modeling of the ARCH 
effect. In practical terms, we estimate several models for different lags: a SEMIFARMA (p, d, 
q) jointly with a GARCH, FIGARCH and HYGARCH model. For each model, we calculate 
both Akaike (1970) and Schwarz (1978) information criteria. The estimation of different 
models is only based on 30032 observations, in order to make further comparisons with the 
predictions of the 260 remaining observations.  

In view of Table 8, we find that the information criteria are minimum for the 
SEMIFARMA-HYGARCH model and the coefficients of this model are highly significant. In 
addition, long memory coefficients for the equations of the mean and the conditional variance 
are also significant. The residuals of the models are characterized by the absence of 
conditional heteroskedasticity: the ARCH-LM statistics are strictly less than the critical value 
of 2

2χ  at 5%. It should be noted that the normality assumption of residuals of the models is 
clearly rejected because the Jarque-Bera statistics are strictly greater than the critical value of 

2
2χ at 5%. In view of Table 9, the series of the SEMIFARMA-HYGARCH residuals show no 

dependence structure where the BDS statistics are strictly less than the critical value 1.96.  

[Insert Table 8 here] 

[Insert Table 9 here] 
To compare the forecasting performance of the proposed models and the random walk 

model, two criteria are used: the mean squared error (MSE) and the mean absolute error 
(MAE) given by 

                                                ∑
=

+−+−
− −=

H

h
hHnhHn YYHMSE

1

21 )ˆ(                                             (8) 

                                                  ∑
=

+−+−
− −=

H

h
hHnhHn YYHMAE

1

1 ˆ                                               (9) 

where h is the forecasting horizon and H is the total number of predictions for the horizon h 
over the forecast period. 

Table 10 contains the results of in-sample predictions provided by the different models. 
MSE and MAE criteria generally give the same results. We note that, whatever the forecast 
horizon, the random walk model is beaten by all the other models. We generally find good 
predictive results from the SEMIFARMA-FIGARCH model and especially the 
SEMIFARMA-HYGARCH model with a horizon of 90, 180 and 260 days. As shown in 
Table 11, which gives the statistical comparisons of out-of-sample forecasts, all the models 
beat also the random walk model and we find good predictive results from the SEMIFARMA-
HYGARCH with a horizon of 30, 90 and 180 days. Indeed, the random walk takes into 
account only the short-term memory of the series and therefore completely neglects the long-
term memory. MSE and MAE criteria give nearly the same results. Consequently, as shown in 
Tables 10 and 11, the long memory models of conditional variance, such as the 
SEMIFARMA-HYGARCH model, provide superior quality forecasts over a long horizon. 
Taking into account the long memory implies that, for a long-term forecast (180 or 260 days), 
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not only the last observed value but also the entire weighted history of this series should be 
used.  

[Insert Table 10 here] 

[Insert Table 11 here] 
Given that the Dow Jones returns are characterized by the presence of long-term dynamics 

in the equations of the mean and conditional variance and by heteroscedasticity, the 
SEMIFARMA-HYGARCH model allows computation of better short-term and long term 
forecasts than the random walk model. This model is also clearly superior to all other models 
for long horizons. 

In order to test the statistical significance of the forecasting improvements obtained with 
the SEMIFARMA-HYGARCH model over the random-walk model, we can use also a battery 
of tests based on loss functions: the asymptotic test, the sign tests, then Wilcoxon's test, the 
Naive benchmark test, the Morgan-Granger-Newbold test and the Meese Rogoff test (all these 
tests are summarized in Diebold and Mariano (1995)). The p-values in table 12 clearly 
indicate that the null hypothesis of equal accuracy of the two models is strongly rejected (the 
p-values are less than 0.05). So, we accept different predictive accuracy; it means that, in this 
case, the SEMIFARMA-HYGARCH model beats the random walk process. The evidence is 
encouraging for the predictive ability of non-linear fractional models for the Dow Jones 
returns (the same conclusion is given in Barkoulas and Baum (2006) for some US monetary 
indices). 

[Insert Table 12 here] 

Although the gap between the MSE and MAE criteria does not appear very important, 
what is significant in this study is the systematic nature of the models. Indeed, the price 
movements appear as the result of lasting exogenous shocks which affect the U.S. stock 
market; in other words, the consequences of a shock will be sustainable, the Dow Jones 
returns will not come back to their previous fundamental value and the shock will be 
persistent in the long term. This suggests that, due to the long-term predictability of returns, it 
will be possible a priori to establish remunerative strategies on the New York stock market. 
 

4. Conclusion 
 
In this article, we investigated the presence of long memory in the Dow Jones returns. In 

this context, we proposed a semiparametric long memory model called SEMIFARMA with 
hyperbolic GARCH errors. We implemented the exact maximum likelihood method to 
estimate exactly this class of models by taking into account the phenomenon of long-term 
persistence for the conditional variance. From the results, informational shocks have lasting 
effects on volatility and the SEMIFARMA-HYGARCH model shows a clear superiority over 
all the other proposed models for long horizons. Specifically, the forecasts of the long 
memory model show a clear improvement compared to the random walk model at all 
horizons. The returns have long term memory structure because distant observations are 
positive autocorrelated: future predictions are improved by past returns and this put into 
question the validity of the efficient market hypothesis. It appears that the Dow Jones returns 
are long-term dependent, suggesting stock market inefficiency.  Consequently, low efficiency 
of financial markets seems violated for the Dow Jones returns studied over a long period. 
Thus, recent works on volatility modeling through FIGARCH or HYGARCH processes seem 
particularly promising and may provide new evidence to better understand the dynamics of 
financial series. 
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Figure 1 – Dow Jones (logarithmic series and returns) 
 

 

 

 

 

 

 

 
 
 
           Figure 2 – Kernel estimation of density 

 

 

 

 

 

 

 

 

 
Figure 3 – Scatter plot of Dow Jones variations 

 
 

 

 

 

 
 
 
 

Figure 4 –Periodogram of Dow Jones returns 
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Figure 5 – Evolution of estimation residuals 
 

 

 

 

 

 

 

 

Figure 6 – Kernel estimator of residuals’ density  
 

 

 

 

 

 

 

 

 
Figure 7 – Simple correlogram and periodogram of squared residuals 
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Table 1 – Unit root tests 
 

Test Logarithmic series Returns 

Dickey-Fuller (I) 
 

-1.6316 
(-3.4127) 

(I) 
 

-73.810 
(-3.4127) 

Phillips-Perron (III) 
 

-1.6323 
(-3.4127) 

(II) 
 

-167.53 
(-3.4127) 

Schmidt-Phillips 

Z(Rho) 
 

-6.4786 
(-18.1) 

Z(Rho) 
 

-27677.6873 
(-18.1) 

Z(Tau) 
 

-1.7970 
(-3.02) 

Z(Tau) 
 

-159.0685 
(-3.02) 

 
 

Test Window 

Spectral estimation method 
Bartlett kernel Quadratic spectral kernel 

Logarithmic series Returns Logarithmic series Returns 
(II) (III) (II) (III) (II) (III) (II) (III) 

KPSS 
:0H  

Stationary 
series 

Newey-
West 

20.413 
(0.463) 

3.564 
(0.146) 

0.165 
(0.463) 

0.033 
(0.146) 

72.771 
(0.463) 

12.631 
(0.146) 

0.173 
(0.463) 

0.034 
(0.146) 

Andrews  0.7086 
(0.463) 

0.150 
(0.146) 

0.177 
(0.463) 

0.035 
(0.146) 

2.29 
(0.463) 

0.159 
(0.146) 

0.181 
(0.463) 

0.036 
(0.146) 

Elliott-
Rothenberg-

Stock 
:0H unit 

root 

Newey-
West 

0.00272 
(3.26) 

0.0066 
(5.62) 

138.388 
(3.26) 

16.367 
(5.62) 

0.0028 
(3.26) 

0.0069 
(5.62) 

144.822 
(3.26) 

17.151 
(5.62) 

Andrews  0.0029 
(3.26) 

0.007 
(5.62) 

147.891 
(3.26) 

17.527 
(5.62) 

0.0029 
(3.26) 

0.0070 
(5.62) 

151.514 
(3.26) 

17.959 
(5.62) 

(I): model without constant and deterministic trend (5%) 
(II): model with constant and without deterministic trend (5%) 
(III): model with constant and deterministic trend (5%) 

 
 

 
 

Table 2 – Normality tests on distribution of returns 
 

Skewness Kurtosis J.B A.D K.S

-1.1208 38.2164 1571629 1015.4123 0.581 
(0.092

J.B is the Jarque-Bera statistic,  
K.S is the Kolmogorov-Smirnov statistic, 
A.D is the Anderson-Darling statistic. 
The Kolmogorov-Smirnov critical values are given between parentheses at 5%.  
 
 
 
 
  

Table 3 – Homoscedasticity tests 
 

Breusch-Pagan statistic White statistic LM - ARCH(2) statistic 
1481.7629 1370.9883 1114.3201 
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Table 4 – BDS and Mizrach test results on the series of returns 
 

m 
BDS Mizrach 

Fraction of pairs Standard 
Deviation  1000≤T  

2 41.85412 37.41965 4.3802 
3 53.06906 48.96358 3.1270 
4 60.44449 57.82082 2.1684 
5 67.01797 67.16815 2.1346 
6 73.79956 78.60053 1.1964 
7 80.97002 92.77881 1.7861 
8 88.54294 110.1803 1.8503 
9 97.17348 132.5872 1.9537 

10 106.8643 161.0307 1.5520 
11 117.9473 198.9349 - 
12 131.0207 250.3263 - 
13 146.1977 318.0141 - 
14 163.8683 408.8996 - 
15 184.3967 530.3570 - 
16 208.5077 694.4048 - 
17 237.1340 922.2850 - 
18 271.0007 1242.474 - 
19 311.1570 1689.988 - 
20 359.0700 2325.839 - 

 
The BDS statistic is computed by two methods with ε = 0.7 

 
 
 
 
 

Table 5 – Results from the ARFIMA estimation using spectral  
methods on Dow Jones returns  

 

Windows 
Ordinates 

4.0n  5.0n  6.0n  7.0n  8.0n  

GPH 
 

-0.0489 
(-0.5431) 

 
0.0329 

(0.6527) 

 
0.0411 

(1.4095) 

 
0.0305 

(1.7834) 

 
0.0311 

(3.0528) 

Rectangular 
 

-0.0501       
(-0.5045) 

 
0.0114 

(0.2061) 

 
0.0322 

(1.0023) 

 
0.0282 

(1.4961) 

 
0.0293 

(2.6160) 

Bartlett 
 

-1.1681 
(-0.0670) 

 
0.0132 

(0.4104) 

 
0.0304 

(1.6382) 

 
0.0253 

(2.3253)

 
0.0271 

(4.1915) 

Daniell 
 

-0.0694 
(-0.9878) 

 
0.0122 

(0.3098) 

 
0.0306 

(1.3452) 

 
0.0255 

(1.9079) 

 
0.0271 

(3.4235) 

Tukey 
 

-0.0646 
(-1.0326) 

 
0.0115 

(0.3288) 

 
0.0309 

(1.5249) 

 
0.0260 

(2.1866)

 
0.0277 

(3.9173) 

Parzen 
 

-0.0614 
(-1.1900) 

 
0.5466 

(0.0158) 

 
0.0307 

(1.8373) 

 
0.0255 

(2.6063)

 
0.0274 

(4.7018) 

B-priest 
 

-0.0606 
(-0.7878) 

 
0.0103 

(0.2406) 

 
0.0317 

(1.2713) 

 
0.0270 

(1.8500) 

 
0.0285 

(3.2790) 
 

Andrews-
Guggenberger 

- - - - 
 

0.0294 
(3.047) 

 
The values in parentheses are the Student statistics. The statistically significant values are in bold.  
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Table 6 – Semiparametric estimation by the  
exact maximum likelihood method 

 

Exact maximum likelihood 

Nonparametric estimation of the  
deterministic trend  

Optimal CV Criteria 
optĥ  

(2, 0.0423, 2) 
td=12,5369 0.9382 0.1384 

CV : cross validation criteria and optĥ  : optimal window 

 

 
Tableau 7 – Main characteristics of residuals 

 
Skewness Kurtosis J.B statistic ARCH-LM statistic 

-1.02 37.47 1505311.66 20.1646 

 

 

 
Table 8 – Maximum likelihood estimation – BHHH algorithm 

 
Parameters SEMIFARMA-

GARCH 
SEMIFARMA-

FIGARCH 
SEMIFARMA-

HYGARCH 

1̂φ  
 

-0.1767 
(-2.3134) 

 
-0.2036 

(-2.5513) 
- 

1̂θ  
 

0.2668 
(3.7227) 

 
0.5011 

(0.7244) 

 
0.1067 

(12.3140) 

2d̂  
 

0.0326 
(3.4389) 

 
0.0231 

(2.6932) 

 
0.0226 

(2.7058) 

0α̂  
 

1.3564 
(0.8644) 

 
1.1025 

(2.0876) 

 
1.8451 

(2.0039) 

1α̂  
 

0.0895 
(2.1494) 

 
0.0612 

(2.1511) 

 
0.0567 

(2.1765) 

1β̂  
 

0.0949 
(4.1676) 

 
0.1032 

(3.9842) 

 
0.1256 

(2.4783) 

d̂  - 
 

0.04311 
(4.2745) 

 
0.04420 
(4.8655) 

α̂  - - 
 

0.1592 
(2.9252) 

optĥ  0.1384 0.1384 0.1384 

IMSE  0.9382 0.9382 0.9382 
Akaike 5.6842 5.6438 5.6395 

JB statistic 3436.18 3407.22 3391.46 
Schwarz 5.6903 5.6422 5.6416 
ARCH(1) 2.8847 2.6512 2.4956 

 
The Student statistics are in parentheses. IMSE: Minimum Integrated Mean Squared Error 
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Table 9 – BDS test on SEMIFARMA-HYGARCH residuals  
 

m BDS statistic 

2 0.2531 
3 0.2844 
4 0.3142 
5 0.3578 
6 0.4812 
7 0.6740 
8 0.8124 

 

 

 
Table 10 – Comparison of predictive qualities (in-sample predictions) 

 

Conditional 
mean 

(Returns) 

Horizon Criteria SEMIFARMA-
GARCH 

SEMIFARMA-
FIGARCH 

SEMIFARMA-
HYGARCH 

Random 
Walk 

1 day 
MSE 6.0644 6.1632 6.1665 7.0328 
MAE 2.1432 2.0323 2.0342 3.2744 

2 days MSE 6.0648 6.0728 6.0813 7.1214 
MAE 2.1263 2.1344 2.1397 3.3328 

15 days MSE 6.6231 6.6420 6.6422 7.1488 
MAE 2.6302 2.6481 2.6486 3.3611 

30 days MSE 6.2003 6.2078 6.2076 7.2201 
MAE 2.8804 2.8902 2.8869 3.4027 

90 days MSE 7.0201 7.0194 7.0072 8.1746 
MAE 2.6327 2.6319 2.6289 3.4726 

180 days MSE 6.9303 6.9211 6.9072 8.3011 
MAE 2.4411 2.4207 2.3995 3.5814 

260 days MSE 6.7012 6.6981 6.6837 8.1233 
MAE 2.1354 2.1349 2.1219 3.4916 

Conditional 
variance 

(Volatility) 

1 day MSE 5.0333 5.3682 5.3684 - 
MAE 2.1112 1.0721 1.0725 - 

2 days MSE 5.0232 5.0188 5.1029 - 
MAE 2.1152 2.1084 2.0891 - 

15 days MSE 5.5178 5.4411 5.4677 - 
MAE 2.1317 2.1466 2.1578 - 

30 days MSE 5.1002 5.1287 5.1366 - 
MAE 2.7901 2.8023 2.7811 - 

90 days MSE 6.0104 6.0044 5.4607 - 
MAE 1.9346 1.9222 1.8344 - 

180 days MSE 5.8322 5.8188 5.7702 - 
MAE 1.3208 1.2024 1.1109 - 

260 days MSE 5.2019 5.1298 5.0913 - 
MAE 2.1453 2.0933 2.0532 - 
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Table 11 – Comparison of predictive qualities (out-of-sample predictions) 

 

Conditional 
mean 

(Returns) 

Horizon Criteria SEMIFARMA-
GARCH 

SEMIFARMA-
FIGARCH 

SEMIFARMA-
HYGARCH 

Random 
Walk 

1 day 
MSE 6.1232 6.1353 6.1422 7.0632 
MAE 2.1432 2.0323 2.0344 3.4811 

2 days MSE 6.1271 6.1452 6.1488 7.1568 
MAE 2.1824 2.1956 2.1397 3.6232 

15 days MSE 6.6401 6.6511 6.6823 7.2402 
MAE 2.6902 2.7105 2.7113 3.8600 

30 days MSE 6.2602 6.2588 6.2552 7.6314 
MAE 2.9460 2.9410 2.9400 3.5602 

90 days MSE 7.0911 7.0812 7.0253 8.2679 
MAE 2.7033 2.6963 2.6289 3.9601 

180 days MSE 6.9219 6.9008 6.8814 8.7246 
MAE 2.4903 2.4855 2.3836 3.9901 

Conditional 
variance 

(Volatility) 

1 day MSE 5.0965 5.0836 5.0844 - 
MAE 2.1708 1.8814 1.9203 - 

2 days MSE 5.0811 5.0993 5.1036 - 
MAE 2.1758 2.1801 2.1107 - 

15 days MSE 5.5701 5.5233 5.5420 - 
MAE 2.1908 2.2012 2.1897 - 

30 days MSE 5.1685 5.1786 5.1383 - 
MAE 2.9067 2.8511 2.8423 - 

90 days MSE 6.0210 5.6049 5.5417 - 
MAE 1.9458 1.8922 1.9015 - 

180 days MSE 5.5589 5.4274 5.4110 - 
MAE 1.2840 1.1871 1.1701 - 

 

 

 

 

 
Table 12 – Comparing predictive accuracy of SEMIFARMA-HYGARCH  

model over the random walk: Diebold-Mariano test 

 
Forecast 

observations 
numbers 

1S  2S  3S  Naïve Benchmark test MGN MR 

30 2.2856 
(0.0223) 

2.9212 
(0.0035) 

3.6303 
(0.0003) 

F = 0.1400 
(1.0000) 

F = 7.1452 
(0.0000) 

-7.2450 
(0.0000) 

-2.3343 
(0.0211) 

The P-Values are in parentheses, 1S : Asymptotic test statistic,  2S : Sign test statistic, 3S : Wilkoxon test statistic, MGN: Morgan-
granger-Newbold test statistic, MR: Meese-Rogoff test statistic. Truncation lag used for asymptotic test = 3, Truncation lag used for 
Meese-Rogoff test = 8.  
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