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The philosophy of mathematical practice is not only a research topic, it is more generally
a disciplinary field which is extending its importance and attracting the professional
interest of an increasing number of scholars coming from different scientific
communities.

There are several reasons for this.

Some of them are negative, i. e. they depend on a reaction against other intellectual
trends. A major example is the reaction against the persisting interest of many
philosophers of mathematics and logic in foundational questions, which, after the 1960s
(mainly as a consequence of the influential works by P. Benacerraf), has partially shifted
toward more metaphysical and epistemological themes, like the opposition between
Platonism and nominalism, and (in the Platonist camp) the access problem, or (in the
nominalist camp) the problem of reformulating mathematical theorems and theories
without making reference to abstract objects. Another related example is the reaction
against a picture of mathematics focusing almost exclusively on formalisation,
axiomatisation, and proof, the latter being accounted for through an exclusive appeal to
the tools of mathematical logic. A third example is the reaction against a growing
sociological decay of many studies in the domain of history of mathematics, representing
the latter as a system of institutional, political, or academic dynamics essentially
independent of the specific content and characteristic features of mathematics itself. In
all these cases, the philosophy of mathematical practice is seen as a program aimed at a
reflection on this content and these features. This goes often together with the idea that
mathematics is more a human activity than a logically organised repertoire of results,
and that this activity is quite peculiar and depends on inner interactions and
motivations.

Some other reasons, by contrast, are positive. They depend both on the growth,
within the communities of logicians and philosophers and historians of mathematics, of
different competences, interdisciplinary expertises, and awareness of new problem
areas, and on the emergence, within mathematics itself, of new modalities of discovery,
justification, selection and solution of problems, application to and connections with
other sciences and disciplinary domains. An example of the former phenomenon is the
growing historical competence and interest in the history of mathematics of many
logicians. On the one hand, this increased attention to the history of mathematics has
made these logicians aware not only of the existence of a residual content of
mathematical theories that a formal logical analysis is unable to account for, but also of
the significance of this content as an essential ingredient of the relevant theories. On the
other (and somehow opposite) hand, this has promoted historical studies that make use
of formal logical tools in order to reveal aspects of previous mathematical theories and
views that would have hardly been addressed by studies based on the more traditional
historiographical methods and devices. An example of the latter phenomenon is the
deep transformation of mathematics as a consequence not only of the development of
computer-assisted procedures, and of the possibility of appealing to algorithms and
classificatory methods whose feasibility depends on the massive use of automatic



computation, but also of the changes in the conception of rigour, reliability, proof, and
problem-solving brought about by the development of computer science and by the
interaction with physics and other sciences, like biology or economy. This
transformation directly influences, among many other things, the idea that professional
mathematicians have of the appropriate settings for their theories, and of the modalities
through which mathematics applies to other sciences, leading thereby to the emergence
of new philosophical problems whose solution can hardly depend on the forms of
arguments used in more traditional metaphysical and epistemological discussions.
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The book edited by Paolo Mancosu provides a comprehensive and quite vivid
exemplification of all that the aforementioned issues. It especially displays the extension
and importance taken by the philosophy of mathematical practice by showing it at work
on a set of different and multifarious topics. But it does much more that this. For, it also
and overall suggests a substantial agenda and a momentous program for the future
development of this field, and, consequently, for a reorientation of philosophy of
mathematics that is connatural to it. As Mancosu points out at the very beginning of his
Introduction, the book has the ambition of “bringing some fresh air into the philosophy
of mathematics” (p. 1). Doubtless, it succeeds in this. But it also sketches several lines of
research, which will possibly ensure that this fresh air will continue to circulate
henceforth. Furthermore, it gives voice to a community of scholars working in this area
and undertaking its development (this community does not only include the authors of
the essays contained in the book, but also a large group of scholars sharing their
approach and often actively collaborating with them).

The very structure of the book is appropriately conceived in order to succeed in this
challenge. In addition to a short Preface (pp. V-VI) and an Introduction, both written by
Mancosu himself (pp. 1-21)—on which I shall come back to below—, it includes sixteen
chapters devoted to eight different topics: two chapters for each of them. Whereas the
first chapter of each pair aims to provide “a general introduction to the subject area” it is
concerned with, the second consists of “a research paper in that area” (p. 14).

The first two chapters, written by Marcus Giaquinto, concern the role of visualisation
or, more generally, visual thinking in mathematics. The introductory chapter
(“Visualizing in Mathematics”, pp. 22-42) describes different cases in which this sort of
thinking occurs in proof, discovery, understanding and calculation. The more striking
thesis that Giaquinto defends is that visualisation can be an irreplaceable ingredient of
some proofs: the basic idea in his argument is that eliminating visualisation from these
proofs amounts to getting essentially distinct proofs. Though these new proofs can be
taken to support the same theorems, they result in, or depend on a reformulation of
these theorems that produces a significant mathematical change. The research essay
(“Cognition of Structure”, pp. 43-64) deals with cognition of structures, namely with the
way in which visual representation allows “our cognitive grasp of structures” (p. 43).
Though Giaquinto is mainly concerned with small finite structures known by
acquaintance, he also explains how visualisation can help in knowing some simple
infinite structures.

Chapters 3 and 4, written by Kenneth Manders, address the role of diagrams in some
forms of geometric argumentation, especially in Euclid’s. Chapter 4 (“The Euclidean
Diagram (1995)”, pp. 80-133) reproduces a former paper, written in 1995, that, though
never published hitherto, has largely circulated as a manuscript in academic circles, both
in North and Latin America and in Europe, and has had an important role in promoting a



great amount of research on this topic. Chapter 3 (“Diagram-Based Geometric Practice”,
pp. 65-79) provides a survey of these studies and sketches some “tasks for the future”
(p- 75). Manders’ 1995 paper endorses, among others, a thesis that has been very
influential. According to him, Euclid’s arguments (Manders refers in particular to proofs
and solutions of problems or constructions occurring in books I and III of the Elements)
include a “verbal part” or “discursive text”, and a “graphical part”, i. e. the diagram. The
former “consists of a reason-giving ordered progression of assertions, each with the
surface form of an ascription of a feature to the diagram [...] licensed by attributions
either already in force in the discursive text or made directly based on the diagram [...]
or both” (pp. 86-87). Both the attributions and the corresponding attributes can be
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either “exact” or “co-exact”: “exact attributes are those which, for at least some
continuous variations of the diagram, obtain only in isolate cases”; “co-exact attributes
are those conditions which are unaffected by some range of every continuous variation
of a specified diagram” (p. 92). Typically (but not always), the former are expressed
through statements of equality, whereas the latter are, broadly speaking, topological in
nature. Manders’ basic point is that whereas exact attributions can only be licensed by
appropriate previous entries in the discursive text, diagrams play an indispensable role
in licensing many co-exact attributions. Both the very nature of these attributions, and
an appropriate discipline in producing diagrams and in dealing with them, warrant the
claim that Euclid’s arguments are both valid and rigorous. This thesis has not only
provided the ground for further developments in the analysis of Euclid’s arguments. It
has also suggested different ways for formalizing these arguments without expunging
diagrams, but rather making manifest how the latter can enter inferences that are both
formal and valid even according to modern standards. These developments, due, for
example, to Nathaniel Miller and John Mumma, are part of those that Manders surveys in
chapter 3 (where the appropriate references are offered).

Chapters 5 and 6, written by Paolo Mancosu, and by Johannes Hafner and Paolo
Mancosu, respectively, are about mathematical explanation. Chapter 5 (“Mathematical
explanation: Why it Matters”, pp. 134-150) offers a survey of the recent discussion on
the topic, by distinguishing between mathematical explanation of scientific facts and
explanation within mathematics. The former specifically concerns applied mathematics,
namely those forms of explanation “in the natural or social sciences where various
mathematical facts play an essential role” (p. 134). In connection with it, Mancosu also
addresses a recent discussion on a form of the so called indispensability argument based
on the essential explicative power of mathematics in the explanation of certain scientific
facts. The second sort of explanation concerns mathematics as such, namely the
explanation of mathematical facts provided within mathematics itself, for example
though appropriate proofs. In this context, explanatory proofs are those that make clear
the (or a) reason why the corresponding theorem holds, as opposed to those that merely
ensure that it holds. The chapter is especially concerned with Mark Steiner’s and Philip
Kitcher’s models of explanation (and offers of course the relevant references). Steiner’s
model explicitly concerns mathematics and connects to each other the two
aforementioned forms of mathematical explanation, by arguing that a mathematical
explanation of a scientific fact obtains when the relevant argument is such that a
mathematical explanation of a mathematical fact is obtained if the specific scientific part
of the argument is removed. Kitcher’s model (which develops and crucially transforms a
former idea of Michael Friedman's) is put forward as an account of scientific
explanation, but it is supposed to account also, possibly through appropriate extensions,
for both forms of mathematical explanation (of scientific facts and within mathematics



itself). The crucial idea of Steiner’s model is that explanatory proofs within mathematics
are those that involve a “characteristic property” of the relevant entities or structures,
that is, a property which is “unique “ of these entities or structures, “within a family or
domain” of entities or structures (p. 143). By contrast, the crucial idea of Kitcher’s model
is that explanation is got through unification by generalisation: roughly speaking, a
scientific argument is explanatory when it applies a small number of general argument
patterns, and it is all the more explanatory the smaller number of patterns it applies.
Mancosu’s discussion of these models is openly critical. His criticism is mainly
supported by the argument offered in chapter 6 (“Beyond Unification”, pp. 151-178),
where a particular case study from real algebraic geometry (concerning Gregory

W. Brumfield’s treatment of real closed fields and his way of proving theorems about
them) is considered. This case shows that Kitcher’s model is not appropriate for
accounting for the actual attributions of explanatory power to some proofs made by
working mathematicians. Of course, I cannot enter the details of the argument. The basic
idea it conveys can be stated quite simply, however: mathematical explanation is a
matter of pluralism: no unique and general model can hope to account for it in all its
possible forms; hence only a detailed analysis of mathematical practice can reveal some
of these forms, and possibly, as Hafner and Mancosu have argued in previous
publications, classify them.

Chapters 7 and 8, respectively written by Michael Detlefsen and Michael Hallet, are
devoted to purity conceived as an ideal of proofs and methods. The concern of both
chapters is mainly historical, though the history of mathematics provides here the
appropriate material for philosophical reflexions and classifications. Chapter 7 (“Purity
as an Ideal of Proof”, pp. 179-197) describes different forms taken throughout history of
mathematics by the ideal of purity of proof. It opens by considering Aristotle’s principle
prohibiting “crossing from one genus to one other in the course of a proof” (p. 179),
which is taken as a precept of topical purity: proofs should not transcend the topic of the
corresponding theorem. In the most extreme form, this ideal requires that proofs only
rely on the conceptual resources needed for understanding the statement of the
theorem. This manifests the epistemic nature of such a precept. According to Detlefsen,
this is connected, in Aristotle, with a “causal conception of proof” (p. 181). This
conception is echoed by Leibniz and significantly developed by Bolzano, who chiefly
promoted a sharp separation between geometric and analytic arguments. The basic idea,
here, is that proofs should be pure insofar as they should “recapitulate[...] a segment of
the natural, objective ordering of truths concerning a given subject” (p. 182). Bolzano’s
idea were not isolated, and Detlefsen discusses the way in which similar concerns also
emerge in Gauss, Dedekind, Frege, and Hilbert, before closing the chapter by considering
more modern forms of the ideal of topical purity, which raise, of course, the quite
delicate issue of topical aboutness (not to be confused with ontological aboutness, a
typical Platonistic concern). The case of Hilbert’s attitude towards purity of geometrical
methods provides the subject matter of chapter 8 (“Reflections on the Purity of Method
in Hilbert's Grundlagen der Geometrie”, pp. 198-255). Though this appears, at first
glance, as a mere appropriateness requirement—namely what means of proof are
appropriate in the proof of a certain statement—the detailed analysis of Hilbert’s
arguments (both in his famous book and in the lectures connected to it), especially of his
meta-theoretic proofs, shows that Hilbert’s concern is overall for a critical discussion of
appropriateness, showing that this cannot depend on “intuitive or informal assessment”
(p- 248), to the effect that, typically, “higher mathematics” (usually analytic methods) is
shown to be appropriate “to instruct or adumbrate intuition, or, at the very least to



instruct us about it and what it entails” (p. 249). In other terms, appropriateness need
not conserve either elementariness or intuitiveness.

Chapters 9 and 10, written by Jamie Tappenden, concern fruitfulness and naturalness
of concepts and definitions. The former (“Mathematical Concepts and Definitions”,
pp. 256-275) propound what Tappenden calls ‘the Port Royal Principle’, because it is
stated through a quote from Arnauld and Nicole’s Logique: “nothing is more important
in science than classifying and defining well [...][but] it depends much more on our
knowledge of the subject matter being discussed than on the rules of logic” (p. 256). In
Tappenden’s understanding (which parallels that of Arnauld and Nicole themselves),
this principle is not against logic. It is rather in favour of the necessity of detailed and
context-driven analyses as appropriate supports for judging whether a definition is the
“right”, “proper”, “correct”, or “natural” one, and it is suitable for promoting a
“significant advance in knowledge” (ibid.) To achieve this purpose, two examples are
considered: the case of the Legendre symbol and that of the appropriate definition of
prime numbers. The Legendre symbol is, in fact, a handy notation for a function defined
on natural numbers whose consideration allows a compact statement of the law of
quadratic reciprocity. Broadly speaking, the question is here whether the introduction of
this function only results in an advantage of simplicity or it has significant epistemic
virtues. Prime numbers are, on the other hand, usually defined as natural numbers
greater than 1 which are evenly divided only by 1 and by themselves. This is a well-
known and simple definition. It can be extended to domains other than the domain of
natural numbers. But, if it is limited to the primitive context in which it arose, this
definition happens to be equivalent to an apparently less simple and less natural one:
a=1 is prime if, whenever a divides a product bc, it divides either b or c. The question
here is which of these definitions is more appropriate to fix the concept of a prime
natural number. The answer to both these questions, Tappenden argues, is not
immediate and depends on subtle mathematical considerations. A similar strategy for
arguing in favour of the Port Royal Principle is also followed in chapter 10
(“Mathematical Concepts: Fruitfulness and Naturalness”, pp. 276-301). It deals however
with a single, but much more general example, which is studied in much more details. It
concerns “the Riemann-Dedekind approach to ‘essential characteristic properties™
(p- 278). The core of this approach lies in the research of ways for singling out some
classes of functions by minimizing the information relative to a certain function that is
needed for deciding whether this function is or not part of these classes. Typically, this
information depends on some singularities of the relevant functions. The crucial
opposition here is that between a global description and a local behaviour. The
Riemann-Dedekind approach advocates characterising and classifying functions on the
basis of the latter, rather than on the former. Clearly, this cannot be cashed out in terms
of a general logical principle. Hence, the example is perfect for urging the Port Royal
Principle.

Chapters 11 and 12, written by Jeremy Avigad, discuss the role of computers in
contemporary mathematics. The matter could be tackled from different perspectives.
The most obvious of them would be that of listing a number of possible ways in which
computers can help in calculation, classification and proof. Though Avigad considers
some of these ways, he does not follow this direction. He rather wonders whether the
use of computers in mathematics results in some significant epistemic gain, and how
these advances can be accounted for, in general. In chapter 11 (“Computers in
Mathematical Inquiry”, pp. 302-316), two sorts of such gains are considered: they
respectively concern “the ability of computers to deliver appropriate ‘evidence’ for



mathematical assertions” and “the ability of computers to deliver appropriate
mathematical ‘understanding’ (p. 302). The main question is neither that of discussing
some ways computers can be used to get these gains, nor that of showing how
significant can be, for these purposes, some results that computers allow us to reach.
Rather, the emphasis is on the way evidence and understanding should be conceived in
mathematics in order to provide an explanation of the way in which computers can help
acquire them. The enquiry is admittedly preliminary, but it is enough to support the
following conclusion: “what we need now is not a philosophy of computers in
mathematics; what we need is simply a better philosophy of mathematics” (p. 315).
Chapter 12 (“Understanding proofs”, pp. 317-353) pursues, in some more details, the
same aim, with respect to understanding. The main thesis is that understanding should
be conceived in terms of the ability of doing something. This leads to a position quite
close to a functionalist account according to which understating is manifested by
appropriate behaviour. Avigad discusses some usual criticisms against such a
behaviourist approach and the way they can be rebutted and dismissed in the special
case of mathematics. In the second part of the paper, he presents four case studies in
order to test such an approach to understanding carried out using formal verification
through the use of computers.

Chapters 13 and 14, written by Colin MacLarty, deal with structuralism conceived in
relation with category theory. Structuralism is a position that many contemporary
philosophers of mathematics advocate as a response to general ontological and
epistemological questions related to the Platonism-versus-nominalism debate. It could
then appear quite strange to find it among the topics specifically addressed in Mancosu'’s
book. Still, MacLarty’s aim in these chapters is not only, and not overall, that of
advocating structuralism, but rather that of arguing that mathematical practice does not
force the admission of a “classical ontology” (p. 356), but can be accounted for by
appealing to the sort of structuralism which is typical of category theory, or “working
structuralism”, as MacLarty calls it (p. 360), by insisting that it is embodied in
mathematical practice. This aim is pursued in general in chapter 13 (“What
Structuralism Achieves”, pp. 354-369), through a comprehensive discussion of such a
form of structuralism, and in a more specific way in chapter 14 (“There is no Ontology
Here’: Visual and Structural Geometry in Arithmetic”, pp. 370-406), through the
consideration of a single case study. This is relative to Alexander Grothendieck’s theory
of schemes, a theory pursuing André Weyl’s idea of an “algebraic geometry over the
integers” (p. 385). Details cannot be presented here. It will be enough to say that this
chapter offers a philosophy-driven survey of a large and crucial fragment of 20th century
mathematics, especially concerned with topology.

Chapters 15 and 16, written by Alasdair Urquhart, are about the connections between
mathematics and mathematical physics, in relation with the methods used to prove
theorems, or more generally to reach theoretical conclusions in both fields. In chapter
15 (“The Boundary Between Mathematics and Physics”, pp. 407-416), Urquhart argues
for the following theses. Modern mathematical physics typically deals with models
which is tempting to describe as “mathematical objects in their own right”, insofar as
their relation with physical reality is very rough; indeed, so much so that they appear to
be nothing but “mathematical caricatures of physical systems” (p. 409). However, he
continues, such a way of conceiving these models “brings with it considerable
difficulties”, the major of which is that these models do not appeal, typically, to “normal
mathematical methods”, and it is often doubtful that “the objects themselves are even
mathematically well defined” (p. 410). This difference of methods has increased in the



mid-20t century, where the mathematical and physical communities increasingly
diverged. The very last years have seen, instead, an inverse movement of reconvergence,
due, on the one hand, to the growing attention of physicists for theories like string
theory, whose empirical content is quite weak, and, on the other hand, to many
mathematicians’ disregard of too abstract methods and their renewed interest for the
solution of “more concrete problems” (p. 412). This raises the issue of the way in which
the methods of physics, often lacking in rigour with respect to the usual mathematical
standards, can be integrated within mathematics and become acceptable for these
standards. In Urquhart’s parlance, this is the question of the “applicability of physics to
mathematics” (p. 413). This is the question that Chapter 16 (“Mathematics and Physics:
Strategies of Assimilation”, p. 417-440) is devoted to. Four examples are considered in
some details: the use of infinitesimals and the development of non-standard and smooth
infinitesimal analyses; the umbral calculus (a reinterpretation, manly due to Gian-Carlo
Rota, of a quite obscure method of formal calculation firstly developed in 19t century,
using the rigorous tools of modern linear algebra), the theory of distributions; and the
replica method (a statistical mechanical method based on mathematically doubtful
passages to the limit, which is used to deal with a problem in finite combinatorics that
arose in studying some systems of magnetic spin variables). According to Urquhart,
these are examples of “nonrigorous mathematics” derived from a beneficial interaction
with the physical practice. The chapter closes with a plea for extending philosophy of
mathematics so as to include the consideration of similar forms of mathematics.
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The advocacy of a philosophy of mathematics that—in contrast to the standard or
mainstream one—is closer to the effective way in which mathematics is done and
evolved through history is not new. In his Introduction, Mancosu discusses two recent
traditions embodying this aim. The former is shortly identified as the “maverick
tradition”. People familiar with philosophy of mathematic in the second half of the 20t
century immediately identify it as the philosophical movement principally promoted
(though in quite different forms and with quite different emphases) by Imre Lakatos and
Philip Kitcher (the latter being mentioned overall for his book The Nature of
Mathematical Knowledge, Oxford, 1984), and more recently followed, according to
Mancosu, by David Corfield. No need here to describe this tradition: Mancusu does it
shortly but very efficiently. The latter tradition is rooted in Quine’s empiricism and
naturalism and has its major exponent, in more recent times, in Penelope Maddy. Also in
this case, no description is needed.

As influential as the works belonging to these traditions might have been, there is no
doubt that they failed in “substantially redirect the course of philosophy of
mathematics” (p. 5). Hence, an obvious question arises: what makes the approach
promoted by Mancosu and his collaborators different from these two, so as to license
the hope of a different and more successful outcome? Mancosu answers this question in
the last section of his Introduction.

According to him, the authors in the maverick tradition were still largely “concerned
with metaphilosophical issues” (p. 17), in primis, the nature and modalities of
mathematical progress. These are quite general issues, which were tackled, however, by
pointing to a small number of case studies, taken as paradigmatic. The approach
promoted by Mancosu is opposite: a much vaster spectrum of topics and particular
studies are taken to serve more restricted aims. On the other hand, in Mancosu’s book,
by contrast with the works like those of Lakatos and Corfierld, no polemic attitude is



struck against logical analysis, analytic philosophy, or the foundationalist tradition.

More generally, the interest and importance of major current discussions inspired by
logical analysis, analytic philosophy and/or foundationalist worries, are never denied.
What Mancosu calls for is, rather, an extension of current philosophy of mathematics, so
as to make it possible to address topics that have been ignored or scarcely considered by
philosophers following these approaches.

Similar considerations also apply to the second tradition, which is overall concerned
with a reflection on the nature and (foundational) role of set theory. Mancosu and his
collaborators also avoid making any case against set theory and the reflections on its
history and virtues (or defects). They merely argue that “while set theory is a very
important subject of methodological investigation, there are central phenomena that
will be missed unless we cast our net more broadly and extend our investigations to
other areas of mathematics” (p. 19).

So far, so good. Still, as important as they might be, these differences are not enough,
as such, to warrant that Mancosu’s effort will result in a long-running success, so as to
“redirect the course of philosophy of mathematics”. The perspectives are excellent,
overall because this effort does not present itself—as it was, for example, the case with
Lakatos—as the struggle of an isolated and factional, though enormously bright, scholar,
but involve, rather, a quite large community of scholars (as it is also attested by the
recent foundation of an Association for the Philosophy of Mathematical Practice: APMP).
Intellectual dynamics mainly depend on the force of argument, however, and, though the
arguments advanced in the different papers included in Mancosu’s book are quite strong
and encompass a large area of philosophical thought about mathematics, many of them
are still programmatic in nature, as it is to be expected by the very nature of the
enterprise. So, only the future development of these arguments, and, in general, of
philosophy of mathematical practice as such, will be able to establish the long-running
success that these scholars (and myself) hope for. It is thus important to wonder which
lines of research are the most appropriate for this purpose. This cannot but be a
collective effort. Nevertheless, let me make two remarks on this matter.

The first is based on a critical appreciation of the introductory papers included in
Mancosu’s book. These papers succeed in delineating a vast agenda of issues that
philosophy of mathematical practice is required to address. The research papers that
follow them cannot but tackle a small part of these issues and leave many aspects of
them still open. Hence Mancosu’s book already contains the indication of many lines of
research for future promising development. Still, it seems to me that, barring some
exceptions, the introductory papers fail in fixing a compact disciplinary content for the
philosophy of mathematical practice, i. e. a systematic net of competences, pieces of
information, and notions that a philosopher of mathematical practice is required to have
and transmit. This is not surprising, for given the programmatic nature of the book one
would have been surprised if things had turned out differently. Nevertheless, I think this
is an important weakness to overcome in the next future. The prospects of the
philosophy of mathematical practice largely depend on this.

The second remark is more specific. Mancosu opens his Introduction (p. 1) by
remarking that “contemporary philosophy of mathematics offers us an embarrassment
of riches”, which he shortly but perspicuously describes. He points out that much of the
work that is presently done in philosophy of mathematics “can be seen as an attempt to
address a set of epistemological and ontological problems that were raised with great
lucidity in two classic articles by Paul Benacerraf”. Then he observes that, though largely
beneficial for the development of philosophy of mathematics, the influence of



Benacerraf’s articles “has also had the unwelcome consequence of crowding other
important topics off the table”. An explanation immediately follows:

In particular, the agenda set by Benacerraf [...] was that of explaining how, if there
are abstract objects, we could have access to them. And this, by and large, has been
the problem that philosophers of mathematics have been pursuing for the last fifty
years. Another consequence of the way in which the discussion has been framed is
that no particular attention to mathematical practice seemed to be required to be an
epistemologist of mathematics. After all, the issue of abstract objects confronts
already at the most elementary levels of arithmetic, geometry, and set theory. It
would seem that paying attention to other branches of mathematics is irrelevant for
solving the key problems of the discipline. This engendered an extremely narrow
view of mathematical epistemology within mainstream philosophy of mathematics,
due partly to the over-emphasis on ontological questions.

[ totally agree with all that. But I also maintain that the future success of the
philosophy of mathematical practice will largely depend on its relations with
Benacerraf’s agenda (and I think Mancosu would agree with me on this). Though
recently so clearly and efficaciously set forth by Benacerraf’s papers, this agenda is, in
fact, a quite classical one. It is, mutatis mutandis, that already suggested by Plato (which
explains that it confronts already at the most elementary levels of mathematics), and it
is largely with respect to it that the discussion on the foundations of mathematics, so
influential since the end of the 19th century up to the second half of the 20th, had
developed (which explains why the discussion on the issues raised by Benacerraf’s
papers has in some sense replaced the foundationalist discussion after the sixties). This
connection with the ontological and epistemological questions revived by Benacerraf
has even been a peculiar mark of this discussion, to the effect that the foundationalist
programs advanced alongside it differed from many others, which have been advanced
in other periods of the history of mathematics, also because of their ontological and
epistemological imports. Hence, though Benacerraf’s agenda can be hopefully supplied
by other topics and problems, it is hard to think that philosophy of mathematics can
leave it on a side in the next future, as it is also hard to think that philosophy of
mathematics can avoid any foundationalist concern.

A crucial problem that the philosophy of mathematical practice should then face is
whether there is a way of addressing and trying to respond to the questions included in
Benacerraf’s agenda and the unavoidable foundationalist concerns that are closer to
such a practice. To speak quite broadly, I think, for example, that there is room for
hoping that the sense in which one speaks of abstract mathematical objects and of our
epistemic relation with them would be clarified if these objects were conceived as being
historically constituted by the very mathematical activity. My guess is that the future
long-running success of philosophy of mathematical practice will crucially depend on its
capacity to integrate these themes within its own approach to philosophical questions. If
it is going to achieve this aim, the fresh air that philosophy of mathematical practice is
bringing to the philosophy of mathematics, will not only result, I guess, in an extension
of the latter, but also in substantial philosophical progress.

[ consider this book not only highly welcome, since it addresses the invaluable
program of philosophy of mathematical practice, but also a significant contribution to
philosophy of mathematics as such. The structure of the book, the vastness of the topic
considered, the clarity of Mancosu’s Introduction and of the different essays included in
it, the significance of the topics dealt with and of the theses advanced, as well as the
robustness of the arguments that support these theses make this book an indispensable



companion for contemporary philosophers of mathematics, whatever their approach
might be.
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