N

N
N

HAL

open science

Generalising Conservativity
Richard Zuber

» To cite this version:

Richard Zuber. Generalising Conservativity. WoLLIC 2010, 2010, France. pp.247-258. halshs-

00751201

HAL Id: halshs-00751201
https://shs.hal.science/halshs-00751201

Submitted on 15 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://shs.hal.science/halshs-00751201
https://hal.archives-ouvertes.fr

Generalising Conservativity

R.Zuber

Rayé des cadres du CNRS

Richard.Zuber@linguist. jussieu.fr

Abstract. A constraint on functions from sets and relations to sets
is studied. This constraint is a generalisation of the constraint of con-
servativity known from the study of generalised quantifiers in natural
languages. It is suggested that this generalised constraint constitutes a
semantic universal.

1 Introduction

Progress in the study of the logical properties of natural languages (NLs) is
closely related to the study of various constraints that must be satisfied by func-
tions interpreting functional expressions in NLs. We know that such expressions
do not denote arbitrarily and thus that functions interpreting them obey various
specific logic constraints. The most prominent results obtained in this context
are obtained in generalised quantifier theory and concern functions correspond-
ing to various types of quantifiers. The constraint on quantifiers which has been
extensively studied from theoretical and empirical points of view is the constraint
of conservativity, which concerns the denotations of various determiners found in
NLs. Conservativity is generally considered as a language universal. Even though
some non-conservative determiners are known, it appears that they are rare and
not arbitrary since they are systematically related to conservative determiners
(cf. Zuber 2004).

In this paper I generalise the notion of conservativity so that it can apply not
only to quantifiers but also to some functions having sets as results. Furthermore,
I suggest that the constraint of conservativity thus generalised also constitutes
a language universal.

Let me make first some notational and definitional preliminaries which will
allow us to define the properties and functions which we are going to discuss.
We will be interested in sets and relations over a given universe E. If R is a
k + n-ary relation and aq, ...,a € E then ay...ax R is the n-ary relation defined
as follows:

ay...ax R = {{ag+1,...,an) € E™ : {ay...ap4+n) € R}
The functions in which we will be interested are functions which have as

inputs (arguments) sets and relations. If the output of such a function is a truth-
value then this function is a (generalised) quantifier. A type (1) quantifier is a



function from sets to truth-values. It is a denotation of a noun phrase (used in
subject position in a sentence). Type (1, 1) quantifiers are functions from binary
relations between sets to truth values or just binary relations between sets. Type
(1,2) quantifiers are binary relations between sets and binary relations (that is
relations whose domains are sets and co-domains - binary relations between sets).
Finally type (1,1,2) (or type (12,2)) quantifiers are ternary relations whose first
two "arguments” are sets and the third argument is a binary relation between
sets.

We will discuss basically functions which are not quantifiers though they
can be seen as related to quantifiers. They are not quantifiers because their co-
domains are not truth-values but sets (or relations in a more general case). The
type of function which takes n sets and one k-ary relation and gives a i-ary
relation (for ¢ < k) as result will be noted (1™, k : i), for n > 1. The type of
function taking a n-ary relation and giving as result an i-ary relation (for ¢ < k)
will be noted (n : i). These functions will be called arity reducers.

A special class of arity reducers is obtained from quantifiers. Since type (m)
quantifiers are functions from m-ary relations to truth-values, in order to con-
sider them more generally as arity reducers we need to define their extensions,
that is to extend theirs domains so that they can apply to relations of any arity
(higher than m). This can be done in two steps in the following way (cf. Keenan
and Westerstahl 1997):

D1: Let R, be the set of n-ary relations (over E). Then F' is a reducer of arity
by k, noted F € [|J,, Rnyr — URy] is in AR(—k), if VR € Ryyk, F(R) € R,
(n >0).

Every type (k) quantifier extends to a function in AR(—k) in the following way:

D2: A type (k) quantifier @ extends to a function in AR(—k), also noted @, by
letting, for R € R+, Q(R) = {{(a1,...,an) € E™ : Q(a;...a,R) = 1}

Thus by D2 any type (k) quantifier can be considered as a type (n + k : n)
function, that is a function which applies to relations of arity n + k& and which
gives as a result a relation of arity n.

Of course there are functions which are arity reducers but which are not
extensions of quantifiers. Extended type (1) quantifiers are characterised by the
following property (Keenan and Westerstahl 1997):

Proposition 1: Let F' € AR(—1). F is extended type (1) quantifier iff Vn,m > 0,
VR € R,11VS € Ry41Vaq, ..., n, b1, ..., by, € E| we have

a1 anR = b1..byS = (a1, ... an) € F(R) & (b1, ..., by) € F(S))



From now on we will be interested in the particular case when k =2, n <2
and 7 = 1 and thus we will study basically functions of type (2 : 1), of type
(1,2 : 1) and to a lesser extend functions of type (12,2 : 1).

Let me illustrate some of the above notions. We are interested in the inter-
pretation of simple sentences of the form NP; TV P NP,. In such sentences
the noun phrase N P; is interpreted by a type (1) quantifier, which is a set of
sets, and the transitive verb phrase TV P is interpreted by a binary relation.
Concerning N P, there are two possibilities: it can be interpreted either by a
function which is an extension of a type (1) quantifier or by a function (from
binary relations to sets) which is not an extension of a type (1) quantifier. When
such a function is an extension of a quantifier we will call it accusative extension
(since it occurs in the direct object position of a sentence) and note it Qgec. It
is an instance of D2 and is specified in D3:

D3: If @ is a type (1) quantifier, then Quec(R) = {a: Q(aR) = 1}.

Obviously accusative case extensions satisfy the invariant condition given in
Proposition 1 and which for the case we consider (k=2) will be called the ac-
cusative extension condition (AEC):

AEC: A function F' from binary relations to sets satisfies the AEC iff for R and
S binary relations, and a,b € E, if aR = bS then a € F(R) iff b € F(S).

Thus type (1) quantifiers become type (2 : 1) functions by accusative exten-
sion. It is also true, however, that any type (2 : 1) function which satisfies the
AEC condition uniquely determines a type (1) quantifier. Indeed the following
proposition holds:

Proposition 2: If a type (2 : 1) function F satisfies the AEC and the type (1)
quantifier @ is defined as Q(X) =1 iff a € F({a} x X) then Quc.(R) = F(R)

Proof:

Type (1) quantifiers and type (2 : 1) functions satisfying AEC form complete
atomic Boolean algebras. For any set A C E, the function F4 such Fs(X) = 1 iff
X = A is an atom of the algebra of type (1) quantifiers. Similarly, the function
F4 such that F4(R) = {z : R = A} is an atom of the second algebra. These two
algebras are isomorphic (the mapping given in D3 establishes the isomorphism).
Given that Fa({a} x A)=Aifa € Aand Fa({a} x A) =0 if a ¢ A, we get the
needed result.

The following example illustrates Proposition 2. Consider a type (2 : 1)
function F4 defined as follows: F4(R) = {z : [xtRN A| > [zR' N A|} (for a fixed
A C E and F finite). Since aR = bS iff aR’ = bS’ the function F, satisfies
AEC. Tt is easy to see that Fy = (MOST(A))acc (Where MOST(A)(Y) =1 iff
[ANY|>]|ANY’]).



The following two simple conditions can be used to decide whether functions
from binary relations to sets satisfy or not the AEC condition:

Fact 1: A type (2 : 1) function F does not satisfy the AEC if there exists a set
B and a,b € B such that a € F(E x B)Ab¢ F(E x B)

Fact 2: If a type (2 : 1) function F satisfies AEC then for any A C E one has
F(ExA)=0or F(Ex A)=E.

In the next section we consider two classes of functions which need not satisfy
the AEC condition.

2 Some arity reducers

Not every function from binary relations to sets used in NLs semantics satisfies
AEC. The best known example is the function SELF' defined as SELF(R) =
{z : (z,z) € R}; SELF can be used to interpret the reflexive pronoun him/herself.

Among functions not satisfying AEC one can distinguish two sub-classes
(cf. Keenan and Westerstahl 1997), according to whether they satisfy one of
the two conditions which are strictly weaker than AEC. Because such functions
are most frequently found in the semantics because they are necessary for the
interpretation of various expressions in NLs, I briefly introduce them.

The function SELF satisfies the the so-called anaphor condition AC:

AC: A function F' from binary relations to sets satisfies the anaphor condition iff
for R and S binary relations, and a € E, if aR = aS then a € F(R) iff a € F(S).

Obviously, functions which satisfy AEC also satisfy AC. Functions which
satisfy AC but do not satisfy AEC will be called anaphoric functions.
One can check (Keenan 2007) that SELF is an anaphoric function of type
(2 : 1) as is the function NOBODY-EXCEPT-SELF needed to interpret sen-
tence (1):

(1) Leo hates everybody except himself.

The AC applies to functions of type (2 : 1). We need a similar condition for
type (1,2 : 1) functions (which in NLs are basically denotations of anaphoric
determiners):

ACD1: A function F of type (1,2 : 1) satisfies anaphor condition (ACD1) iff for
any a € F, X C E and R, S binary relations, if a(E x X NR) =a(E x X NYS)
then a € F(X,R) iff a € F(X, 5).

To illustrate ACD1 consider the following example:



(2) Leo trusts no philosopher except himself.

In this example the function NO-EXCEPT-SELF of type (1,2 : 1) defined in
(3) is involved:

(3) F(X,R)=NO(X)-EXCEPT-SELF(R) = {y : yRN X = {y}}

One can check that this function satisfies ACD1.
The following property gives a justification of the condition ACD1:

Fact 3: If the function F of type (1,2 : 1) satisfies ACD1 then the function G*
of type (2 : 1) defined as GA(R) = F(A, R) satisfies AC.

What fact 3 informally says is that functions satisfying ACD1 are those from
which we get functions satisfying AC when fixing their set argument.

‘We can use the same method of fixing "nominal” arguments to define anaphoric
functions of type (1,2 : 1). Thus we have:

D4: A function F of type (1,2 : 1) is anaphoric iff it satisfies the condition ACD1
and the function G# of type (2 : 1) defined as GA(R) = F(A, R) is anaphoric
for any non-trivial A.

Using fact 1 one can show that the function defined in (3) is anaphoric.
In the above definitions, anaphoricity of type (1,2 : 1) functions is reduced to
anaphoricity of type (2 : 1) functions. The condition of non-triviality for A and
B is necessary because obviously for values of A or B making F' constant such
that we get functions which also satisfy AEC.

Let us consider now the second weakening of the AEC, the so-called argu-
ment invariance (Keenan and Westerstahl 1997):

D5: A type (2 : 1) function F' is argument invariant iff whenever aR = bR then
a € F(R) iff b € F(R).

The above definition obviously generalises to type (1,2 : 1) functions:

D6: A type (1,2 : 1) function F is argument invariant iff whenever a(Ex XNR) =
b(E x X NR) then a € R(X,R) iff b € F(X,R)

As an example consider the function involved in the interpretation of the nu-
merical superlative the greatest number of as it occurs in (4a) with the intended
meaning given in (4b). This superlative is interpreted by the function given in (5):

(4a) Leo knows the greatest number of languages.
(4b) Leo knows more languages than anybody else.



(5) NSUP(X,R) ={z:Yyly £z — |zRNX| > [yRN X|}

It is easy to check that N SU P is argument invariant and that it does not satisfy
the AEC1 condition.

3 Conservativity

Conservativity is a property of some classes of quantifiers. It has been basically
studied in connection with type (1,1) quantifiers but a non-trivial notion of
conservativity applies to many classes of quantifiers which take at least two
arguments. In particular quantifiers denoted by unary and n-ary determiners
can be said to be conservative. Moreover Westestahl 2004 shows how to define
conservativity for type (1™, k) quantifiers. Conservativity of some other classes
of quantifiers is defined in Keenan and Westerstahl (1997).

Conservativity of quantifiers denoted by unary or n-ary determiners (that
is determiners taking n common nouns to form a noun phrase) can be easily
defined, as we will see. We have seen that anaphoric functions (that we consider
here) are systematically related to quantifiers (of type (1,1)). Simularly, ”com-
parative” functions which are argument invariant (and which interpret compar-
ative constructions such as the one a in (5)), seem to be related to quantifiers.
So it is quite natural to ask whether and in what sense anaphoric functions are
conservative.

Let us recall first the notion of conservativity for type (1,1) quantifiers. A
now well-known definition is given in D5:

D5: F € CONS iff for any property X,Y one has F(X)(Y)=F(X)(XNY)

Given D5 it is easy to show that the type (1, 1) quantifier F' defined as F/(X)(Y) =
1iff X =Y, is not conservative.

Conservativity of type (1,1) quantifiers can additionally be formulated in
two different ways:

Fact 5 (cf. Keenan and Faltz 1986) : F' is conservative or F' € CONS iff for any
property X,Y and Z if XNY = X N Z then F(X)(Y) = F(X)(2)

Fact 6 (Zuber 2005): F' € CONS iff for any property X,Y one has F(X)(Y) =
F(X)(X'UY)

It is also possible to define conservativity for the whole class of type (1,1, 2)
quantifiers. In this case we have the following definition, an instance of the gen-
eral definition proposed in Westerstahl 2004:

D6: A type (1,1,2) quantifier F' is conservative iff for any sets A, B and any
binary relation R one has F'(A, B,R) = F(A,B,A x BNR)



As in the case of "simple” type (1,1) quantifiers it is possible to give an
equivalent defining condition for conservativity of type (1,1,2) quantifiers to
hold. Thus we have:

Proposition 3: A type (1, 1,2) quantifier is conservative iff F(A, B, R1) = F(A, B, Rs)
whenever A x BN Ry = Ax BN Ry

Clearly none of the above definitions of conservativity applies directly to an
anphoric function. However, proposition 3 and fact 5 give us a hint as to what
form the definition of conservativity of type (1,2 : 1) functions should take. Here
is the definition:

D7: Let F be a type (1,2 : 1) function. Then F is conservative iff for all
X C FE and Ry, Ry binary relations, if £ x X " Ry = E x X N Ry then
F(X,Ry) = F(X, R).

By analogy with fact 1 and definition D1 conservativity of type (1,2 : 1)
functions can be defined equivalently as the following proposition shows:

Proposition 4: A function F' of type (1,2 : 1) is conservative iff F(X,R) =
F(X,E x XNR)

It is easy to check that the anaphoric type (1,2 : 1) function EVERY-
EXCEPT-SELF defined above, is conservative.

The following property gives additional plausibility to the above definitions
of generalised conservativity:

Proposition 5: Let D be a type (1, 1) quantifier and F a type (1,2 : 1) function
defined as: F(X, R) = D(X)acc(R). Then F is conservative iff D is conservative.

Proof
Suppose a contrario that F' is conservative and D is not. Thus for some X,Y € F|
DX)(Y)#D(X)(XNY). Let R=FE x Y. Then:

F(X, R) = D(X)aee(R) = {0 D(X)(aR) = 1} = {a: D(X)(a(E x Y)) = 1}
FX,EXXNR)=D(X)aeEXx(XNY))={a:DX)(a(Ex(XNY))) =1}
Since D(X)(a(ExY)) = D(X)(Y) and D(X)(a(Ex (XNY))) = D(X)(XNY),
this means that F(X, R) # F(X, E x X N R), which is impossible given that F
is conservative.

Suppose now that D is conservative. Then:

F(X, R) = D(X)aee(R) = {a: D(X)(aR) = 1}=

={a: D(X)(X NaR) =1}, since D is conservative

={a: D(X)(a(E x XNR)=1},since X =a(E x X) and a(RNS) =aRNaS)
=D(X)aee(Ex XN R) = F(X,E x XN R)



Thus the generalised conservativity of functions induced by type (1,1) quanti-
fiers, when they are used in the accusative extension of a type (1) quantifier, is
strictly related to the ”classical” conservativity of the inducing quantifier.

Given the example of non-conservative type (1,1) quantifier given above
it follows from Proposition 5 that the type (1,2 : 1) function F defined as
F(X,R) ={y: X = yR} is not conservative.

Let us recall now some properties of denotations of binary determiners, that
is quantifiers of type ((1,1)1). We have the following definition of conservativity
(Keenan and Moss 1985, Zuber 2005):

D8: A type ((1,1)1) quantifier is conservative iff for any X3, X5,Y1,Ys C E, if
X1 ﬂYl = X1 ﬂYQ and XQﬁYl = X201/2 then F(Xl,Xg)(Yl) = F(Xl,XQ)(Yé)

The following proposition shows the equivalent way to define conservativity
for type ((1,1)1) quantifiers:

Proposition 6: A type ((1,1)1) quantifier is conservative iff for any X1, X5, Y C E
one has F(X17X2)(Y) = F(Xl,XQ)(Y n (X1 @] XQ))

Definition D8 and proposition 6 can be used as basis for generalising conser-
vativity to type (12,2 : 1) functions:

D9: A type (12,2 : 1) function F is conservative iff for any X, Xo C F and any
binary relations Ry and Ry, if EX X1 NRi =EXx X NRyand Ex XoNR; =
E x X2 N R2 then F(Xl,XQ,Rl) = F(XhXQ,Rg).

The corresponding equivalent property is indicated in the following proposition:

Proposition 7: A type (12,2 : 1) function F is conservative iff for any X1, Xo C E
and binary relation R one has F(X1, Xo, R) = F(X1, X2, (E x (X1 UX5))NR).

Let us see some examples. As we know the type ({1, 1)1) quantifier MORE(X1-
THAN(X3) is denoted by the binary determiner more...than.... This determiner
may form a noun phrase with two common names. This noun phrase can occur
in object position as in (6):

(6) Leo knows more logicians than philosophers.

One can consider that in this case the type ((1,1)1) quantifier MORE(X})-
THAN(X>) gives rise to a type (12,2 : 1) function F defined in (7):

(7) F(X1, X2, R) =(MORE(X1)-THAN (X3))ace(R)={y : [yRN X1| > [yRN
X}



This function is conservative. This is not surprising since MORE(X;)-THAN (X32)
is conservative and we have:

Proposition 8: Let D be a type ({1,1)1) quantifier. Then the type (12,2 : 1)
function F(X1, Xo, R) = (D(X1, X2))acc(R) is conservative iff D is conservative.

Proof of Proposition 8 is similar to that of Proposition 5.

One can consider that Proposition 8 ”justifies” D9.

There are obviously type (12,2 : 1) functions which are not obtained by the
accusative extension of type ((1,1)1) quantifiers. Consider the example in (8)
which involves the type (12,2 : 1) function given in (9):

(8) Leo knows more languages than Adam (knows) theorems.
(9) Fo(X1,X2,R) ={y: [yRNX41| > aRN Xs|}

The function F, is conservative (and comparative).

4 Other constraints

Generalised conservativity as introduced in the previous section in D7 and D9
concerns type (1,2 : 1) and type (12,2 : 1) functions in general and not only
anaphoric or comparative functions. Moreover generalised consevativity is in-
dependent of anaphor conditions ACD1 and ACD2 for anaphoric functions.
It is also independent of argument invariance. What is interesting is the fact
that some anaphoric functions satisfy also other constraints, some of which are
stronger than generalised conservativity.

Observe that type (1,2 : 1) anaphoric functions discussed above, for instance
the function given in (3), are used to interpret various constructions in which
the reflexive pronoun him/her-self occurs. such functions satisfy the constraint
given in (8):

(8) F(A,R) C A.

Interestingly, the anaphoric condition ACD1, (generalised) conservativity and
the condition given in (8) entail a specific version of conservativity, anaphoric
conservativity (or a-conservativity) , specific to self-type anaphoric determiners.
It is defined in D10:

D10: A type (1,2 : 1) function F is a-conservative iff F(X, R) = F(X, X X XNR).

Thus we have the following proposition:

Proposition 9: A type (1,2 : 1) anaphoric and conservative function F' such that
F(X,R) C X is a-conservative.



10

Proof: Suppose a contrario that for some X C E, F(X,R) # F(X,X x XNR)
and thus that (by conservativity) F(X,E x X N R) # F(X,X x X N R). This
means that for some a € X, a € F(X,Ex XNR)and a ¢ F(X,X x XNR) (or
a¢ F(X,ExXNR)anda € F(X, X xXNR)). This is, however, impossible given
that F' is anaphoric and the fact that in this case a(E x X NR) = a(X x XN R).

It follows from the observations made above that self-type anaphoric func-
tions described above are a-conservative. There are also anaphoric functions
which are not a-conservative (Zuber 2010).

It is well-known that various natural language quantifiers can satisfy stronger
constraints than conservativity (Keenan 1993) . In particular they can be inter-
sective or co-intersective. These sub-classes of quantifiers are theoretically im-
portant for various reasons. For instance Keenan 1993 shows that conservative
type (1, 1) quantifiers are Booleanly generated by intersective and co-intersective
quantifiers. They are also of empirical interest since they lead to various linguis-
tically relevant generalisations (cf. Peters and Westerstahl 2006, Kuroda 2008).

The question thus arises whether one can generalise the notion of intersec-
tivity or co-intersectivity to some functions which are not quantifiers. In what
follows I show briefly how it can be done.

Recall that a type (1,1) quantifier D is intersective (resp. co-intersective) iff
D(Xl,Yl) = D(XQ, YQ) whenever Xl ﬂYl = XQ N Yé (resp. X1 N Yll = X2 QYQI)
This leads to the following definitions of intersective or co-intersective anaphoric
functions:

D11: A type (1,2 : 1) function is intersective (resp. co-intersective) iff F(X, Ry) =
F (X5, Ry) whenever Ex X1NR; = Ex X3NRy (resp. EXX1NR} = ExX2NRY).

The following proposition, similar to Proposition 5, can be considered as jus-
tifying the above definition:

Proposition 10: Let D be a type (1,1) quantifier and F' a type (1,2 : 1) function
defined as: F(X, R) = D(X)acc(R). Then F is intersective (resp. co-intersective)
iff D is intersective (resp. co-intersective).

It is easy to see that the function NO(X)-BUT-SELF(R) as defined in (3)
above is intersective. Similarly, the function F,, for a € E, defined in (9) and
which is necessary to interpret (10), is an intersective function:

(9) Fo(X,R)={y:|lyRNX| > |aRN X]|}
(10) Leo knows at least as many languages as Adam.

Concerning co-intersective functions it is easy to show that the function
EVERY (X)-BUT-SELF(R) defined in (11) is co-intersective:



11
(11) EVERY (X)-BUT-SELF(R) = {z : X N 2R’ = {z}}

It is also possible to generalise other sub-properties of conservativity. Con-
sider so-called cardinal quantifiers. A type (1,1) quantifier F' is cardinal iff
F(X1)(Y1) = F(X2)(Y2) whenever | X; NY;| = | X3 NY3|. For instance numerals
denote cardinal quantifiers.

In order to generalise the property of cardinality (of quantifiers) to type
(1,2 : 1) functions observe first the following equivalence:

(12) EXXlﬂRl :EXX2mR2 1HVy(X1 ﬂle :XzﬂyRQ)

This means that the condition in D11 can be replaced by the right hand side
expression in (12). This leads to the following definition:

D12: A type (1,2 : 1) function is cardinal iff F(X;, R;) = F (X3, Re) whenever
Vy(| X1 NyRi| = |XaNyRo)

For cardinal functions we have the following proposition, similar to proposi-
tion 5 and proposition 10:

Proposition 11: Let D be a type (1,1) quantifier and F a type (1,2 : 1) function
defined as: F(X, R) = D(X)acc(R). Then F is cardinal iff D is cardinal.

The function given in (9) is a cardinal function which is not obtained by the
accusative case extension. Similarly, the comparative function F, given in (13)
needed to interpret (14) is a cardinal function (not obtained by the accusative
case extension of a cardinal quantifier):

(13) Fo(X, R) ={y: [yRN X| > [aRN X[}
(14) Leo proved more theorems than Adam.

Obviously, cardinal functions are conservative. This means that the function
F(X,R) ={y: X = yR} is not cardinal.

5 Conclusion

After having recalled the various properties of anaphoric and comparative func-
tions which represent the biggest class of type (1,2 : 1) functions found in NLs, T
have proposed a generalisation of the notion of conservativity classically used in
the context of quantifiers. Moreover, some notions stronger than conservativity,
that is intersectivity and cardinality (of quantifiers) are also generalised to spe-
cific functions. Conservativity is a very natural property. In simple cases it has
empirical and theoretical justification (Peters and Westerstahl 2006). In the do-
main of determiners, that is expressions denoting, roughly speaking, quantifiers,



12

it is considered as a language universal. This means that one has enough em-
pirical data to consider that all determiners, defined syntactically, in all natural
languages denote only conservative quantifiers.

Even if in any serious (composional) semantics the (complex) expressions
discussed here will automatically get the generalised conservativity (if at least
the (simple) quantifiers that are used as building blocks are conservative), it
is very tempting to make a similar universalistic claim about the generalised
conservativity of specific functions from sets and relations to sets studied in this
article. In other words, one would like to suggest, roughly, that NLs expressions
denoting type (1,2 : 1) or type (12,2 : 1) functions always denote conservative
functions.

Any serious defence of such a claim should be preceded by additional research
along the following two lines. First, obviously, more empirical research should be
done. The notion of generalised conservativity proposed here applies to all type
(1,2 : 1) functions, not only anaphoric ones or comparative ones. It has been
supposed here that the functions which are not obtained by a case extension
and known to be needed in the semantics of NLs are either anaphoric (cf. Zu-
ber 2010) or comparative. This supposition should be empirically substantiated.
Second, a syntactic description of expressions denoting conservative functions
should be provided. The underlying idea in this article is that such functions are
denotations of anaphors or of comparatives and superlatives. Thus the precise
syntactic status of such constructions should be provided. This syntactic part of
the enterprise is considered as being outside the scope of this article.

References

1. Keenan, E. L. (1993) Natural Language, Sortal Reducibility and Generalised Quan-
tifiers, Journal of Symbolic Logic 58:1, pp. 314-325.

2. Keenan, E. L. (2007) On the denotations of anaphors. Research on Language and
Computation 5-1: 5-17

3. Keenan, E. L. and Faltz, L. M. (1985) Boolean Semantics for Natural Language,
D. Reidel Publishing Company, Dordrecht.

4. Keenan, E. L. and Moss, L. (1985) Generalized quantifiers and the expressive
power of natural language, in J. van Benthem and A. ter Meulen (eds.) Generalized
Quantifiers, Foris, Dordrecht, pp.73-124

5. Keenan, E. L. and Westerstahl, D. (1997) Generalized Quantifiers in Linguistics
and Logic, in van Benthem, J. and ter Meulen, A. (eds.) Handbook of logic and
language, Flsevier, Amsterdam, pp. 837-893

6. Peters, S. and Westerstahl, D. (2006) Quantifiers in Language and Logic, Clarendon
Press, Oxford

7. Kuroda, S-Y. (2008) Head Internal Relative Clauses, Quantifier Float, the Defi-
niteness Effect and the Mathematics of Determiners, San Diego Linguistics Papers
3, pp. 126-183

8. Westerstahl, D. (1994) Iterated Quantifiers, in Kanazawa, M. and Pinon, Ch. (eds.)
Dynamics, Polarity and Quantification, CSLI, Stanford University, pp. 173-209

9. Zuber, R. (2004) A class of non-conservative determiners in Polish, Linguisticae
Investigationes, XXVII : 1, pp. 147-165



13

10. Zuber, R. (2005) More Algebras for Determiners, in P. Blache and E. Stabler (eds.)
Logical Aspects of Computational Linguistics 5, LNAI, vol. 3492, Springer-Verlag,
pp. 363-378

11. Zuber, R. (2010) Semantics of Slavic anaphoric possessive determiners, Proceedings
of SALT 19



