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Abstract

This article analyzes the impact of the introduction of aquaculture on wild fish stocks and

consumer utility, taking into account three key components: (1) the dependence of aquaculture

on reduction fisheries for the feeding of the farmed species; (2) biological interactions between

the wild edible species –the predator– and the wild feed species –the prey–; (3) consumer

preferences for wild and farmed fish. Fisheries are in open access while the aquaculture sector

is competitive. We show that when biological interactions are moderate, the introduction of

aquaculture is beneficial in the long run: it improves consumer utility and alleviates the pressure

on the edible fish stock. Results are deeply modified when biological interactions are strong:

the stock of edible wild fish is reduced and the introduction of aquaculture may even cause

a decrease in consumer utility. Finally, we explore the consequences of an improvement in

aquaculture efficiency and of a sensitivity of consumer preferences to the farmed fish diet, in

the case where biological interactions are absent.

Keywords: fisheries, aquaculture, consumer preferences, food security, biological interac-

tions.

1 Introduction

While breeding of terrestrial animals was implemented about 8 000 years ago and substituted to

hunting quite rapidly, it took us a very long time to repeat the experience with fish. Aquaculture

exists in many parts of the world since the Middle Ages but did not replace fishing until now.

However, the increasing needs in food fish make things change rapidly.
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The world population growth and the increase in standards of living in developing countries result

in a growing demand for animal protein. To keep pace with such demand, wild fisheries are subject

to high pressure. According to FAO (2012), in 2009, about 57.4% of world marine fish stocks are

estimated as fully exploited and 29.9% as overexploited. An increasing trend in the percentage

of overexploited, depleted and recovering stocks is observed since the mid-1970s. In the same

way, since the early 1990s, overall landings are marked by a small decline. Many agree that the

maximum capture fishery potential from world’s oceans has been reached.

In the last three decades aquaculture has been the fastest growing food industry, with an annual

average growth rate of 8.8% (FAO, 2012). Focusing on fish production for human consumption,

aquaculture has nearly doubled this quantity in recent years. This sector managed to provide 47%

of world food fish production in 2010 (FAO 2012). In fact, aquaculture is increasingly viewed as a

source of food security. According to the FAO’s projections, in order to maintain the current level

of per capita consumption of fish protein, global aquaculture production will need to increase by

60% by 2050.

However, the production methods of aquaculture do present certain limitations in terms of envi-

ronmental sustainability. Aquaculture essential inputs are: land, water, labor, feed and fingerlings.

The degree of use of these inputs depends on the characteristics of the production process (whether

it is extensive, semi-intensive or intensive), and on the species bred. In any event, inland and costal

farms cause the destruction of natural habitats and erode biodiversity. In addition, the release of

untreated water, food and faeces damages wild ecosystems, in particular through pathogene inva-

sions. The use of fertilizers in fish diets produces wastes loaded in nitrogen, phosphorus and other

substances inducing eutrophication1. Regarding fingerlings, they are mainly sourced from the wild

rather than derived from hatcheries, occasioning disastrous effects on natural populations (Naylor

et al., 2000, FAO, 2012). Finally, aquaculture depends on wild fish stocks for feeding carnivorous

and omnivorous species. Fish meal and fish oil, which are key ingredients in aquaculture feed, are

made from small oily fish belonging to low trophic levels2 (LTL) for about 80% and wastes from

processed fish for 20% (Fishmeal Information Network, 2011). Fisheries specialised in catches of

prey fish, also termed forage fish, are called reduction fisheries.

1Eutrophication corresponds to a great increase of phytoplankton, due to the abnormal presence of artificial or
natural substances in waters, resulting in the depletion of oxygen in the water, which induces reductions in specific
fish and other animal populations.

2Among the species intended to fish meal production there are anchovy, jack mackerel and sardines.

2

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2013.02R (Version révisée)



The demand for fish meal and fish oil participates to the fishing pressure drilled on wild stocks. It

consumes 19.4% of global marine landings (FAO, 2012). At date, reduction fisheries are described

as fully exploited or over-exploited (Grainger and Garcia, 1996; Alder et al., 2008). What is more,

Smith et al. (2011) emphasize widespread effects of fishing LTL species on marine ecosystems.

The study puts forward the trade-off between protecting biodiversity versus contributing to food

security, through direct human consumption of LTL species and by providing feed to the agribusi-

ness. The authors support the conclusion that lower exploitation rates of LTL species are required

to mitigate ecosystem impacts of reduction fisheries.

Aquaculture is the world’s largest user of fish meal and fish oil: in 2009 it consumed 53% of fish meal

and 81% of fish oil world production (IFFO, 2011). The sector has succeeded in maintaining a high

growth rate in spite of non-increasing landings of feed fish, thanks to important progress in terms

of rationalization of fish meal inputs (Asche and Bjorndal, 2011; Shamshak and Anderson, 2008).

However, a large increase in aquaculture production is expected, making essential further efficiency

improvements in the formulation of fish diets. Especially as reduction fisheries are increasingly

targeted for more profitable purposes such as pharmaceutical uses.

Several studies ask about the degree of substitutability between fish meal and plant-based food.

Soya meal emerges as a great candidate. It possesses most of the characteristics allowing high flesh

quality. However, Kristofersson and Anderson (2006) demonstrate empirically that since the late

90s both types of protein have become poor substitutes, breaking with the strong historical price

relationship displayed until then. According to Shamshak and Anderson (2008), beyond some

degree of replacement of fish meal by plant-based food, some farmed species are subject to declines

in health, growth rate and omega 3 levels due to the lower protein quality and content. The aqua-

culture industry has recently undertaken the production of a genetically modified salmon species

(AquaAdvantage), which growth is enhanced despite very low protein intake. The counterpart of

such innovation is that the nutritive properties of the flesh are not conserved. Single cell proteins

or zooplankton are considered as potential substitutes to fish meal proteins. Yet, their production

costs remain too high to be used in significant amounts in aquaculture feed (Olsen and Hasan,

2012). At date, there does not seem to exist a protein source displaying required properties and

profitable at the same time.

Our aim in this paper is to analyze the impact of the introduction of aquaculture on fish consump-

tion, welfare and on the wild fish stocks, taking into account its dependence on wild feed fish and
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consumer preferences. The framework retained to investigate these issues is that of a competitive

aquaculture sector and open access fisheries.

Motivations for this latter hypothesis are the following. Although the general trend is to tighten

regulations, resource management schemes are far from being implemented or efficient worldwide.

Furthermore, referring to Costello et al. (2012), it appears that countries with several unassessed

fisheries, which likely goes along with poor management schemes, have often expanded aquacul-

ture3. The depletion of fishery resources and the subsequent loss in food production potential may

have fostered the development of other fish production techniques. In any event, this observation

further supports our assumption that farming co-exists with open access fisheries. Overall, it is

necessary to analyze mechanisms at work in absence of intervention, especially in order to properly

direct management initiatives.

Our model is highly stylized. It consists of the demand side and three sectors: an edible fish

fishery, a reduction fishery and an aquaculture sector producing farmed fish.

The characteristics of the technologies at stake for fishing and farming, as well as two types of

interactions, namely biological interactions and economic interactions on the marketplace, are

essential.

First, consumers can obtain fish by two means: fish can be either fished or farmed. One important

question is the relative efficiency of these two technologies in producing edible fish. Another

important point is of course the relative cost of the two production methods.

Secondly, we account for biological interactions between fish stocks to reflect the ecosystemic effects

of fishing. While the aquaculture sector harvests feed fish to grow farmed fish, the wild edible fish

feeds on this same stock. Thus, we investigate how critical is the removal of feed fish for the

biomass of the wild edible species and for its supply.

Thirdly, market interactions between wild edible fish and farmed fish arise. Consumers may choose

to consume wild or farmed fish, which are strong substitutes, depending on the prices of the two

types of edible fish and their preferences.

We derive steady state outcomes from our model as well as the pattern of the trajectories of

fish prices, consumption and stock levels to appraise the dynamics resulting of these interactions.

Overall, what emerges from our analysis is that when biological interactions are moderate, that

3Personal remark of Christopher Costello to the authors.
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is when the wild edible species displays a low degree of food dependence on the feed fish stock,

aquaculture increases welfare via a higher total fish supply, and alleviates the pressure on the

edible stock, which increases in spite of the fact that the prey species is less abundant. Otherwise,

when biological interactions are strong, the harvest of the prey species for the aquaculture industry

results in a lower stock and supply of edible fish, and a higher wild fish price. The introduction of

the aquaculture food production may even result in lower global fish supply and utility.

In addition, we explore the consequences of an improvement of aquaculture productivity in the

case where biological interactions are absent, and show that when the wild species are heavily

exploited, this improvement is beneficial.

As we suspect that such an improvement is at least partly achieved by farming less carnivorous

species, we finally endogeneize consumer preferences by assuming that they are carnivorous species-

biased. Precisely, we study an extension of the model where preferences vary according to the

characteristics of the farmed fish, which we link to the productivity of aquaculture technology.

Our assumption is the following. On the one hand, the more carnivorous the farmed species is, the

more inefficient is its breeding, in the sense that the production of 1kg of flesh requires a lot more

than 1kg of wild feed fish. On the other hand, the taste of consumers for the farmed fish depends

on its diet: the more carnivorous the farmed species is, the more consumers like it4, or the more

substitutable to the wild edible fish they perceive it is. It turns out that the improvement of the

productivity of aquaculture has a negative side effect: aquaculture farms fish that consumers like

less, or find less substitutable to wild fish. We conjecture that in these circumstances there may

exist a utility-maximizing farmed species.

A few papers have investigated the market interactions between aquaculture and capture fisheries.

Anderson (1985) supposes that the wild and the farmed species are the same, and consequently

have the same market price. He shows that in the case of a fishery in open access exploited beyond

the maximum sustainable yield, the entry of competitive aquaculturists increases total fish supply,

thereby, reducing consumer price and increasing wild fish stock. Indeed, profit loss mechanically

reduces fishing effort. Ye and Beddington (1996) assume both goods are imperfect substitutes

with positive cross-price elasticities. Similarly, the authors find positive benefits of aquaculture

for consumers, via increased fish supply and reduced prices. Yet, the imperfect substitutability

4Worldwide, carnivorous species such as grouper, cod-fish, halibut, sole etc. display higher economic values that
omnivorous ones (FranceAgriMer, 2012; Alaska Departement of Fish &Game, 2010).
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between farmed and wild products limits the extent to which aquaculture production impacts the

capture fishery activity. Hannesson (2002) considers both market and biological interactions. Like

Anderson (1985), he assumes that the edible fish and the farmed fish are the same species. This

species feeds on a prey in the wild, which is also the input of the aquaculture activity. The argument

of the paper revolves around the comparison between the costs of fishing and farming on the one

hand, and the efficiency of the transformation of one unit of feed fish into edible fish in the wild and

within the aquaculture technology on the other hand. The author relies on numerical simulations.

In open access, total food fish production is found to be slightly higher than without aquaculture,

but the wild edible fish stock severely drops relatively to the situation absent aquaculture.

Hannesson (2002) is probably the paper that comes closest to ours. Yet, in Hannesson (2002) the

farmed and wild edible fish are the same, and have the same price. One of our main contributions is

that we account for an imperfect substitutability of the two types of fish, which allows us to analyze

how preferences for wild versus farmed fish intervene in price and market equilibria. Our theoretical

setting also allows us to examine the consequences of different degrees of biological interactions

on these equilibria. Lastly, our results are general, as we provide an analytical resolution of the

model an rely on numerical simulations only marginally.

The remaining of the paper is as follows. Section 2 presents the demand side features. Section 3

describes the two-species biological model we consider. Section 4 derives the short run dynamics

and the long run state of the edible fishery in open access, in absence of aquaculture. This

constitutes our baseline situation for appraising the impact of the aquaculture activity. In Section

5 we introduce aquaculture and proceed to the coupling of the different sectors. We analyze the

resulting steady state, its stability, and compare it to that of the baseline situation. We also

examine the consequences of an improvement of aquaculture efficiency. We finally endogeneize

consumer tastes in Section 6. Section 7 concludes.

2 The demand side

Consumers purchase two types of goods, wild fish and farmed fish, which are imperfectly substi-

tutable. The utility function of the representative consumer at each date t is of the CES type:

U(Y1t, Y2t) =

[
(1− α)Y

1− 1

σ

1t + αY
1− 1

σ

2t

] 1

1−
1
σ , σ > 1, α ∈ ]0, 1[ (1)
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with Y1 the wild fish and Y2 the farmed one. It is reasonable to assume that the two fish products

are strong substitutes. Hence, the elasticity of substitution, σ, is greater than 1.

The budget constraint of the representative consumer is:

P1tY1t + P2tY2t = I (2)

where I represents total expenditures on fish consumption, exogenous and supposed to be station-

ary, and P1t and P2t are respectively the market price of wild and farmed fish.

When maximizing the utility function with respect to the budget constraint we obtain the following

demand functions for the two types of fish:

Y d
1t =

I

P1t

[
1 +

(
α

1−α

)σ (
P1t

P2t

)σ−1
] (3)

Y d
2t =

I

P2t

[
1 +

(
1−α
α

)σ (P2t

P1t

)σ−1
] (4)

As it is well known when preferences are represented by a CES utility function, the response of Y d
1

(resp. Y d
2 ) to a variation of P2 (resp. P1) depends on the value of the elasticity of substitution.

Here, the two goods are strongly substitutable (σ > 1). Therefore Y d
1 (resp. Y d

2 ) is increasing in

P2 (resp. P1).

3 Biological interactions

Now, we introduce the possibility of biological interactions between the two wild species. This

is only a possibility, and not necessarily the general rule: it may be the case that no biological

interactions exist, because both fish stocks belong to totally different geographical areas. Indeed,

the Peruvian anchovies constitute the world largest fishery, landings reaching 10% of global fish

catches in peak years. It is the most important input in the fish meal and oil industry. By relying

on this industry, salmon farming in Norway or pangasius farming in Vietnam do increase pressure

on fish resources worldwide but do not impact reduction fisheries at the local level.
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Our assumption is that when biological interactions exist between the two wild species, they are

of the predator-prey type. Species 1 a high-value species harvested for human consumption — the

predator — while species 3 is a low-value non-edible pelagic species — the prey.

We characterize biological interaction by specific functional forms to be able to derive analytical

results. The Lotka-Volterra model is commonly used to describe interspecies dynamics in the

literature (Sivert and Smith, 1977; Hannesson, 1983, 2002; Hofbauer and Sigmund, 1998). A

two-species, non-linear density dependent version of the Lotka-Volterra model is considered:

F1(X1t, X3t) = a1X1t − b1X
2
1t + d1X1tX3t (5)

F3(X1t, X3t) = a3X3t − b3X
2
3t − d3X1tX3t (6)

where X1 and X3 stand for the stock of species 1 and 3. Parameters d1 and d3 define the ecological

interdependence between the two species, of the predator-prey type: d1 ≥ 0, d3 ≥ 0. Parameters

b1 ≥ 0, b3 ≥ 0 traduce the fact that the maintenance needs of the biomass grow faster than the

ability to acquire food as the biomass increases (Hannesson, 1983). The rate of growth of each

species in absence of the other is given by a1 ≥ 0, a3 > 0. If a1 > 0, species 1 can survive without

species 3. If a1 = 0, species 3 is necessary to the survival of species 1.

Without any human intervention, the system composed of the two fish populations evolves accord-

ing to:

Ẋ1t = F1(X1t, X3t) (7)

Ẋ3t = F3(X1t, X3t) (8)

It immediately appears that there exists four steady states satisfying Ẋ1t = Ẋ3t = 0 :

1. a steady state where both populations disappear: X̃1 = X̃3 = 0;

2. a steady state where population 1 goes extinct but not population 3: X̃1 = 0, X̃3 = a3/b3;

3. a steady state where it is the contrary: X̃1 = a1/b1, X̃3 = 0;
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4. an interior steady state where both populations coexist:

X̃1 =
b3

b1b3 + d1d3

(
a1 +

a3d1
b3

)

X̃3 = −
d3

b1b3 + d1d3

(
a1 −

a3b1
d3

)

The condition of existence of this steady state is:

a1
b1

<
a3
d3

(9)

Notice that it is always satisfied if a1 = 0; that is, if species 1 cannot survive without species

3.

We show in Appendix B.1 that when parameters satisfy condition (9), steady states 1, 2 and 3 are

unstable, and the stable steady state that prevails in the long run is steady state 4, where both fish

populations coexist; when it is not satisfied, the stable steady state is steady state 3, where the

prey population is extinct. In the remaining of the paper we make the assumption that absent any

human intervention the equilibrium that prevails is the one where both fish populations coexist.

Therefore, condition (9) is supposed to be satisfied.

4 The baseline situation: capture fishery alone

We first study the biological and economic features of the capture fishery in absence of aquaculture.

This will be useful to appraise the impact of aquaculture activity. In this baseline situation, utility

is linear in the quantity of wild fish consumed, and the demand function reduces to:

Y d
1t =

I

P1t
(10)

The dynamics of the capture fishery reads:

Ẋ1t = F1(X1t, X3t)− Y s
1t (11)

Y s
1t = q1E1tX1t (12)
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and the evolution of the feed stock is given by equation (8). The production function of the fishery,

giving the harvest Y s
1 , is the classical Schaefer (1957) production function, where q1 > 0 is the

catchability coefficient of the species and E1 the effort devoted to fishing.

Fishermen profit is given by:

π1t = P1tY
s
1t − cE1t (13)

where c stands for the unit cost of effort.

We make the assumption that the wild resource is in open access. Consequently, fishermen enter

the sector until dissipation of the rent (Gordon 1954):

Ė1t = βπ1t = β(q1P1tX1t − c)E1t, β > 0 (14)

The dynamic system composed of equations (11), (12) and (14) allows us to compute the fish

supply Y s
1 as a function of its price. We add to this system the equilibrium of the wild fish market

at each date: Y s
1 (P1t) = Y d

1 (P1t), where Y d
1 (P1t) is given by (10). For E1/neq0, eliminating P1t

yields the following three-dimensional dynamic system in X1t, X3t and E1t :





Ẋ1t = F1(X1t, X3t)− q1E1tX1t

Ẋ3t = F3(X1t, X3t)

Ė1t = β (I − cE1t)

(15)

If there exists a date t for which E1t = 0, the dynamic system reduces to (7)–(8) thereafter.

It immediately appears that there exists four steady states satisfying Ẋ1t = Ẋ3t = Ė1t = 0 :

1. a steady state where both populations disappear: X∗

1 = X∗

3 = 0, E∗

1 = 0;

2. a steady state where population 1 goes extinct but not population 3: X∗

1 = 0, X∗

3 = a3/b3,

E∗

1 = 0;

3. a steady state where it is the contrary: X∗

1 = 1
b1

(
a1 −

q1I
c

)
, X∗

3 = 0, E∗

1 = I
c ; the condition

of existence of this steady state is I < ca1/q1. Notice that this situation cannot characterize

the long term of this economy under condition (9). Indeed, as this condition ensures that

both species coexist when there is no human intervention, fishing of the predator (species 1),

cannot worsen the long term stock of the prey (species 3).
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4. an interior steady state where both populations coexist:

X∗

1 =
b3

b1b3 + d1d3

(
a1 +

a3d1
b3

−
q1I

c

)
(16)

X∗

3 = −
d3

b1b3 + d1d3

(
a1 −

a3b1
d3

−
q1I

c

)
(17)

E∗

1 =
I

c
(18)

The conditions of existence of this steady state in the case of predator-prey interactions (d1,

d3 > 0) are: q1I
c < a1 +

a3d1
b3

and q1I
c > a1 −

a3b1
d3

. Under condition (9), the second one is

always satisfied, while the first one may be binding.

Therefore, condition

I < Iw(d1) :=
c

q1

(
a1 +

a3d1
b3

)
(19)

gives the maximum revenue that consumers can spend on fish without inducing the extinction of

the edible species. This revenue Iw is an increasing function of d1, the parameter characterizing

the strength of the predator effect. The higher is d1, the higher is the surplus growth of species 1

subsequent to a unit intake of species 3. Hence, the more edible fish can be caught.

Notice that at the interior steady state X∗

1 < X̃1 and X∗

3 > X̃3 : fishing of population 1 alleviates

the predator effect on population 3.

We show in Appendix B.2 that under condition (19), the steady state that prevails is the interior

steady state where both wild fish populations coexist in the long run. It is asymptotically stable:

for any initial value of the effort below a certain level5, the dynamic paths followed by the stock

and effort converge to the steady state, which is a stable node or a stable focus, depending on the

parameters. When condition (19) is not satisfied, i.e. when the revenue consumers spend on fish

is too high, the wild edible species collapses and the steady state that prevails is steady state 2.

5Suppose that the initial effort is E10 ≥ 1/q1. Then, according to the specification of the catch function, the
initial catch is Y10 ≥ X10 : the entire stock is harvested at once, extinction occurs immediately. Hence the initial
effort must be E10 < 1/q1.
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5 Introducing aquaculture

We now introduce the aquaculture sector, which exploits the stock of pelagic fish as an input, and

study the long run outcomes derived from the coupling of the demand side and all three productive

sectors. We also identify the nature of the equilibrium of this system. Next, we compare these

steady state outcomes to that of the baseline situation. Lastly, we look at the influence of the

efficiency of the aquaculture technology on the long run status of both wild fish stocks and welfare.

5.1 The aquaculture sector and feed fishery

Farmers purchase fish meal and fish oil in the form of compounded feed, which are pellets providing

nutrients and different supplements to farmed fish. These pellets are produced by a specialized

industry. Here, we consider for simplicity that farmers buy feed fish directly to the reduction

fishery. It is actually their unique variable input in this model. Other inputs, mainly capital and

labor, are supposed to be fixed and normalized to 1. Feed fish is harvested from the prey stock, X3,

distinct from the predator fish stock exploited for human consumption X1. Feed fish harvesting

takes place in open access. Its price is set by the equalization of fishermen supply and the demand

from aquaculture. Regarding farmers, they are in competition on the farmed fish market. They

decide at each date of the feed quantity that maximizes their profit.

The production function of the representative farmer reads:

Y2 = kY3
γ (20)

with Y2 the farmed fish production, Y3 the input of feed fish, γ ∈]0, 1[ the share of feeds in the

production technology of farmed fish. It is set below one to account for the decreasing marginal

productivity of feed fish. The parameter k > 0 is the efficiency of the aquaculture sector in

converting feed fish into farmed fish flesh. It may be interpreted either as the diet of the farmed

species or as technical progress. In the first case, a high k means that the aquaculture sector has

chosen to farm a rather omnivorous fish species, which does not require too much feed fish to

grow. In the second case, a high k implies that a given species can be grown with relatively few

feed, more exactly, low animal protein intake. In the remaining of the document we comment our

results on the basis of the first interpretation of k — k reflects a specific species diet — in order
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to ease understanding.

Notice that k may be related to the well known FIFO (fish in-fish out) ratio, which gives the

number of tons of wild fish necessary to produce one ton of farmed fish (including fish oil and fish

meal requirements). The FIFO ratio varies quite a lot between surveys. Tacon and Metian (2008)

reports an overall FIFO ratio of 0.7. This ratio includes all bred species: crustaceans, carnivorous,

omnivorous and herbivorous. At the carnivorous species-group level, the study reports a salmon

FIFO ratio of 4.9. Naylor et al. (2009) finds fairly close figures to those conveyed in Tacon and

Metian (2008). On the other hand, IFFO (2012) finds an overall FIFO ratio of 0.3 and a salmon

FIFO ratio of 1.4. In any event, both studies attest of substantial decrease in FIFO ratio since the

90’s.

Maximizing their profit, π2t = P2tY2t − P3tY3t, farmers buy feed to produce farmed fish up to the

point where the gain provided to the farming industry by a marginal increase in feed input is equal

to its cost (i.e. P3t). Given our specification of the production function of aquaculture (20), this

yields:
P3tY3t
P2tY2t

= γ. (21)

Since the feed fishery is also in open access, fishermen enter the sector until dissipation of the rent,

and we have the equivalent of equation (14). The unit cost of fishing c is supposed to be the same

in the two fishing sectors, as well as the speed of adjustment β.

The fact that revenues from the aquaculture activity are directly proportional to the revenues of

the feed industry (equation (21)) allows us to aggregate the aquaculture sector and the feed sector

and to write the dynamic system representing the supply of farmed fish as:





Ẋ3t = F3(X1t, X3t)−
(
Y s
2t

k

) 1

γ

Ė3t = β (γP2tY
s
2t − cE3t)

Y s
2t = k (q3E3tX3t)

γ

(22)

This dynamic system represents the evolutions of the feed fish stock and the effort devoted to

fishing the feed species as functions of the price of farmed fish and the aquaculture technology
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characteristics only. It can be directly compared to the corresponding system for wild fish:





Ẋ1t = F1(X1t, X3t)− Y s
1t

Ė1t = β (P1tY
s
1t − cE1t)

Y s
1t = q1E1tX1t

(23)

where the evolutions of the edible fish stock and the effort depend on the price of wild fish only.

Interactions between the two systems will come from the demands for wild and farmed fish, de-

pending on both prices, and the market equilibria, as we are going to show.

5.2 The coupling

We now suppose that at a given date, let’s say t = 0, where the wild edible fishery is at the steady

state, the aquaculture activity is introduced. The initial effort is supposed to satisfy: E30 < 1/q3,

so that the entire feed fish stock is not harvested at once. Hence at t = 0 wild fishing and

aquaculture coexist. In what follows we study the evolution of these two activities over time and

the long run equilibria to which the system may converge. A priori, these equilibria may be of four

types: one interior equilibrium where wild fishing and aquaculture still coexist, an equilibrium

where aquaculture has disappeared, an equilibrium where the wild edible fishery has collapsed,

and lastly an equilibrium where both fisheries and aquaculture have collapsed. We are going to

focus on the interior equilibrium , the more interesting.

Starting from systems (23) and (22), we introduce demands for both types of fish and the equilibria

of the two fish markets. Define

At =
1

1 +
(
1−α
α

)σ (P2t

P1t

)σ−1 (24)

From (3) and (4), the two demand functions can be written as:

P1tY
d
1t = (1−At)I (25)

P2tY
d
2t = AtI (26)

Hence At ∈ [0, 1] represents the share of consumer expenditures allocated to buying farmed fish,
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and 1−At the share allocated to buying wild fish. At characterizes the market interactions between

the fish populations, stemming from consumer preferences, as opposed to the biological interactions

studied above. When At = 0, consumers consume only wild fish. On the contrary, when At = 1,

only farmed fish is consumed. As stated above, we are going to focus on the case where both wild

fish populations exist at the steady state, and determine the conditions allowing this co-existence

as well as the dynamic properties of this equilibrium. Hence we suppose that At ∈ ]0, 1[ ∀t.

The equilibria on the fish markets read:

P1tq1E1tX1t = (1−At)I (27)

P2tk (q3E3tX3t)
γ = AtI (28)

The ratio of equations (28) and (27) yields:

At

1−At
=

P2t

P1t

k (q3E3tX3t)
γ

q1E1tX1t

Replacing the price ratio by its expression as a function of A given by (24) allows us to obtain:

At

1−At
=

α

1− α

(
k (q3E3tX3t)

γ

q1E1tX1t

)σ−1

σ

(29)

The final dynamic system describes the evolutions of the two wild fish stocks and the two efforts

exerted. It is obtained by putting together systems (22) and (23), and using (25) and (26) to

eliminate P1tY1t and P2tY2t:





Ẋ1t = F1(X1t, X3t)− q1E1tX1t

Ė1t = β [(1−At)I − cE1t]

Ẋ3t = F3(X1t, X3t)− q3E3tX3t

Ė3t = β [γAtI − cE3t]

(30)

where At is given by (29).

The interior steady state associated to this system is characterized by the following equations,

giving the two stationary stocks and efforts as functions of A, which is itself a function of these
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same variables:

X̂1 =
b3

b1b3 + d1d3

(
x1 + y1Â

)
with x1 = a1 +

a3d1
b3

−
q1I

c
and y1 =

(
q1 −

d1
b3

γq3

)
I

c
(31)

Ê1 =
I

c
(1− Â) (32)

X̂3 = −
d3

b1b3 + d1d3

(
x3 + y3Â

)
with x3 = a1 −

a3b1
d3

−
q1I

c
and y3 =

(
q1 +

b1
d3

γq3

)
I

c
(33)

Ê3 = γ
I

c
Â (34)

Â

1− Â
=

α

1− α



k
(
q3Ê3X̂3

)γ

q1Ê1X̂1




σ−1

σ

(35)

Proposition 1 contains our results concerning the study of the interior steady state. Figure 1

provides a simple representation of these results.

Proposition 1 (i) A sufficient condition of existence of an interior steady state where wild fishing

and aquaculture coexist is:

I < I := c

(
a1
q1

+
a3
γq3

)
(36)

Under condition (36), the interior steady state is unique.

(ii) Absent biological interactions (d1 = d3 = 0), the unique interior steady state, when it exists,

is globally stable; this remains true when biological interactions are moderate (sufficient conditions

for stability are: d1 ≤ b3
q1
q3
, d3 ≤ b1

γ ). Besides, whatever the level of biological interactions, if the

revenue spent on fish I is sufficiently small, the unique steady state is globally stable.

(iii) If I ≥ I, when d1 ≤ d1 := b3
q1
γq3

, there is no interior steady state; but when d1 > d1 there may

exist up to 2 interior steady states.

Proof. See Appendices A and B.3.

Absent biological interactions, the interior steady state, provided that it exists i.e. that condition

(36) is satisfied, is unique and globally stable. As one would expect, the threshold I is an increasing

function of the unit cost of effort and the intrinsic growth rate of each species, and a decreasing

function of the catchability coefficient of both fisheries. It also depends on γ, the elasticity of farmed

fish production to feed input. The higher γ, the lower I, highlighting the fact that the dependence
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Iw(d1)
I

ca1
q1

I = c
(
a1
q1

+ a3
γq3

)

d10 d̄1 = b3
q1
γq3

I(d1)

unique interior SS

no interior SS

2 interior SS

Figure 1: Existence, uniqueness and stability of an interior steady state (shaded zone: instability)

of aquaculture on feed fish must be mitigated for fish production to cope with population growth

and increasing demand. Notice that I does not depend on k, the parameter characterizing the

productivity of the aquaculture technology. When the revenues spent on fish consumption tend

towards the threshold I both wild fish stocks tend to 0. When I reaches the threshold, we assist

to the simultaneous collapse of the edible wild fish stock and the feed one. The relevant steady

state is then X̂1 = X̂3 = 0.

When biological interactions are moderate these results still hold. But stronger biological inter-

actions coupled to a relatively high revenue spent on fish consumption (although smaller than I)

may provoke instability (see the shaded area in Figure 1). Then the system converges to the steady

state where both populations collapse.

For high biological interactions, namely when the parameter d1 characterizing the predator effect

is above the threshold d1, the revenue that the system can bear is increased above I and there

may exist two, one or no steady states. More precisely, there exist two steady states for I < I(d1)

and no steady state for I > I(d1), I = I(d1) being the limit case (see Figure 1). We were unable

to compute analytically the value of I(d1), nor to obtain analytical results for the stability of the
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steady state(s), so we resort to numerical simulations.

We use the values proposed in Hannesson (2002) for biological parameters, while economic and

technological parameters are chosen such that steady state outcomes sketch the state of world

resources, market prices and quantities, in relative values. The parameter k is set such that

aquaculture is very inefficient, meaning that the farmed species is a high value carnivorous species

with a high FIFO. The parameter γ gives feed costs equal to 50% of the aquaculture production

value. Such value is likely, though belonging to the upper range values of γ reported by Asche and

Bjorndal (2011) for the salmon industry. Parameter α, which weights farmed fish in preferences,

is set to 0.4, implying that consumers weight wild fish more than farmed fish. This assumption is

grounded on the following argument. First, there exists large empirical evidence that for a given

species the price of the wild product is higher than the price of the farmed one (FranceAgriMer,

2012). Furthermore, aquaculture does not actually have the capacity to produce all species existing

in the wild. At date, the food fish supply of capture fisheries is much more diversified, which is

something consumers value (Quaas and Requate, 2013). Lastly, Nielsen et al. (2007) establishes

that wild products are perceived to be healthier6. Table 1 gives our reference calibration. With

this calibration, d1 = 0.005 and I = 11.

Table 1: Calibration

a1 b1 d1 q1 a3 b3 d3 q3 σ c γ k β α

0.01 0.05 0.02 0.01 0.09 0.01 0.05 0.04 2 2 0.5 0.04 0.05 0.4

We make the assumption that the ratio d3/d1 remains the one of the reference calibration above

when d1 varies (i.e. d3/d1 = 2.5), and compute numerically the region where the steady state is

unstable by making I and d1 vary (see Figure 1).

The simulations also allow us to see that in the region where there exist two steady states, either

both are unstable or one of them is unstable and the other stable; in this last case, the stable

steady state is the one corresponding to the smaller Â.

6When it comes to farmed salmon, for which market integration has been extensively studied, facts and literature
support the idea that consumers are indifferent between wild or farmed products. Going even further, Knapp et al.

(2007) argues that for a same salmon species, consumers tend to prefer the farmed product for its consistent quality,
the reliability of its supply and its more appealing aspect. But farmed salmon is an exception, which experienced a
rather unique market story.
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5.3 Comparison with the baseline situation

Intuition would lead us to think that the introduction of aquaculture is always beneficial for

consumers, whatever their preferences and the efficiency of the aquaculture technology, because

more options are offered to them. We are going to show that this is not the case in our model.

Such a result can be explained by the fact that both fisheries are in open access, which leads

fishermen to take inefficient decisions. Moreover, intuition does not have much to offer about the

effects of the introduction of aquaculture on biological populations, on fish price, on the quantities

consumed or on the effort devoted to fishing in presence of biological interactions. The following

proposition compares the steady state outcomes obtained in the baseline situation where both fish

populations coexist (equations (16) to (18)) to those obtained when the wild edible fishery and

aquaculture coexist (equations (31)-(35)).

Proposition 2 Introducing aquaculture leads in the long run to:

(i) a smaller total effort devoted to fishing;

(ii) a higher stock of edible wild fish and a lower price iff d1 < d1, and vice versa, and a lower feed

fish stock in all events;

(iii) an ambiguous effect on wild fish consumption when d1 < d1, a decrease of wild fish consumption

when d1 > d1, and an ambiguous effect on total fish consumption in all events;

(iv) a higher utility when d1 ≤ d1, but a possibly negative effect on utility when d1 > d1.

Proof. See Appendix C.

Proposition 2, which results are summarized in Table 2, calls for the following comments.

The total effective long run level of fishing effort is of course Ê1 + Ê3. We show in Appendix C

that there also exists a virtual total level of effort I/c, constant, which must be splitted into an

effective effort Ê1 devoted to catch the edible wild species, and a virtual effort Ê3/γ > Ê3 devoted

not only to catch the feed species but also to transform it into edible farmed fish. Total effective

fishing effort is smaller with aquaculture than without, whatever the initial state of the edible wild

fish stock.

When the predator effect is moderate (d1 < d1), the long run consequences of the introduction of

aquaculture are conform to what is expected, and to the results found in the literature (Anderson,
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Table 2: Comparison with the baseline

Moderate biological interactions: d1 < d1 Strong biological interactions: d1 > d1

Ê1 + Ê3 < E∗

1 Ê1 + Ê3 < E∗

1

X̂1 > X∗

1 X̂1 < X∗

1

P̂1 < P ∗

1 P̂1 > P ∗

1

Ŷ1

{
> Y ∗

1 = 0 when Iw(d1) < I < I

T Y ∗

1 otherwise
Ŷ1 < Y ∗

1

Û > U∗ Û T U∗

1985; Ye and Beddington, 1996). That is, the effects of market interactions dominate the effects

of biological interactions. The introduction of aquaculture does alleviate the pressure on the wild

edible fish stock, in the sense that this stock is higher in the long run with aquaculture than

without. It may also lead to a higher total fish consumption, which is not surprising and, less

intuitively, to a higher wild fish consumption. In particular, when Iw(d1) < I < I (see Figure 1),

the introduction of aquaculture prevents the collapse of the wild fishery. Finally, the introduction

of aquaculture is always beneficial to consumers, whatever their preferences and the efficiency of

the aquaculture technology. When biological interactions are moderate, aquaculture is really an

option to increase food security.

When the predator effect is strong (d1 > d1) the results are quite different. In this case, the effects

of biological interactions dominate those of market interactions. Aquaculture worsens the pressure

on the wild edible fish stock and leads to a decrease of total wild fish stocks in the long run. Indeed,

as the introduction of aquaculture reduces the stock of feed fish in the long run, less food is left

for the predatory species which growth rate decreases. Then, even if species 1 is less harvested, its

long run stock decreases because of the shortage of its prey. For the same reason, the introduction

of aquaculture, requiring the exploitation of low value fisheries that were not exploited before, has

ambiguous effects on total fish consumption and utility. In particular, when I < I < Iw(d1) (see

Figure 1), introducing aquaculture may lead to a decrease in welfare, and even to the instability
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of the system and the collapse of both fish stocks, which would have survived absent aquaculture.

We illustrate the previous results in the case of a strong predatory effect by numerical simulations,

performed with the value of parameters in Table 1, for which d1 > d1. Figure 2 shows the catch of

edible fish, the total catch and utility as functions of the revenue I.

I
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I
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Y1

I
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I
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0.03

0.04

0.05

Y1+Y2

I

2 4 6 8 10 12
I

0.005

0.010

0.015

0.020

U

Wild edible catch Total catch Consumer utility

Figure 2: Introducing aquaculture may reduce the long run wild edible fish catch, total catch and

welfare (dashed curves: absent aquaculture; plain curves: with aquaculture)

5.4 Improving the efficiency of aquaculture

The efficiency of the aquaculture technology is traduced by parameter k > 0, which intervenes in

the production function of the aquaculture sector, as it conveys the sector efficiency in transforming

low-value feed fish into high-value edible fish (see (20)). As explained earlier, k may be interpreted

as the farmed species diet. When k is high the quantity of feed fish required to produce farmed

fish is low. This implies that the species farmed is rather omnivorous or herbivorous. Conversely,

when k is low the farmed species is a carnivorous one. According to this interpretation, the species

of the farmed fish varies with k.

We study the influence of k on the steady state variables, when the wild fishery and aquaculture

coexist. To do so, we perform a comparative statics exercise using system (31)–(35), in the neigh-

borhood of the interior steady state. As mentioned earlier, the hypothesis of biological interactions

between edible and feed fish stocks is not always effective. Here, we only consider the case where

biological interactions are absent (which we can extend to the case where they are moderate), in

order to focus on the role of technology.
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Proposition 3 Absent biological interactions,

(i) Long term stocks, efforts and prices in the edible fish sector and the feed fish sector evolve in

opposite directions according to k. As for catches, their evolution depends on the initial state of

the fisheries (heavily exploited or not).

(ii) When the wild fish stocks are heavily exploited in the initial steady state, the edible fish stock

and catch rise with k at the expense of the feed fish stock and catch, while the effort and the

price decrease in the first sector and increase in the second one. The production of farmed fish

increases, and its price decreases. As the consumptions of the two edible fish increase, consumer

utility increases as well.

Proof. See Appendix D1.

The first part of the proposition states that a technological shock in the aquaculture sector will

have opposite effects on the two wild fisheries, as far as stocks, efforts and prices are concerned.

Intuitively, we could expect that as the aquaculture sector becomes more efficient, the production

of farmed fish would increase, its price decrease, and that a substitution effect would induce a

decrease of the demand for wild fish, as farmed and wild fish are strong substitutes. But wild

fisheries are in open access, and thus not managed on a profit-maximizing basis. Moreover, these

fisheries may be heavily exploited, in the sense that stocks are under half their carrying capacity.

So the previous intuition, valid for standard man-made goods, may prove very wrong in our case.

In fact, we cannot even be sure that farmed fish production will increase and wild fish production

decrease in response to a technological shock to aquaculture efficiency.

In the second part of the proposition, we consider an initial steady state where both stocks are

heavily exploited. This assumption is convenient since it allows us to obtain clear analytical

results. It is also quite relevant, given the state of world fisheries. In this case, the improvement

of the aquaculture efficiency is favourable to the edible fishery at the expense of the feed fishery.

Effort decreases in the edible fishery while it increases in the feed fishery. Indeed, fishing feed fish

becomes more attractive, as a same quantity may be transformed into more farmed fish. Production

increases in the edible fishery due to the smaller effort exerted by fishermen in a situation of initial

biological inefficiency. Aquaculture production also increases, in spite of the decrease of the catch

of feed fish, because of the improvement of the aquaculture efficiency. Utility increases as well.
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6 Extension: Endogenous consumer tastes

We now endogeneize consumer tastes. We consider that the wild fish product is a highly valued

carnivorous species, while the farmed fish can be of any type between a carnivorous species anal-

ogous to the wild one to an omnivorous species. Our assumption is that consumer preferences

depend on this attribute. A change in k may affect either the weight of the farmed species in the

utility function, or the elasticity of substitution between wild and farmed fish, or both.

In equation (1), α is the weight of farmed fish in preferences, and σ is the elasticity of substitution

between the wild and the farmed species. We suppose that either α or σ may be a function of k.

In the first case, α(k) ∈ ]0, 0.5] , meaning that consumers never weight farmed fish more than wild

fish, and α′(k) < 0, meaning that among farmed species consumers prefer the carnivorous ones.

In the second case, we suppose that the lower k the higher σ, meaning that consumers perceive

as highly substitutable wild and farmed fish having the same carnivorous diet, but that as the

properties of the flesh differs, wild and farmed fish become less substitutable.

The following proposition sums up the consequences of these assumptions.

Proposition 4 Absent biological interactions, and when consumer preferences depend on k, the

effects of an improvement in aquaculture efficiency stated in Proposition 3 are completely reversed,

if the weight affected to farmed fish or the elasticity of substitution between wild and farmed fish

becomes sufficiently low as the farmed fish becomes less carnivorous.

Proof. See Appendix D2.

Absent any effect of k on consumer preferences, the weight affected by consumers to each product

–wild and farmed– in utility is invariant, and the elasticity of substitution between wild and farmed

fish as well. The effect of k is simply a productivity effect: the higher k, the more efficient the

aquaculture technology. Now, when consumer preferences depend on k (through the weight α or

the elasticity of substitution σ), a preference effect adds to the productivity effect: increasing k

means not only having a more efficient aquaculture technology but also breeding fish that con-

sumers like less, or that are less substitutable to wild fish. As k increases, the preference effect

may progressively dominate the productivity effect. Thereby, when the farmed species is very

carnivorous and the wild fish stocks are heavily exploited, increasing k i.e. choosing to breed a
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less carnivorous species benefits to the edible fish stock, at the expense of the other stock. Indeed,

increasing the substitute availability releases pressure on the wild edible fish stock. But increasing

k too much reverses the process.

As a consequence, our conjecture is that there exists a utility-maximizing farmed species type.

Consumers being sensitive to the properties of the flesh consumed, it is no use for the aquaculture

sector of producing a less carnivorous species, else consumers will be trapped between a highly

valued wild product, whose consumption is limited, and a cheap farmed fish they dislike.

We verify numerically that this situation may actually happen, in the case where the weight affected

to the farmed fish in the utility function depends on k. We use the following specification:

α(k) =
0.5αmin

αmin + (0.5− αmin)k
, 0 < αmin < 0.5 (37)

with αmin the minimum weight affected to the farmed fish. Numerical simulations are performed

with the same parameters as in Table 1, except that d1 = d3 = 0 and αmin = 0.05. Figure 3 shows

the two wild fish stocks and utility as functions of k.
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Figure 3: Long run effects of an improvement of aquaculture’s efficiency, absent biological

interactions (dashed curves: productivity effect alone; plain curves: productivity and preference

effects)

7 Conclusion

Many hopes are placed on aquaculture. This production technology is expected to bring more

food security by increasing or at least maintaining the current per capita level of fish protein given
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population growth, and to alleviate fishing pressure on wild edible fish stocks. This article analyzes

the impact of aquaculture on wild fish stocks and on consumer welfare. By means of a two-species

Lotka-Volterra model for biological interactions and a simple modeling of the aquaculture technol-

ogy, we provide some answers to these issues. We find that under the condition of coexistence of

aquaculture and the edible fishery, which relates to income, the coupling of all three sectors yields

a unique steady state. Nonetheless, while in absence of biological interactions the equilibrium is

always stable, it is not necessarily the case when introducing species interdependencies. Indeed,

stability is conditional on the intensity of biological interactions and on the income level.

Actually, most of our results regarding the impact of aquaculture entry are conditional on the

degree of dependence of the wild edible species on the feed fish stock. When this interaction is

moderate, by increasing global fish supply, aquaculture decreases the price of the wild product,

thus, fishing effort decreases allowing the edible stock to recover despite the fact that aquaculture

exploits the prey species as a production input. In fact, there even exists a range of income levels

for which the introduction of aquaculture prevents the wild edible species of collapsing. On the

other hand, the feed fish stock is always lower as one can expect. Otherwise, it is not obvious

analytically whether total wild fish consumption increases in all event, yet, this low interactions

scenario benefits to consumers whose utility is always increased.

In the case where biological interactions are high, aquaculture leads to a decline in the feed fish

stock and the wild edible fish stock, a decrease in wild edible fish supply and an increase in

its price. Indeed, when assuming a strong dependence of the predator species on the feed fish

population, aquaculture threatens the edible species by altering its food web. We find that for

high levels of income, aquaculture actually provokes the collapse of the wild edible fishery though

it would have remain alone. The net effect of farming on total fish consumption and welfare is

ambiguous. We show through numerical simulations that the introduction of aquaculture may

decrease utility. Such result can be explained by the fact that the fisheries are supposed to be in

open access, meaning that the exploitation of resources is economically inefficient. In this situation,

the introduction of aquaculture adds an extra inefficiency which may lead to a decreased utility,

in spite of the fact that more consumption options are offered to consumers.

Aquaculture is often criticized on the basis that it is a very inefficient production process. FIFO

ratios remain high, even if they have dramatically decreased over the last 15 years, and it seems

desirable to lower them further to produce more from a limited input. We study the effects of
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efficiency gains in the aquaculture sector, and show that when wild fish stocks are initially heavily

exploited, they lead to an increase in the production of wild and farmed fish and, consequently, to

an increase in utility. Nevertheless, IFFO believes that aquaculture can continue to decrease its

use of fish oil but that there are physiological limits preventing from going below a certain limit

depending on the species. According to OECD a potential answer to the limited supply of feed

would be to split the salmon market for instance into a cheap market fed with reduced fish oil and

an expensive one fed with real Omega 3 fish oil. Differentiating supply through two lines of quality

could better match consumers willingness to pay for food fish and better ensure the prosperity of

the industry.

Lastly, we emphasize the influence of consumer preferences. Following empirical evidence, we sup-

pose that preferences are carnivorous species-biased, and we link this characteristics of preferences

to the efficiency of aquaculture: the more efficient aquaculture is, the less carnivorous is farmed

fish and the less consumers like it, or the less substituable to wild fish it is. This leads to a trade-off

in the choice of the farmed species, and we suspect that there will exist a farmed species diet that

maximizes utility. Indeed, it realizes the optimal balance between quantity available and expected

flesh properties.

Beyond the limited supply of feed, other factors are expected to slow aquaculture growth such as

land scarcity, stricter regulations or consumer awareness of the sector ecological impacts. Consumer

concern for environment or health may affect their behaviour towards farmed products. More

evidence on how consumers perceive farmed fish could shade light on the perspectives of food fish

production processes.
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Appendix

A Proof of Proposition 1, (i) and (iii)

Plugging the expressions of stationary stocks and efforts given by (31)–(34) into (35) yields:

q1 (γq3)
−γ

k
(

α
1−α

) σ

σ−1

(
I

c

)1−γ
(

Â

1− Â

) 1

σ−1

Â
b3

b1b3 + d1d3

(
x1 + y1Â

)
=

(
−Â

d3
b1b3 + d1d3

(
x3 + y3Â

))γ

(38)

Figures 4 and 5 portray the two members of this equation, in the different cases that may occur,

depending on the value of the parameters. The left-hand side member is denoted f(Â) and the

right-hand side member g(Â). We have d1 = b3
q1
γq3

.
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Figure 4: Existence and uniqueness of an interior solution when d1 < d1

30

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2013.02R (Version révisée)



g(Â)

f(Â)

0.0 0.2 0.4 0.6 0.8 1.0
Â0.0

0.2

0.4

0.6

0.8

1.0

1.2

f(Â)

g(Â)

0.2 0.4 0.6 0.8 1.0
Â

1

2

3

4

5

g(Â)
f(Â)

0.0 0.2 0.4 0.6 0.8 1.0
Â0.0

0.2

0.4

0.6

0.8

1.0

1.2

case 1 case 4, −x1

y1
< −x3

y3
case 4, −x1

y1
> −x3

y3
, I < I

f(Â)

g(Â)

0.2 0.4 0.6 0.8 1.0
Â

0.2

0.4

0.6

0.8

g(Â)

f(Â)

0.2 0.4 0.6 0.8 1.0
Â

0.2

0.4

0.6

0.8

g(Â)

f(Â)

0.2 0.4 0.6 0.8 1.0
Â

-1.0

-0.5

0.0

0.5

1.0

case 4, −x1

y1
> −x3

y3
, I = I case 4, −x1

y1
> −x3

y3
, I > I case 2

Figure 5: Existence and uniqueness of an interior solution when d1 > d1

Since d3 > 0, x3 < 0 and y3 > 0 (see (31) and (33)), the condition of existence of g(Â) is x3+y3Â ≤

0 i.e. Â ≤ −x3

y3
. g(Â) is then a positive inverted U-shaped function, with g(0) = g

(
−x3

y3

)
= 0,

and, since γ < 1 and −d3x3 > 0, g′(0) = +∞.

As for the f(.) function, we have

f ′(Â) =
q1 (γq3)

−γ

k
(

α
1−α

) σ

σ−1

(
I

c

)1−γ
(

Â

1− Â

) 1

σ−1 b3
b1b3 + d1d3

[
1

σ − 1

1

1− Â

(
x1 + y1Â

)
+ x1 + 2y1Â

]

hence

lim
Â→0

f ′(Â) = 0+ if x1 > 0, 0− if x1 < 0

lim
Â→1

f ′(Â) = +∞ if x1 + y1 > 0, −∞ if x1 + y1 < 0

• Case 1. When x1 > 0 and x1 + y1 > 0, f(Â) is a positive function, increasing from 0 to +∞

when Â increases from 0 to 1. The solution to equation f(Â) = g(Â) exists and is unique.

• Case 2. When x1 < 0 and x1+ y1 < 0, f(Â) is a negative function, decreasing from 0 to −∞

when Â increases from 0 to 1. There exists no solution to equation f(Â) = g(Â).
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• Case 3. When x1 < 0 and x1 + y1 > 0, which requires y1 > 0, f(Â) is first decreasing and

then increasing, has two roots 0 and −x1

y1
> 0, and tends to +∞ when Â tends to 1. In this

case, the solution to equation f(Â) = g(Â) exists and is unique iff −x1

y1
≤ −x3

y3
, and there is

no solution if −x1

y1
> −x3

y3
. Notice that when −x1

y1
ր −x3

y3
, Â ր −x3

y3
and X̂1, X̂3 → 0.

• Case 4. When x1 > 0 and x1 + y1 < 0, which requires y1 < 0, f(Â) is first increasing and

then decreasing, has two roots 0 and −x1

y1
> 0, and tends to −∞ when Â tends to 1. In this

case, there may exist two, one or no solution to equation f(Â) = g(Â). When −x1

y1
> −x3

y3

the solution is unique. When −x1

y1
ց −x3

y3
there are 2 solutions, a strictly positive one

(X̂1, X̂3 > 0) and a second one characterized by X̂1, X̂3 → 0.

We have

x1 = a1 +
a3d1
b3

− q1
I

c

x1 + y1 = a1 +
a3d1
b3

−
d1
b3

γq3
I

c

x1
y1

−
x3
y3

=
b1b3 + d1d3
b3d3y1y3

q1γq3
I

c

(
a1
q1

+
a3
γq3

−
I

c

)

Notice that x1

y1
− x3

y3
has the same sign as 1

y1

(
a1
q1

+ a3
γq3

− I
c

)
.

Simple computations based on the previous observations allow us to obtain the results summarized

below and portrayed on Figure 6:
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case 4 case 4
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Figure 6: Interior solutions

This proves points (i) and (iii) of Proposition 1.
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B Stability

B.1 No fishing

The linearization of the dynamic system (7)–(8) around a steady state yields the following Jacobian

matrix:

J̃ =


 a1 − 2b1X̃1 + d1X̃3 d1X̃1

−d3X̃3 a3 − 2b3X̃3 − d3X̃1




It immediately appears that steady states 1 and 2 are unstable: the eigenvalues evaluated at

these steady states are respectively a1 > 0, a3 > 0 and a1 +
a3d1
b3

> 0, −a3 < 0. As for steady

state 3, the eigenvalues are −a1 < 0, a3 −
a1d3
b1

. Hence steady state 3 is asymptotically stable iff

a3 −
a1d3
b1

< 0 ⇐⇒ a1
b1

> a3
d3
. Notice that this condition is the opposite of condition (9) of existence

of steady state 4. Finally, for steady state 4 we have:

det J̃ = b1b3 + d1d3 > 0

trJ̃ = −b1 − b3 < 0

Therefore the two roots of the characteristic equation are either real and negative or complex with

a negative real part, depending on the sign of the discriminant, that reads: (b1 − b3)
2 − 4d1d3.

Steady state 4 is a stable node in the first case, a stable focus in the second one. Notice that the

first case occurs when biological interactions are mild (d1d3 small), and vice versa.

B.2 Capture fishery alone

The Jacobian matrix of the dynamic system (15) linearized around a steady state is:

J∗ =




∂F1(X1,X3)
∂X1

∣∣∣
X∗

1
,X∗

3

− q1E
∗

1 −q1X
∗

1
∂F1(X1,X3)

∂X3

∣∣∣
X∗

1
,X∗

3

0 −βc 0

∂F3(X1,X3)
∂X1

∣∣∣
X∗

1
,X∗

3

0 ∂F3(X1,X3)
∂X3

∣∣∣
X∗

1
,X∗

3




=




a1 − 2b1X
∗

1 + d1X
∗

3 − q1E
∗

1 −q1X
∗

1 d1X
∗

1

0 −βc 0

−d3X
∗

3 0 a3 − 2b3X
∗

3 − d3X
∗

1




34

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2013.02R (Version révisée)



As it is the case without human intervention, steady states 1 and 2, characterized by the extinction

of both wild species or the extinction of species 1, the predatory edible wild fish, are unstable: the

eigenvalues evaluated at these steady states are respectively −βc < 0, a1 > 0, a3 > 0 (steady state

1 is globally unstable) and −βc < 0, a1 +
a3d1
b3

> 0, −a3 < 0 (steady state 2 is a saddle point).

As for steady state 3, characterized by the extinction of species 3, the eigenvalues are −βc < 0,

−a1 + q1
I
c < 0, a3 −

d3
b1

(
a1 − q1

I
c

)
> 0 according to condition (9). Hence steady state 3 is also

unstable. Finally, for steady state 4 the characteristic equation reads:

(−βc− λ)
(
λ2 + (b1X

∗

1 + b3X
∗

3

)
λ+ (b1b3 + d1d3)X

∗

1X
∗

3 ) = 0

It admits 3 roots: −βc < 0 and are 2 other roots, either real and negative or complex with a negative

real part, depending on the sign of the discriminant, that reads: (b1X
∗

1 − b3X
∗

3 )
2 − 4d1d3X

∗

1X
∗

3 .

Hence steady state 4 is asymptotically stable, and is a stable node in the first case, a stable focus

in the second one.

B.3 Capture fishery and aquaculture: proof of Proposition 1, (ii)

The linearization of the dynamic system (30) in the neighborhood of the steady state yields the

following Jacobian matrix:

J =




∂F1(X1,X3)
∂X1

∣∣∣
X̂1,X̂3

− q1Ê1 −q1X̂1
∂F1(X1,X3)

∂X3

∣∣∣
X̂1,X̂3

0

a21 a22 − βc −a23 −a24
∂F3(X1,X3)

∂X1

∣∣∣
X̂1,X̂3

0 ∂F3(X1,X3)
∂X3

∣∣∣
X̂1,X̂3

− q3Ê3 −q3X̂3

−a21 −a22 a23 a24 − βc




with 



a21 = βI σ−1
σ

Â(1−Â)

X̂1

a22 = βI σ−1
σ

Â(1−Â)

Ê1

= βcσ−1
σ Â

a23 = βI σ−1
σ γ Â(1−Â)

X̂3

a24 = βI σ−1
σ γ Â(1−Â)

Ê3

= βcσ−1
σ (1− Â)
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and

∂F1(X1, X3)

∂X1

∣∣∣∣
X̂1,X̂3

− q1Ê1 =
∂F1(X1, X3)

∂X1

∣∣∣∣
X̂1,X̂3

−
F1(X̂1, X̂3)

X̂1

= −b1X̂1

∂F1(X1, X3)

∂X3

∣∣∣∣
X̂1,X̂3

= d1X̂1

∂F3(X1, X3)

∂X1

∣∣∣∣
X̂1,X̂3

= −d3X̂3

∂F3(X1, X3)

∂X3

∣∣∣∣
X̂1,X̂3

− q3Ê3 =
∂F3(X1, X3)

∂X3

∣∣∣∣
X̂1,X̂3

−
F3(X̂1, X̂3)

X̂3

= −b3X̂3

Tedious computations show that the characteristic polynomial reads:

P (λ) = (βc+ λ)Q(λ)

with

Q(λ) = µ3λ
3 + µ2λ

2 + µ1λ+ µ0

and





µ3 = 1

µ2 =
βc
σ + b1X̂1 + b3X̂3

µ1 =
βc
σ

(
b1X̂1 + b3X̂3

)
+ (b1b3 + d1d3) X̂1X̂3 +

σ−1
σ βIÂ(1− Â) (q1 + γq3)

µ0 =
βc
σ (b1b3 + d1d3) X̂1X̂3 +

σ−1
σ βIÂ(1− Â)

(
b1γq3X̂1 + b3q1X̂3 + d3γq1X̂1 − d1q3X̂3

)

P (λ) admits one negative real root equal to −βc, plus the 3 roots of Q(λ). We apply the Routh-

Hurwitz criterion to Q(λ). Clearly, µ3 > 0, µ2 > 0 and µ1 > 0. The sign of µ0 is ambiguous.

Besides, the sign of µ2µ1 − µ3µ0 is also ambiguous:

µ2µ1 − µ3µ0 =

(
βc

σ
+ b1X̂1 + b3X̂3

)(
βc

σ

(
b1X̂1 + b3X̂3

)
+ (b1b3 + d1d3) X̂1X̂3 +

σ − 1

σ
βIÂ(1− Â) (q1 + γq3)

−
βc

σ
(b1b3 + d1d3) X̂1X̂3 −

σ − 1

σ
βIÂ(1− Â)

(
b1γq3X̂1 + b3q1X̂3 + d3γq1X̂1 − d1q3X̂3

)

=
(
b1X̂1 + b3X̂3

)[(βc

σ

)2

+
βc

σ

(
b1X̂1 + b3X̂3

)
+ (b1b3 + d1d3) X̂1X̂3

]

+
σ − 1

σ
βIÂ(1− Â)

[
βc

σ
(q1 + γq3) + q1 (b1 − γd3) X̂1 + q3(d1 + γb3)X̂3

]
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Nevertheless, we can obtain the following results.

• Absent biological interactions (d1 = d3 = 0) we have µ0 > 0 and µ2µ1 − µ3µ0 > 0. In this

case, the linearized dynamic system is stable (see Gantmacher, 1959). This remains true as

long as biological interactions are not too strong. More precisely, a sufficient condition for

µ0 > 0 is d1 ≤ b3
q1
q3
, and a sufficient condition for µ2µ1 − µ3µ0 > 0 is d3 ≤

b1
γ .

• When the revenue spent on fish I tends to 0, X̂1 → X̃1, X̂3 → X̃3, µ0 →
βc
σ (b1b3 + d1d3) X̃1X̃3 >

0 and µ2µ1−µ3µ0 →
(
b1X̃1 + b3X̃3

)[(
βc
σ

)2
+ βc

σ

(
b1X̃1 + b3X̃3

)
+ (b1b3 + d1d3) X̃1X̃3

]
> 0

and the system is stable.

C Proof of Proposition 2

(i) Eliminating Â between equations (32) and (34) yields a relationship between the two long run

effort levels:

Ê1 +
Ê3

γ
=

I

c

Remember that absent aquaculture the optimal level of effort in the capture fishery is E∗

1 = I/c.

Then obviously Ê1 + Ê3 < E∗

1 .

(ii) Now, comparing X̂1 (equation (31)) to the stock of the baseline case without aquaculture X∗

1

(equation (16)), we get:

X̂1 = X∗

1 +
b3

b1b3 + d1d3
y1Â

Hence

X̂1 > X∗

1 ⇐⇒ y1 > 0 ⇐⇒ d1 < d1 = b3
q1
γq3

The steady state expressions of the wild edible fish price are P ∗

1 = c/(q1X
∗

1 ) and P̂1 = c/(q1X̂1),

hence the result. Concerning the wild feed fish stock, comparing X̂3 (equation (33)) and X∗

3

(equation (17)) yields:

X̂3 = X∗

3 −
d3

b1b3 + d1d3
y3Â < X∗

3 since d3 > 0 and y3 > 0

(iii) When aquaculture lowers the wild edible fish stock (d1 > d1), as Ê1 < E∗

1 , the supply of

wild edible fish is necessarily lower: Ŷ1 < Y ∗

1 . It may even be the case that the introduction of
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aquaculture causes the collapse of the wild fish stock in the long run: when I < I < Iw(d1) and no

interior steady state exists or there exist two unstable interior steady state, the wild fishery alone

would have been sustainable.

Now, when aquaculture leads to an increased wild edible stock (d1 < d1), its impact on wild fish

supply is ambiguous, except in the particular case where the introduction of aquaculture prevents

the edible fish stock from collapsing, that is when Iw(d1) < I < I. Likewise, when aquaculture

increases wild fish supply, it obviously increases also total fish supply, whereas when aquaculture

decreases wild fish supply the net effect of aquaculture on total fish supply is ambiguous.

(iv) Turning to the comparison of utilities, we obtain:

(
U(Ŷ1, Ŷ2)

U(Y ∗

1 , 0)

)1− 1

σ

=

(
Ŷ1
Y ∗

1

)1− 1

σ


1 +

α(k)

1− α(k)

(
Ŷ2

Ŷ1

)1− 1

σ




=

(
Ŷ1
Y ∗

1

)1− 1

σ 1

1− Â
=

(
Ê1X̂1

E∗

1X
∗

1

)1− 1

σ 1

1− Â
=

(
X̂1

X∗

1

)1− 1

σ (
1− Â

)
−

1

σ

U(Ŷ1, Ŷ2) > U(Y ∗

1 , 0) ⇐⇒

(
X̂1

X∗

1

)1− 1

σ

>
(
1− Â

) 1

σ
⇐⇒

X̂1

X∗

1

>
(
1− Â

) 1

σ−1

This condition is always satisfied when X̂1 ≥ X∗

1 i.e. when d1 ≤ d1, which is a sufficient condition

for aquaculture to increase welfare. We exhibit numerically a case where the introduction of

aquaculture leads to a decrease of utility.

D Proof of Propositions 3 and 4

D.1 Proof of Proposition 3

From system (31)–(34) (with d1 = d3 = 0) we get for stocks and efforts:

dX̂1 =
q1
b1

I
cdÂ, dÊ1 = − I

cdÂ

dX̂3 = −γq3
b3

I
cdÂ, dÊ3 = γ I

cdÂ

Hence dX̂1 and dX̂3 are always of opposite signs, as well as dÊ1 and dÊ3.
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As for catches and prices, we obtain:

dŶ1

Ŷ1

= dÊ1

Ê1

+ dX̂1

X̂1

=
(
a1/b1

X̂1

− 2
)

dÂ

1−Â
, dP̂1

P̂1

= − dÂ

1−Â
− dŶ1

Ŷ1

=
(
1− a1/b1

X̂1

)
dÂ

1−Â

dŶ3

Ŷ3

= dÊ3

Ê3

+ dX̂3

X̂3

=
(
2− a3/b3

X̂3

)
dÂ

Â
, dP̂3

P̂3

= dÂ

Â
− dŶ3

Ŷ3

=
(
a3/b3

X̂3

− 1
)

dÂ

Â

dŶ2

Ŷ2

= dk
k + γ dŶ3

Ŷ3

, dP̂2

P̂2

= dÂ

Â
− dŶ2

Ŷ2

Absent biological interactions, a1/b1 (resp. a3/b3) is the carrying capacity of species 1 (resp.

species 3). We thus have 1 −
a1/b1

X̂1

< 0 and a3/b3

X̂3

− 1 > 0 : dP̂1 and dP̂3 are always of opposite

signs. For catches, things depend on the initial value of the stock with respect to half its carrying

capacity. This proves (i).

We have expressed so far how our variables evolve according to a variation of Â, the market

interaction variable. We must now determine how Â itself evolves according to a variation of k,

the efficiency of aquaculture.

Equation (35) defining Â can be written as:

Â

1− Â
=

α

1− α

(
Ŷ2

Ŷ1

)σ−1

σ

Totally differentiating this equation, we obtain:

dÂ

Â
(
1− Â

) =
σ − 1

σ

[
dŶ2

Ŷ2
−

dŶ1

Ŷ1

]

from which we deduce:
dŶ2

Ŷ2
=

dÂ

Â
(
1− Â

) +
σ

σ − 1

dŶ1

Ŷ1

As we have shown above that for X̂1 ≤
a1/b1

2 , dŶ1 and dÂ have the same sign, this equation shows

that it is also the case for dŶ2.

Finally, we can deduce from this equation, by replacing dŶ1 and dŶ2 by their expression as a

function of dÂ, that:

[
1

1− Â
−

σ − 1

σ

(
γ

(
2−

a3/b3

X̂3

)
+

Â

1− Â

(
2−

a1/b1

X̂1

))]
dÂ

Â
=

σ − 1

σ

dk

k
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For X̂1 ≤
a1/b1

2 and X̂3 ≤
a3/b3

2 , the term between brackets on the left-hand side of this equation

is unambiguously positive. Then dÂ/dk > 0. It immediately follows that:

dX̂1

dk > 0, dÊ1

dk < 0, dX̂3

dk < 0, dÊ3

dk > 0

dŶ1

dk > 0, dP̂1

dk < 0, dŶ3

dk < 0, dP̂3

dk > 0

dŶ2

dk > 0, dP̂2

dk < 0

This proves (ii).

D.2 Proof of Proposition 4

When preferences depend on k, either through the weight α of farmed fish in utility or through

the elasticity of substitution σ between wild and farmed fish, the previous equation becomes:

[
1

1− Â
−

σ − 1

σ

(
γ

(
2−

a3/b3

X̂3

)
+

Â

1− Â

(
2−

a1/b1

X̂1

))]
dÂ

Â
=

[
1−

1

σ(k)

(
1−

kσ′(k)

σ(k)

)
+

kα′(k)

α(k)(1− α(k))

]

As α′(k) < 0 and σ′(k) < 0, it may be the case that the right-hand side of the above equation

is negative. More precisely, there may exist a threshold for the parameter k above which dÂ/dk

changes sign.
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