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Abstract

Pricing carbon is a central concern in environmental economics, due to the importance

of emissions trading schemes worldwide to regulate pollution. This paper documents the

presence of small and large jumps in the stochastic process of the CO2 futures price. The large

jumps have a discrete origin, i.e. they can arise from various demand factors or institutional

decisions on the tradable permits market. Contrary to the previously established literature,

we show that the stochastic process of the carbon futures prices does not contain a continuous

component (Brownian motion). The results are derived by using high-frequency data in the

activity signature function framework (Todorov and Tauchen (2010, 2011)). The implication is

that the carbon futures price should be rather modelled as an appropriately sampled, centered

Lévy or Poisson process. The pure-jump behavior of the carbon price could be explained by

the lower volume of trades on this allowance market (compared to other highly liquid financial

markets).
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+33(0)149407386. Fax: +33(0)149407255. julien.chevallier04@univ-paris8.fr

‡Aix-Marseille University (Aix-Marseille School of Economics), CNRS & EHESS. Château La Farge, Route des Milles,
13290 Aix-en-Provence Les Milles, France. Email: benoit.sevi@univ-amu.fr



1 Introduction

The theory behind tradable permits markets certainly found its roots in the writing of environmen-

tal economists (Dales (1968), Montgomery (1972)). Dynamic properties were then progressively

established in the very same literature (Cronshaw and Kruse (1996), Ellerman (2005), Kling and

Rubin (1997), Leiby and Rubin (2001), Maeda (2004), Rubin (1996), Schennach (2000), Stevens

and Rose (2002)).

Recently, a parallel mathematical literature has developed to establish the properties of tradable

permits programs, in the wider context of the European Union Emissions Trading Scheme (EU

ETS) and the price formation of European Union Allowances (EUAs). These papers are typically

interested in recovering the stochastic properties of allowance prices, either to model the dynamic

price equilibrium (Carmona et al. (2009, 2010)), or to address the question of derivatives valuation

in emissions markets (Chesney and Taschini (2012), Çetin and Verschuere (2009), Borovkov et al.

(2011), Carmona and Hinz (2011), Hinz and Novikov (2010)).

With the notable exception of Seifert et al. (2008), there seems to be a gap in the environmental

economics literature to document these stochastic properties of carbon prices. Some papers have

contributed to the econometric modeling of carbon assets in the ARCH framework (Paolella and

Taschini (2008), Benz and Trück (2009)), but only Daskalakis et al. (2009) have derived some

stochastic properties.

Reasons for stochastic modeling of carbon prices are amongst other expected allowance demand

and fluctuating fuel prices, which potentially lead to a change in the merit order of power produc-

tion, fuel-switch costs, weather changes, economic growth, etc. (Seifert et al. (2008), Carmona

et al. (2009)). The Brownian motion assumption is intended to capture these uncertainties in

a simplified way. Other popular stochastic processes include mean-reversion (Vasicek, Ornstein-

Uhlenbeck) and/or jumps (Poisson, Lévy, Bernoulli).

For modeling emission allowances, it appears necessary to identify a stochastic process which

can map the empirical properties of the price as a proxy for marginal abatement costs. Uncovering

the stochastic properties of carbon futures prices is also a necessary step for building an equilibrium

pricing model for futures, choosing the appropriate option pricing model, and evaluating investment

decisions - for example through a real-option valuation approach (Daskalakis et al. (2009), Zhu et

al. (2009)).

The goals pursued by this paper are twofold: (i) review the main results on the stochastic

properties of carbon prices derived in the mathematical finance literature, and (ii) apply an original

empirical method to establish the stochastic properties of carbon futures prices by means of the

activity signature function (Todorov and Tauchen (2010, 2011)).

Our empirical work relies on the Activity Signature Function (ASF) – a nonparametric method-

ology developed in Todorov and Tauchen (2010) – to investigate the underlying stochastic process

for the price of carbon. In short, the methodology is able to deliver evidence about the presence of a

Brownian motion and/or the presence of small, medium or large jumps with finite or infinite activ-

ity using intraday data on transaction prices in the financial futures market of emissions allowances
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for carbon dioxide. A number of alternatives to the suggested procedure have been developed in

the statistical literature, which also rely on high-frequency data. In particular, Aı̈t-Sahalia and

Jacod (2010) study theoretically the issue of detecting the presence of a Brownian motion in the

stochastic process. Jing et al. (2012) and Kong (2012) have extended the test in Aı̈t-Sahalia and

Jacod (2010) with a similar null hypothesis that a continuous component is present.1 The advan-

tage of using the empirical approach in Todorov and Tauchen (2010) is simple, as their procedure

includes the above-mentioned contributions and, in addition, provides some evidence about the

nature of jumps, if any, in the stochastic process. Moreover, the authors propose a formal test to

assess the presence of a continuous component that has good finite-sample properties. As such,

the ASF methodology is more satisfactory than other existing approaches, thereby motivating our

choice in the present paper.

In recent years, many pure jump or jump-diffusion models have been suggested in the economic

and statistical literatures to deal with (possibly large) discontinuities in price processes; see the

discussion in Todorov and Tauchen (2010, 2011) and the reference textbook by Cont and Tankov

(2004). Adding a jump component to a continuous component (leading to a mixture model) or

considering a jump component only allows to fit the data better than with a continuous component

only.2 In addition, given the presence of jumps in the data, pure jump models are preferred by

users as they are easier to handle for practical applications such as derivatives pricing or real-life

problems such as valuation of insurance contracts (see Ballotta (2005) or Kassberg et al. (2008)) or

real-option valuation (Martzoukos and Trigeorgis, 2002).3 As a simple motivating example, let us

consider European energy utilities that have to plan future investments. The utilities are interested

in the modelling of carbon prices because different choices will lead to distinct conclusions. Indeed,

considering a simple Brownian motion or one of the existing pure jump models (or alternatively a

jump-diffusion) has a considerable impact on the valuation of projects even if these projects have

a several-year horizon.4 In this context, Martzoukos and Trigeorgis (2002) provide methodologies

in the case of real options to deal with the issue of rare events that may be represented by jumps

in the stochastic process. Their results show the very significant impact of jumps, in particular for

complex real options such as growth options or extension options. European utilities may also be

interested in optimal hedging in the carbon market, where the hedging decision depends on the

stochastic properties of the underlying security.

Our central contribution is to show that all stochastic processes for carbon futures prices that

have been suggested so far in the literature, and which explicitly include a continuous component

(Brownian motion), are not credible candidates in light of the empirical evidence analyzed in our

paper. Based on our data sample, we show that there is no continuous component in the carbon

1Aı̈t-Sahalia and Jacod (2010) also suggest an alternative test, where the null hypothesis is the absence of a
continuous component. The difference between the tests lies in their theoretical and finite-sample properties.

2The large empirical evidence about financial data is discussed in Cont and Tankov (2004), among others.
3Other examples of pure jump or jump-diffusion models are provided in Jing et al. (2012). The authors emphasize

that such models have applications far beyond the financial domain.
4The interested reader may look at the Section 2 in Jing et al. (2012), where distributions from several processes

of different nature are plotted. The distributional aspect of pure-jump or diffusion is strikingly different, thereby
motivating the investigation of the fine nature of the underlying process for financial as well as for non-financial
(real-world) applications.
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futures price process.

Our findings are based on nonparametric estimates which use intraday data to draw the finest

conclusion about the price process underlying the carbon price. Therefore, our approach contrasts

with previous parametric studies that only calibrate their models by using at best daily data and,

as such, disregard most of the available information.

Since 2005, the CO2 price constitutes one of the central pollution price references in environ-

mental economics (with for instance SO2), which is being traded every day and worldwide. Our

findings therefore have important implications for the modelling of such a price process.

The rest of the paper is organized as follows. Section 2 details the previous studies. Section

3 contains the empirical work. Section 4 concludes. An Appendix is included to detail the key

characteristics of stochastic processes.

2 Previous studies

Several studies have attempted to identify the stochastic processes of carbon prices (both spot

and futures). We briefly recall the main findings from this literature for continuous- and jump-

diffusion models. The interested reader may find an overview of the key characteristics of stochastic

processes (with/without jumps) in the Appendix.

2.1 Continuous-diffusion models

2.1.1 Spot price

Seifert et al. (2008) first derived the characteristic partial differential equation that fully describes

the solution of a theoretical emissions trading model for CO2 emissions certificates under the EU

ETS. The goal of their pioneering analysis could be viewed as determining the expected value of

an optimal policy given the total expected emissions, where the CO2 spot price is set equal to the

companies’ marginal abatement costs.

To address such standard problem in environmental economics, they resort to a controlled

stochastic process xt, which describes the expectation of the cumulative emissions over the whole

trading period at time t, taking into account both known emissions and abatement actions in

the past up to time t, as well as expected future emissions from t onwards. The volatility of

the uncontrolled stochastic part of the process is determined by a drift and the volatility of the

underlying emissions rate.

Insofar as the modeling of the emissions rate is concerned, the study by Seifert et al. (2008) is

compatible with at least three of the typical stochastic processes mentioned in the Appendix:

1. an arithmetic Brownian motion without drift,

2. a white noise process, and

3. an Ornstein-Uhlenbeck process.
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In a risk-neutral special case5, the analytically derived properties of the equilibrium CO2 spot

price yield to the following results:

• the spot price may not rise above the penalty (because CO2-regulated companies would no

longer increase abatement but would rather pay the cheaper penalty);

• the spot price never actually reaches zero (which reflects the option value of emissions cer-

tificates);

• companies are always willing to abate emissions in order to mitigate some of the expected

penalty costs (resulting in a positive spot price).

These results can be further generalized to the case of banking behavior on the emissions market6.

In terms of volatility dynamics, the authors are able to show that the volatility of the spot price:

• approaches zero when xt is far away from the initial endowment;

• increases with positive changes in the penalty cost, abatement costs, and emissions rate

volatility;

• should be bounded between zero and the penalty.

Seifert et al. (2008) suggest to calibrate this CO2 spot price process to market data, as an input

to pricing CO2 derivatives. A potential buyer or seller of an option contract on CO2 emission

allowances usually will employ some underlying spot price process in order to value the contract.

In case of misspecification of the volatility process, significant mispricing errors can occur. Besides,

the spot price process can be used as an additional component in a power price model with emissions

trading.

2.1.2 Futures price

Zhu et al. (2009) have proposed a single stochastic model to represent the underlying stochastic

properties of carbon futures prices. Mean-reversion (e.g. Vasicek process) is used to capture the

major stochastic features exhibited in carbon futures prices. Their model can be seen as repre-

senting the carbon process in the risk-neutral world. When futures prices and implied volatilities

of vanilla options are available (and liquid enough), the market data can be used to calibrate the

model7.

Carmona and Hinz (2011) have developed another approach to model carbon futures prices.

They consider that the futures price process follows the cumulative distributive function of the

standard normal distribution, and write their stochastic differential equation with a Brownian mo-

tion process. By calibrating this model to historical daily prices of a futures contract written on

CO2 futures with maturity in December 2012, and by applying it to the valuation of European

5Note that these results can be extended to the potential effect of risk-aversion on CO2 prices.
6Banking consists in saving certificates for future use, by emitting less or abating more than would be required

to cover the emissions of the current year.
7The authors typically use Monte-Carlo simulations or trinomial tree methods to study or estimate costs or risks

directly dependent on the futures carbon prices.

4



call options, the authors demonstrate that their model is capable of matching the observed histor-

ical or implied volatility of the underlying allowance futures price. As such, it possesses desirable

properties from a hedging perspective, as well as for efficient option valuation schemes.

With reference to the key properties of stochastic processes presented in the Appendix, it is

particularly interesting to notice that both categories of continuous diffusion models:

• Brownian motions,

• Mean-reversion processes (Vasicek and Ornstein-Uhlenbeck),

have been experimented to describe carbon spot and futures prices in previous literature. In

Section 3, we will discuss whether it is indeed appropriate to retain these characteristics, which

are common to model commodities price behavior8, also in the context of carbon prices.

Next, we review papers modeling explicitly the occurrence of jumps.

2.2 Jump-diffusion models

Identifying jumps in a stochastic process is important because if it has implications for risk man-

agement, option pricing, portfolio selection and has consequences for optimal hedging strategies.

Indeed, when computed using simulation techniques, the quantiles sensibly differ when draws are

from a continuous, or continuous plus jump distribution. Similarly, portfolio selection can be dra-

matically modified when some assets in the investment universe are potentially jumping (Liu et

al. (2003), Cvitanić et al. (2008)).

2.2.1 Spot price

The first theoretical pricing of emissions allowances spot prices with jumps is given by Dannenberg

and Ehrenfeld (2011) under a discretized form of the standard Vasicek process. After a stochastic

shock occurring between t and t + 1, the spot market price is ‘pulled back’ towards the mean level

by the mean reversion formula. The mean reversion rate stands for the strength with which the

price is drawn back to the mean. This modelling is therefore close in its spirit to Zhu et al. (2009),

as seen in Section 2.1.2.

Jumps can affect the allowance price due to the arrival of new information, which fundamen-

tally changes the expectation of the marginal abatement cost. The change of expectation can be

quite abrupt in this case. To account for jumps, the mean of the process is shifted by this new

information.

The jump variable J acts like a switch: either a shift of the mean-reversion level occurs from

t to t + 1 (J = 1) or not (J = 0). J follows a Bernoulli process, with p the probability of a shift

8The rationale for mean-reversion is that the price of a commodity tends to be pulled back to its production
cost plus a margin (Schwartz (1997), Schwartz and Smith (2000)). For commodities such as energy, the mean is
determined by the marginal cost of production and the extent of demand. In the short-run, there can be deviations
from this arithmetic mean, but in the long-run the price converges towards the marginal costs of production as a
result of competition among the producers. That is why the modeling of energy prices using the mean-reversion
process is quite common.
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causing information to emerge. If the mean-reversion level is shifted to a new state, this level is

bounded above and below. For the modeling of the new mean-reversion level, a PERT distribution

is chosen9. This modeling of the jump size is chosen to achieve an approximately unbiased price

modelling. Overall, Dannenberg and Ehrenfeld (2011) suggest to adopt a Mean-Reversion Jump

Diffusion (MRJD) process for allowance spot prices.

Çetin and Verschuere (2009) note that Seifert et al. (2008) avoid the natural complication of

an equilibrium analysis by assuming every market participant risk-neutral or the existence of a

representative agent with a logarithmic utility, thereby reducing the problem to a central planner

who aims to maximize the total profit of all agents. By contrast, they avoid the equilibrium

approach to spot prices, but use the no-arbitrage principle between the spot and forward prices of

carbon allowances10.

Without jumps, the CO2 spot price is a continuous process satisfying a stochastic differential

equation (SDE) with constant, drift and a standard Brownian motion.

Interestingly, the net position of the allowance market – i.e. the extent to which the market is

globally long or short of allowances11 – is governed by a Markov chain12 θ which takes values in

{−1, 1}: θt = 1 (θt = −1) corresponds to the market being long (short) at time t. To sum up, the

price process of carbon allowances depends on two sources of uncertainty:

• the Brownian motion, and

• the net position of the allowance market.

Jumps are introduced under the form of intermediate announcements regarding the market’s net

position. Suppose at some t0 < T the true position of the allowance market is revealed. Typically,

there will be a jump at time t0, and the jump size is modelled after the Lévy’s characterization of

Brownian motion.

By numerical implementation13, the authors illustrate how intermediate announcements of a

long position can cause a sharp decline in CO2 prices. This situation mimics the information

release in April 2006, which revealed that National Allocation Plans were so generous that there

was almost no possibility for the market to end up short at the end of the period (Ellerman and

Buchner (2008)). Hence, the model is satisfactory in capturing the main features observed for car-

bon spot prices during the first phase (2005-2007) of the EU ETS without banking and borrowing.

Borovkov et al. (2011) also propose a model of allowance spot pricing in the presence of jumps.

According to the current practice of the EU ETS, revised decision on the amount of allocated

9The PERT distribution is a version of the beta distribution. We leave to the interested reader the explanation
of the PERT distribution in the original article.

10By assuming an exogenous price process for the forward contract.
11Every year, the European Commission aggregates submitted emissions data and compares this to the quantity

of allowances surrendered. The processing of emissions data for the entire zone takes a couple of months, and
announcements on the market’s net position are not released until mid-April.

12This mathematical system is widely used in business cycle analysis to explain the transitions from one state of
the economy to another (e.g. boom or bust), between a finite or countable number of possible states.

13The calculation of the carbon spot price can be calculated in a Monte Carlo routine.

6



certificates may yield to a jump of allowance market prices. Similarly, a sudden change in demand

for production goods and/or price for fuel can result in the pollution levels changing dramatically,

which impacts the allowance price. The state variable process is dependent upon:

• a pre-specified abatement function,

• the volatility level of the carbon price,

• a Brownian motion adapted to a general jump-diffusion process, and

• an adapted random Poisson measure.

Their approach allows to model jumps with great flexibility, as the distribution of the jump

is state- and time-dependent. The authors establish the existence of a unique solution for the

stochastic differential equation. Then, by means of simulation, they conclude that in presence

of jumps the allowance spot price tends to converge slower than expected to its boundary value.

The main reason is that, following jumps, agents can revise their anticipations towards a sudden

increase or decrease in pollution emissions (which impacts directly the allowance price). Similar

modeling results can be found in Hinz and Novikov (2010).

2.2.2 Futures price

To capture the dynamics of CO2 prices, Daskalakis et al. (2009) investigate some descriptive

statistics of CO2 price series, which shed doubts on the validity of the standard Brownian motion

assumptions. That is why they also examine the ability of various popular jump-diffusion processes

in capturing the dynamics of CO2 prices. Their analysis starts first with the investigation of the

dynamics of the carbon spot price, which is linked to futures through an inter-Phase trading

equation14.

The drift, the diffusion and the jump coefficients are assumed to be general functions of time

and the CO2 spot price. The jump component is controlled by a Poisson process with constant

arrival parameter.

After conducting a ‘horse race’ between various configurations15, the authors find that the

carbon spot price is better approximated by a Geometric Brownian motion process augmented by

Jumps (GBMPJ).

Their results clearly indicate that the GBMPJ model performs better against competing models.

The addition of jumps improves significantly the performance of most models, since all jump-

diffusion processes outperform their diffusion counterparts. Overall, their findings indicate that

CO2 spot prices have a proportional, non-mean reverting structure with jumps, i.e., they are

subject to large movements that cannot be explained by standard diffusion processes16.

Besides, it is worth noting that the addition of mean-reversion appears to decrease the goodness-

of-fit, especially in the case of jump-diffusion models. This finding stands therefore in sharp contrast

14This setting can be seen as tailored to the constraints of the EU ETS during 2005-2007, when the inter-Phase
I and II intertemporal transfer of allowances had been banned.

15Namely, Geometric Brownian motion process, Mean-reverting square-root process, Mean-reverting logarithmic
process, Constant-elasticity of variance, Geometric Brownian motion process augmented by Jumps, and Mean-
reverting square-root process augmented by Jumps.

16Note, however, that the authors do not investiagte the presence of infinite activity jumps (as in our setting).
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to the approaches developed by Dannenberg and Ehrenfeld (2011), Lin and Lin (2007) and Zhu et

al. (2009)17.

Then, Daskalakis et al. (2009) derive a pricing formula for inter-Phase emission allowance

futures18. Assuming a non-zero mean-reverting convenience yield, the inter-Phase carbon futures

price is finally shown to be dependent upon the current level of convenience yield, the price of a

zero-coupon bond with maturity at time T , the speed of mean-reversion of the convenience yield,

the long-run mean yield, the convenience yield market price of risk, and the variance of the change

in the marginal convenience yield. According to the authors, such a two-factor model that assumes

a jump diffusion process for the underlying and a stochastic, mean-reverting convenience yield pro-

vides a satisfactory formula for the pricing of inter-Phase carbon futures.

Again, with reference to our presentation of stochastic processes in the Appendix, we have been

successful in identifying the following classes of jump diffusion models:

• Poisson process,

• Lévy process,

• Bernoulli process,

as potential candidates for the stochastic properties of carbon futures prices according to pre-

vious literature.

2.3 Summary

Table 1 provides a useful summary of the findings from previous studies:

Table 1: Stochastic properties of carbon prices in previous literature
Diffusion Continuous Jump
Process Brownian Vasicek Ornstein- Poisson Lévy Bernoulli

motion Uhlenbeck
Seifert et al. (2008) X X
Zhu et al. (2009) X X

Carmona and Hinz (2011) X
Çetin and Verschuere (2009) X X

Borovkov et al. (2011) X X
Hinz and Novikov (2010) X X
Carmona et al. (2009) X X
Daskalakis et al. (2009) X X

Lin and Lin (2007) X X X
Dannenberg and Ehrenfeld (2011) X X X

As discussed in Section 2.1.2 and Section 2.2.2, controversy remains on the usefulness of mod-

eling the carbon price process with mean-reversion. Besides, the inclusion of jumps (either under

17While the modeling results of Dannenberg and Ehrenfeld (2011) and Zhu et al. (2009) have been covered,
we briefly mention here the findings of Lin and Lin (2007). They model carbon dioxide spot prices as a result of
mean-reversion with varying trends, combined with state-dependent price jumps and volatility structure. Globally,
their results show that mean-reversion with state-dependent price jumps performs the best in forecasting the CO2

futures prices.
18I.e. with banking. Results with no banking are also provided.
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the form of Poisson- or Lévy-like processes) appears as a salient characteristic of most models

developed.

At this stage, it is striking to remark that all models so far (even those including jumps) have

used the Geometric Brownian motion assumption. This preliminary remark will be very important

later in the empirical section regarding the main conclusion of our paper.

Next, we develop our own empirical investigation of the stochastic properties of carbon futures

prices through the use of high-frequency data.

3 Empirical evidence

The rest of the paper is focused on determining the stochastic properties of carbon futures prices

by using the activity signature function methodology. We first expose briefly the methodology,

and then present the data and our empirical findings along with a sensitivity analysis of our results

to the modeling choice. Finally, a discussion on the implications of our work in environmental

economics is developed.

3.1 Methodology

Todorov and Tauchen (2010) define a new concept termed Activity Signature Function that is

constructed from discrete observations of a continuous-time process. The ASF estimates the ac-

tivity of the underlying stochastic process, and helps in selecting an appropriate process for the

time series of interest. The main idea behind the ASF is to use the generalization by Aı̈t-Sahalia

and Jacod (2009b) of the Blumenthal-Getoor (1961) index which allows to ‘classify the different

processes used in continuous-time modeling in the following order from low to high activity: finite

activity jumps, finite variation (but infinite activity) jumps, absolutely continuous processes, jumps

of infinite variation and continuous martingales.’ (Todorov and Tauchen (2010), p. 125). Another

property of interest is that the most active component will dictate the value of the index. Todorov

and Tauchen (2010) give the following example: if the activity index takes a value of 2, the process

contains a continuous martingale, while otherwise it is of a pure-jump type. We do not detail here

why a value of 2 corresponds to a continuous martingale, and refer instead the interested reader

to the original contributions of Aı̈t-Sahalia and Jacod (2009b) and papers cited therein.

The models suggested in the literature differ in whether the stochastic process contains contin-

uous martingale and/or jumps. Hence, the general form is as follows:

Yt =

∫ t

0

b1sds +

∫ t

0

σ1sdWs

Xt =

∫ t

0

b2sds +

∫ t

0

∫

R

σ2s−κ(χ)µ̃(ds, dx) +

∫ t

0

∫

R

σ2s−κ′(χ)µ(ds, dx)

Zt =Xt + Yt

(1)
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with
∫ t

0
b1sds and

∫ t

0
b2sds the drift terms in respectively Y and X , Wt a standard Brownian

motion, µ a jump measure, κ(χ) a continuous truncation function. Stochastic volatility is generated

through a time-varying jump size σ2t and the time-varying intensity of the jumps. In Eq.(1), the

first, second and third lines represent – respectively – a continuous model, a pure-jump model, and

a continuous plus jumps model (mixture model).

As mentioned in the Introduction, the idea to measure the activity of the process via the

activity signature function is to compute the realized power variation at two different frequencies.

Asymptotic results in Aı̈t-Sahalia and Jacod (2009b) show that the rate of convergence for realized

power variation, as we sample more frequently, only depends on the activity of the stochastic

process. As a consequence, ‘the ratio of the realized power variations computed over different

scales, and hence the activity signature function, identifies the activity of the observed process’.

(Todorov and Tauchen (2010), p. 126). Formally, let xt,i, i = 1, 2, . . . , [1/∆n], denote the ith

increment of the process over the period t (with financial data, the increment is simply a return

that is computed as the difference of the logarithms of prices). The increments are considered

at regularly spaced times with a sampling interval ∆n so we have [1/∆n] for the period t. The

realized power variation at power p is defined as:

V (p, ∆n) =

[1/∆n]
∑

i=1

|xt,i|p (2)

The activity signature function viewed as a function of p is then given by the ratio between

two realized power variations (at two different frequencies):

bt(p) =
ln(2)p

ln(2) + ln[V (p, 2∆n)] − ln[V (p, ∆n)]
(3)

In practice, the domain p ∈ (0, 4] exhausts the relevant information in the observed xi. The

reason behind choosing such an interval is that the activity index, which is calculated from power

variations, has a discriminant behavior for low powers p, in particular around 2. Examining large

powers (p > 4) does not help in selecting among the different stochastic processes, as at this power

level the large jumps mainly matter. This is also the case for p > 2 (so that the interval [2,4]

is sufficient to examine the presence of large jumps). For high-frequency data with T periods

(t = 1, 2, . . . , T ), it should be possible to compute the activity signature function for each of the T

intervals over a fine grid of p, yielding {{bt(p)}p∈(0,4]}T
t=1.

The activity index is always in the interval [0, 2], at least when large jumps are not considered.

For an absolutely continuous process, the index is always 1. If the estimated activity index is in

the interval (0, 1), it means that the observed process is from a pure-jump model with no drift

and with jumps having infinite variation. If the estimated index is in the interval (1, 2), then the

appropriate model for the observed process is again a pure-jump model, but with jumps exhibiting

infinite variation. If the estimated activity is 2, then a continuous martingale is indicated.

Todorov and Tauchen (2010) have constructed a test for the presence of a continuous component

against the alternative of a pure-jump process by using the activity signature function evaluated
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at a fixed power.19 We follow thoroughly their approach in our empirical application to carbon

futures.

3.2 Data

We use high-frequency data on the EUA Futures contract traded on the European Climate Ex-

change (ECX) for the period going from January 2, 2009 to June 15, 2010 (369 trading days).

Our data set includes transaction prices (as opposed to quotes), i.e. tick-by-tick data, with time

stamps for the 2009 futures contract until the end of November 2009, and then for the 2010 futures

contract.20 This type of data for the EUA ECX market has been studied in Chevallier and Sévi

(2010, 2011), where distributional properties with/without jumps are investigated. Each trading

day is 11-hour, and sampling every five-minute gives 132 log-returns (increments): these are in-

traday returns as opposed to daily returns that are more commonly used in financial applications.

These intraday returns are used to compute power variation as presented in Eq.(2).

Tick data from ECX are not ‘clean’ in the sense that a large number of errors (such as zero-

price trades or transactions with an abnormal price) is present. We use the filter rules suggested

in Barndorff-Nielsen et al. (2009, Section 3) to clean the dataset. More precisely:

1. We delete entries with a time stamp outside the trading session.

2. We delete entries with a transaction price equal to zero.

3. We delete entries with corrected trades or trades associated with an abnormal reported code.

4. We use the median price when several transactions have the same time stamp.

5. We delete entries that have prices which may be considered as anomalies (+ or - 2% compared

with the previous and the next price).

The cleaning procedure allows to evaluate the quality of the data, which is found to be quite

good with only 22,177 observations that have been removed (or 4.8% of the original dataset). We

end with a total of 437,801 tick-by-tick observations for 369 trading days which is equivalent to

an average 1,187 transactions per day in the ECX futures market.21 To illustrate this data, the

middle panel of Figure 1 reports the daily number of transactions for the January 2009-June 2010

period. The liquidity appears to be slightly increasing with only a slowdown in the end of 2009

19Details on the setting of the test and the calculation of standard errors are not detailed here to conserve space,
and can be found in Todorov and Tauchen (2010).

20In other words, our dataset includes all transactions on the front-year contract, i.e. all prices where two investors
have agreed to take simultaneously a long and a short position, respectively (Kolb and Overdahl (2006) is an excellent
reference for an introduction to futures markets).

21A similar analysis would not have been possible in the BlueNext spot market for CO2 allowances in light of its
insufficient liquidity, which yields to unreliable estimates (only 38,924 ticks are available during our sample period
in BlueNext).
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where trades are shared between the 2009 and the 2010 contract. With one transaction every 33.38

seconds, our estimates using intraday returns will indeed be reliable.22

The EUA ECX futures price series for the period under investigation is plotted in the top panel

of Figure 1. Large moves can be observed in the allowance futures price, in particular during the

January-March 2009 period which corresponds to a period of transmission of the financial crisis to

the carbon market (Chevallier (2011)).

The bottom panel of Figure 1 plots the daily jump part that is computed from the methodology

developed in Barndorff-Nielsen and Shephard (2006). The jump part is estimated as the non-

continuous part of the intradaily variations by using asymptotic theory to detect changes that

are too large to be the likely consequence of a Brownian motion (the methodology is presented

in Chevallier and Sévi (2010)). We observe a cluster of jumps with the highest intensity around

the period of large allowance price movements in January-March 2009. This graphical inspection

indicates that jumps should be found in our investigation by using the ASF methodology, but it

is not indicative about the nature of the jumps that are likely to be found (jump intensity and

activity) or the presence of a continuous component in the price process.

22This was 50 seconds between each transaction for the 2008 futures contract studied in Chevallier and Sévi (2010,
2011). However, the authors empirically show that this is sufficient to use intraday returns to compute, say, the
realized volatility, and that the estimates are not too noisy.
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Figure 1: EUA futures price series for the ECX market (top), number of transactions per day
(ticks) (middle) and daily jump part (bottom)
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3.3 Results

For each day, we first compute the power variation V (p, ∆n) as in Eq.(2) by using 5-minute sampling

frequency where the power p ∈ (0, 4] ranges over a grid with 0.01 increments. In our empirical

application, we enhance the genuine methodology in Todorov and Tauchen (2010) by relying on

the two-time scales principle as in Zhang et al. (2005).23 This simple improvement, however, is

of interest in our context where the carbon futures contract in the ECX market is less liquid that

standard assets such as foreign exchange securities or stocks, among others. We then calculate the

power variation V (p, 2∆n), i.e. with a 10-minute sampling interval. By using the computed power

variations over the two sampling frequencies, we compute the ASF bt(p) as in Eq.(3). We thus

end with 369 ASFs, which correspond to the number of trading days in our sample. To report

intelligible results, we use empirical quantiles of these 369 ASFs. We follow Todorov and Tauchen

(2010) who advocate to look only for measures of central tendency and dispersion of the signature

functions to draw some conclusions about the general behavior of the activity index. Precisely,

define the Quantile Activity Signature Function (QASF) as:

bα(p) = Quantileα

[

{bt(p)}N
t=1

]

, for each p ∈ (0, 4] (4)

with Quantileα the αth quantile of the sequence of bt(p). Very informative plots are obtained

from the lower b0.25(p) and upper b0.75(p) quartiles, and the median b0.50(p) over the range 0 ≤
p ≤ 4. As it will be seen below, using statistically robust measures such as quantiles limits the

impact of extreme observations on the reported ASFs.

Our main result is presented in Figure 2 which shows the QASF for α = 0.25, 0.50, 0.75 com-

puted from intraday returns. For robustness checks, the power variations are computed by using

intraday returns over either 1-day or 5-day intervals.24 The inspection of Figure 2 is indicative

of the stochastic characteristics of the price process for carbon futures contracts. The abscissa

represents the values of p. The ordinates represent the heights of b(p). To fix ideas, if one were in

the presence of a process containing a continuous (Brownian) component, the median (and possibly

the other quartiles) should stay flat around 2 over the entire domain p ∈ (0, 4]. Indeed, this is

not the case and we can unambiguously reject the null hypothesis of a Brownian motion in carbon

futures prices (at least for the period under consideration). In what follows, a formal test will

confirm this preliminary finding.

For abscissa near zero, the activity index is very low, indicating the possible absence of a drift,

whose activity index is 1.0. For larger values of p, the three QASFs increase linearly as they would

do in the case where jumps are dominating the activity index. In particular, for abscissa above

23We keep a sampling interval for intraday returns of 5-minute as in the bulk of the literature when using this
type of data, but we sample with starting points at each minute. Thus, we have 5 more estimates of the ratio at
each period, and an average of these ratios provides much more robust results.

24Despite the fact that the computation of power variations relies on infill asymptotics (i.e. the interval is sampled
over a finer and finer mesh as the sample size increases), less noisy estimates can obviously be obtained by using
more data. Todorov and Tauchen (2011) suggest a 22-day block which is a good ‘compromise in the tradeoff between

the presumption of constant activity over the subinterval and the associated reduction in sampling error inference

with more data points per interval ’. (p. 362). Due to data limitation, we experiment with 5-day blocks in our
empirical analysis.
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2, only jumps matter asymptotically. Hence, for p > 2, the behavior of the activity signature

function can reveal us whether there are jumps, large or small, in the process. The upper b0.75(p)

and lower b0.25(p) QASFs provide an indication of sampling dispersion. More precisely, the b0.75(p)

QASF provides evidence of large jumps that only occur occasionally as the dotted line is at a good

distance from the median QASF. This highlights the need for using quartiles that are robust to

extreme observations, but also indicates that large and infrequent jumps should be part of the

stochastic modeling of carbon prices. The lower b0.25(p) QASF shows that most of the days, the

hypothesis of the presence of a continuous martingale can be left aside (as it will be shown in the

formal test at the end of this Section). Overall, our results suggest that the process generating the

carbon futures price data lacks a continuous component, as it deviates strongly from the reference

horizontal line set at 2. Based on our dataset, we can conclude that the process is a pure-jump

process of infinite activity. The large dispersion between all the ASFs, highlighted by the large

distance between the upper b0.75(p) and lower b0.25(p) QASFs, reflects the high intensity of the

jumps during some days. This lead to consider as a potential candidate a mixture of pure-jump

model with a second jump model having infrequent but large jumps.

Similar comments arise from the bottom panel of Figure 2, i.e. with 5-day blocks, which can be

seen as a sensitivity test to the choice of the length of the block. The median QASF here is more

‘erratic’, as the large jumps have an impact on a larger proportion of blocks. Nevertheless, the

alteration of the ASFs computed over 5-day blocks is limited, and our qualitative results remain

valid.

As an additional analysis to the empirical results given above, we present graphically the point

estimates logbs
(p) for p = 0.90. The value for p is chosen according to the theoretical developments

in Todorov and Tauchen (2010), who show that a value near one is an optimal choice. The idea

is to compare the day-by-day values of logbs
(p) with the null value of log(2) = 0.69. Figure 3

plots the computed values for logbs
(p) with p = 0.90 for our full sample. As it can be observed

from the plot, no point estimate lies above the 0.69 threshold thereby confirming the absence of a

continuous martingale.25

Then, we report in Table 2 some descriptive statistics about the estimated activity index

for different values of p. Column (2) in the Table reports the median of the point estimates of

the activity index, along with the median absolute deviation about the median (MAD=med|β̂-

med(β̂)|) in column (3). The statistics indicate that the activity index for carbon futures is in the

range of 1.82 for values of p below 0.50. Again, this result implies the absence of a continuous

component in the stochastic process as the continuous component should have an impact at all

values of p. Our results are not directly comparable with those of Todorov and Tauchen (2011)

who use higher values of p that are more discriminant in their framework.

Finally, as stated in Section 3.1, an activity level of 2 has a special meaning since it separates

pure-jump models from models containing continuous martingales. In the last column of Table 2,

25Note that some point estimates logbs
(p) may lie above the 0.69 line, as long as they are not too significantly

above the line. A statistical threshold has normally to be computed from the Theorem 2 in Todorov and Tauchen
(2010). As all our point estimates are below 0.69, we do not need to investigate further confidence bounds issues.
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Figure 2: QASF for the EUA ECX Futures Price Series for 1-day blocks (top), and 5-day blocks
(bottom)
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16



Figure 3: Daily estimates of logbs(p)
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we conduct a test, following the Theorem 2 in Todorov and Tauchen (2010), whether the estimated

activity index is statistically less than 2 (the test is one-sided). The test is qualitatively equivalent

to the tests of Aı̈t-Sahalia and Jacod (2010), Jing et al. (2012) or Kong (2012). Recall that these

tests allow to check formally the presence (or alternatively the absence) of a Brownian motion in

the underlying process. The null hypothesis is that a continuous martingale component is present

in the process. The alternative is that the process is a pure-jump model (i.e. that it lacks a

continuous component). The test is conducted for different values of p. The rejection rates are

between 0.45 and 0.98 at the 5% level. Hence, we find strong statistical evidence against a model

with a continuous component.

Table 2: Test for presence of Brownian component in EUA ECX Futures Price Series

p med(β̂) MAD Rejections (5%)
0.10 0.5099 0.1702 98.04
0.20 0.9258 0.2907 89.10
0.30 1.2588 0.3884 78.60
0.40 1.5611 0.4668 62.80
0.50 1.8234 0.5611 45.30

Note: MAD stands for the median absolute deviation about the median.

Overall, our empirical results indicate that all the stochastic processes that have been proposed

in the literature so far (see Section 2) are not plausible in light of the analysis of the high-frequency

data. The evidence in Figures 2 and 3 strongly invalidates models including a continuous mar-

tingale. Similar to the analysis of the VIX in Todorov and Tauchen (2011) or Internet data in

Todorov and Tauchen (2010), our results show that the carbon futures price data for the period

under investigation cannot be generated from a stochastic process including a Brownian motion

(as the activity index is not flat at all or near to be flat around a value of 2).

3.4 Sensitivity analysis

The sensitivity of the empirical results with respect to our modeling choices is now examined. The

ASF methodology can be modified in several dimensions. In the previous section, we have already

robustified the initial approach by using the two-time scales as in Zhang et al. (2005). In addition,

we have checked for the sensitivity of our results to the number of consecutive days (block) used

to compute b(p). We cannot cut our sample in two or more different sub-samples as we are limited

by the shortness of our original time sample. Another possible sensitivity test of our results can

arise from the chosen frequency to create a discrete time grid for sampling the transaction data.

In Figure 4, we report the QASF for 2.5 and 10 minutes as alternatives to the 5-min choice used

in the previous sub-Section.26 We provide graphical results for both 1-day and 5-day blocks. We

observe that using alternative sampling frequencies does not alter our main result. Qualitatively,

26The sampling frequency is known to play a major role when using tick-by-tick data because of the microstructure
noise in observed prices. As for the carbon price, see the discussion in Chevallier and Sévi (2010, 2011). Jing et al.

(2011) develop theoretical results about the estimation of the activity index in a noisy context.
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Figure 4: QASF for the EUA ECX Futures Price Series for 1-day blocks (top), and 5-day blocks
(bottom)
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Note: QASF is computed using 2.5 or 10-minute sampling intervals with Lower and upper-quartiles are

represented in dashed lines, along with the reference horizontal line fixed at 2.

the four plotted QASF still indicate the absence of a Brownian motion, as well as the presence

of a pure-jump process with less frequent (possibly large) additional jumps. In short, we are able

to confirm our findings that the carbon futures price would be adequately modelled by using a

mixture of a pure-jump model with a Poisson- or Lévy-like jump process.
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3.5 Discussion: On the origins and economic consequences of jumps on

tradable permits markets

To sum up, the jumps identified in our empirical analysis can be of two categories: (i) small jumps

of infinite activity, and (ii) large (but infrequent) jumps.

Concerning the former category, we suggest an interpretation of our empirical findings, whereby

a pure-jump process may be an adequate tool to model carbon prices. Our explanation relies on

the theoretical argument by Pakkanen (2010) that only a large number of agents do lead to a

diffusion (i.e. Brownian motion) on a financial market. When only a limited number of investors

act on the market place, prices only move when orders are executed thereby supporting the view

of a pure-jump as an adequate process in this case. As such, it appears that the lack of liquidity

may explain the absence of a continuous component in the carbon price so far.

Concerning the latter category, the mathematical papers by previous literature (especially

Dannenberg and Ehrenfeld (2011), Çetin and Verschuere (2009), Borovkov et al. (2011)) have

derived smart modeling strategies to model the importance of jumps in the price process of CO2

(see the Review section 2).

These jumps arise due to political uncertainties on the carbon markets, whereby the European

Commission intervenes on the emissions trading system to change the allocation rules (and the

amount of allowances distributed each year). They could also correspond to changes in relative

fuel prices (oil, gas, coal), which have been shown to impact periodically the variation of carbon

prices.

Therefore, we believe that our paper contains a contribution relative to the environmental

economics literature, which is to stress the importance of modeling jumps in the stochastic process

of carbon futures prices.

This feature has been largely ignored in previous environmental economics literature, and has

been made obvious thanks to our empirical diagnostic tool based on the activity signature function

of the CO2 price process.

Hence, we attempt to build a bridge between these two separate literatures, and to link our

empirical finding to the understanding of how international emissions trading schemes work in

practice. Ignoring these numerous interventions from the environmental regulator in the governance

of the ETS would indeed be detrimental to the quality of the price forecasts produced by market

analysts and economists on this environmental market.

The contribution of our paper is also to shed more light on the likely origin for these jumps,

i.e. due to political decisions or to the relative fluctuation of energy prices.

Another important aspect is that, following jumps, agents can revise their expectations about

emissions or price levels (depending on the stringency of the cap, the level of economic activity or

the current levels of fuel prices). Our study therefore allows to point out that jumps play a central

role in the formation of anticipations of rational economic agents on the European emissions trading

system, and their reaction to any kind of news relevant to the formation of the CO2 price process.

This characteristic of market efficiency is a desirable property for any newly created environmental
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market (exchangeable allowances of CO2 being a ‘currency’ in this setting).

4 Conclusion

Following the review of previous literature on the stochastic properties of carbon prices, our em-

pirical application based on the activity signature function reveals that a pure-jump model is

appropriate for the modeling of carbon futures. We find that the process is very vibrant. Hence, a

good stochastic model could be one of the pure-jump type, whose driving jumps come from a very

active Lévy process with possibly large jumps coming from a Poisson process.

These findings lead to several economically important conclusions. First, large jumps (coming

from institutional news releases, energy or macroeconomic markets shocks) need to be explicitly

taken into account when modelling spot and futures carbon price series. Second, the pure-jump

dynamics of the process would imply that hedging is quite complicated on the carbon market, since

volatility risk cannot be fully spanned with derivatives instruments.

Documenting the absence of a Brownian motion in the underlying stochastic process for the

carbon price does not only have an interest on its own, but also for practical applications such

as derivatives pricing, investment analysis or hedging behavior. As emphasized in Aı̈t-Sahalia

and Jacod (2009a,b), the presence of jumps and/or the absence of a continuous martingale also

has important implications for portfolio choice or risk management activities. As many economic

agents have significant positions in the carbon financial market, they face an important price risk

that does depend on the stochastic properties of the carbon price process. We show that, in the

context of a Value-at-Risk (VaR) analysis which is common practice for large firms nowadays, the

risk is not well estimated by using the processes suggested in the literature so far, and efforts should

be made to accommodate risk exposure according to more plausible processes. The absence of a

continuous martingale suggests that models such as the Barndorff-Nielsen and Shephard (2001)

or the CGMY (2002) pure-jump models are likely candidates.27 Other less well-known potential

candidates are listed in the contribution by Jing et al. (2012).

We can also explain the gist of our results thanks to Pakkanen (2010), who states that a

high number of agents on a given market creates the condition for modelling price processes with

a Brownian motion. Conversely, when the liquidity is lower, the smaller number of interactions

between agents implies that the price process can be better approximated with a pure-jump model.

Based on our analysis of the intraday data, the CO2 markets can certainly be considered as less

liquid than other financial markets (compared to foreign exchange markets as a benchmark for

instance). There are therefore less interactions, and the corresponding price process does not

contain a continuous component. In future work, it could be interesting to extend our results to

the 2010-2012 period. Most likely, we could presume that the same kind of conclusion would still

hold against the background of the financial crisis (and associated low volumes of trades).

27See also a discussion on the implications of these pure-jump models in the Appendix.
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5 Appendix: Key properties of stochastic processes

In what follows, we provide a brief overview of the key characteristics of stochastic processes, in

continuous and jump diffusion settings. By doing so, we build on the notations by Hanson (2007),

Knill (2009) and Kroese et al. (2011).

The interested reader may refer to advanced texts in Kannan (1979), Rolski et al. (1999),

Schoutens (2003), Cont and Tankov (2004), Ghahramani (2005), Stirzaker (2005), Speyer and

Chung (2008), Feldman et al. (2010), or Barndorff-Nielsen and Shephard (2012).

5.1 Continuous diffusion

Let Ω be a probability space, and let T ⊂ R be time. A collection of random variables Xt, t ∈ T

with values in R is called a stochastic process.

If Xt takes values in S = R
d, it is called a vector-valued stochastic process (but often abbreviates

by the name stochastic process too).

If the sample function Xt(ω) is a continuous function of t for almost all ω ∈ Ω, then Xt is called

a continuous stochastic process.

Let us start with the Brownian motion28 as a fundamental example of an important stochastic

process which does not feature mean reversion.

5.1.1 Brownian motion

An R
d-valued continuous Gaussian process Xt with mean vector mt = E[Xt] and covariance

matrix V (s, t) = Cov(Xs, Xt) = E[(Xs − ms) · (Xt − mt)] is called Brownian motion if for any

0 ≤ t0 < t1 < · · · < tn, the random vectors Xt0 , Xti+1
− Xti

are independent and the covariance

matrix V satisfies V (s, t) = V (r, r), where r = min(s, t) and s → V (s, s). It is called the standard

Brownian motion if mt = 0 for all t and V (s, t) = min{s, t}.
A numerical example of a Brownian motion computed for 100 observations, r = 0.02 with a

drift mt =
√

0.1 is pictured in Figure 5.

Define the process Bt = X([0, t]). For any sequence t1, t2, · · · ∈ T , this process has independent

increments Bt − Bt−1 and is a Gaussian process. For any x ∈ R, the process:

Xt = x + Bt (5)

is called Brownian motion started at x.

Furthermore, if Bt is a Brownian motion, then X = f(B, t) can be written in differential form

as:

dXt = αXtdt + βdMt, X0 = 1 (6)

28The Wiener process is a mathematical idealization of Brownian motion, but often the term Brownian motion is
used instead of the term Wiener process.
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Figure 5: Numerical illustration of Brownian motion

with {α, β} constants, and M a continuous martingale of finite variation. This is an example

of a stochastic differential equation (SDE). Unlike ordinary differential equations, one has to use

Ito’s formula to integrate when looking for solutions.

Next, we proceed with a generalization of stochastic processes featuring the mean reversion

property.

5.1.2 Ornstein-Uhlenbeck process

The mean reversion process can be considered as a modification of a random walk, where the

alterations to the process do not occur entirely independently.

The Ornstein-Uhlenbeck process has the property that it is mean-reverting, i.e. it always tries

to come back to its asymptotic mean value. For this reason, it is also called the oscillatory process.

The Brownian motion Bt and the Ornstein-Uhlenbeck process Ot are for t ≥ 0 related by:

Ot =
1√
2
e−tBe2t (7)

The corresponding SDE is obtained by writing:

dXt = −τXtdt + βdBt (8)

with the parameter τ > 0 governing the rate of mean-reversion, and β a constant.

An example of the path for the Ornstein-Uhlenbeck process with mean reversion rate τ = 0.1

and diffusion constant β = 0.03 is given in Figure 6. The numerical method used here was published

by Gillespie (1996).
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5.1.3 Vasicek process

The Vasicek process is very close to the Ornstein-Uhlenbeck process presented above. This process

is a diffusion process, which leads to the following closed form formula:

dXt = κ(τ − Xt)dt + βdBt (9)

where the parameters κ, τ and β are constants, and the random motion is generated by the

Brownian motion Bt. An important property of the Vasicek process is that the mean is reverting

to τ , and the tendency to revert is controlled by κ.

To give an idea of what the Vasicek process looks like, we have generated a sample path in

Figure 7 by plugging the values τ = 0.10, κ = 0.3 and β = 0.03.
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Figure 6: Numerical illustration of Ornstein-Uhlenbeck process
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Figure 7: Numerical illustration of Vasicek process
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5.2 Jump diffusion

In the pure diffusion stochastic model, there is one obvious missing feature that large market

fluctuations or crashes / rallies – which characterize the market’s bullish or bearish trends – are

not represented. These discontinuities highlight the statistical importance of including jumps in

financial market models29. That is why we present below jump diffusion process models.

5.2.1 Poisson process

A Poisson process Pt with rate λ verifies the following property:

Pt = Number of occurrences in [0, t) ∼ P0(λt) (10)

The differential of a simple Poisson counting process satisfies:

dPt = λdt (11)

with λ > 0 and initial conditions P (0+) = 0 with probability one. The simplest approach to

view the Poisson processes is to consider these differential stochastic processes as increments, i.e.:

dPt = P (t + dt) − P (t) (12)

for infinitesimal increments in time dt. We verify that the Poisson process Pt is quite differ-

ent from continuous diffusion processes, primarily because of its discontinuity property, and the

property that multiple jumps are highly unlikely during small increments of time dt.

The sample path of a Poisson process with λ = 2 is displayed in Figure 8.

5.2.2 Bernoulli process

The Bernoulli process is the discrete time counterpart of the Poisson process. It consists of finite

or infinite sequence of independent random variables Xt, t = 1, . . . , T such that:

Xt =

{

1 with prob = p

−1 with prob = 1 − p

In practice, this model corresponds to a regular sampling period S for which observations are

missing at random, with failure probability 1 − p. The regular sampling period corresponds to

p = 1. Random variables associated with the Bernoulli process include:

• The number of successes in the first n trials: this has a binomial distribution.

29There are other qualitative features that characterize real market log-return distributions that cannot be repro-
duced by the pure-diffusion model but can be modeled, in part, by adding jumps to the diffusion process. First, real
markets have negatively skewed log-return distributions: they are found to be pessimistic due to more negative log-
returns (including crashes) than positive log-returns. Second, real markets distributions are found to be leptokurtic:
the distribution is more peaked at the maximum, and consequently has fatter tails than the normal distribution.
The third characteristic is the volatility smile, which refers to the curvature of the implied volatility (e.g. volatility
implied by the log-normal Black-Scholes formula) versus the strike price.
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Figure 8: Numerical illustration of Poisson process

• The number of trials needed to get r successes: this has a negative binomial distribution.

• The number of trials needed to get one success: this has a geometric distribution, which is a

special case of the negative binomial distribution.
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Figure 9: Numerical illustration of Bernoulli process

As an example, the numerical simulation of a Bernoulli process with p = 0.5 from a discrete

uniform Xt ∼ Ud(−1, 1) is given in Figure 9.
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5.2.3 Lévy process

Lévy processes can be thought of as a combination of a diffusion process and a jump process. Both

Brownian motion (i.e. a pure diffusion process) and Poisson processes (i.e. pure jump processes)

are Lévy processes. As such, Lévy processes represent a tractable extension of Brownian motion to

infinitely divisible distributions. In addition, Lévy processes allow the modeling of discontinuous

sample paths, whose properties match those of empirical phenomena such as financial time series.

There have been many efforts to apply Lévy processes, such as the CGMY model (Carr et

al. (2003)), the variance gamma (VG) model (Carr and Madan (1999)), and the Normal Inverse

Gaussian (NIG) model (Rydberg (1997)).

A d-dimensional Lévy process is a stochastic process {Xt, t ≥ 0} taking values in R
d with the

following properties:

1. Independent increments : For any t1 < t2 ≤ t3 < t4, the random variables Xt4 − Xt3 and

Xt2 − Xt1 are independent.

2. Stationarity: The law of Xt+h − Xt does not depend on t.

3. Stochastic continuity: when the process coefficients are not constant, then the process will in

general not be stationary, as the preceding condition requires. For many real problems, such

as in financial markets, the time-dependence of process coefficients is important (Hanson and

Westman (2002)).

4. Zero initial value: X0 = 0 almost surely.

A Lévy process can be seen as a continuous time generalization of a random walk process. Indeed,

the process observed at time 0 = t0 < t1 < t2 < . . . forms a random walk:

Xtn
=

n
∑

i=1

(Xti
− Xti−1

) (13)

whose increments {Xti
−Xti−1

} are independent. Let N([0, t]×A) denote the number of jumps

of X during the interval [0, t] whose size lies in the ensemble A, excluding 0. Let ∆Xt denote the

size of the jump of the process at time t. The measure ν defined by:

ν(A) = N([0, 1] × A), {t ∈ [0, 1] : ∆Xt 6= 0, ∆Xt ∈ A} (14)

is called the Lévy measure of Xt. The random measure N(dt, dx) is called the jump mea-

sure. We observe that Lévy processes are essentially jump-diffusion processes, but are extended to

processes with infinite jump-rates.

A numerical simulation of a Lévy process with ν = 0.01 can be observed in Figure 10.
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