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Abstract

In this article, the effect of a change in the distribution of age differences

between sexual partners on the dynamics of the HIV epidemic is studied.

In a gender and age structured compartmental model, it is shown that if

the variance of the distribution is small enough, an increase in this variance

strongly increases the basic reproduction number. Moreover, if the variance

is large enough, the mean age difference barely affects the basic reproduction

number. We therefore conclude that the local stability of the disease-free

equilibrium relies more on the variance than on the mean.
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1 Introduction

Thirty years after the discovery of the first confirmed clinical cases, the HIV

epidemic is not yet under control. Worldwide, UNAIDS (2010) estimates that

2.6 million adults and children were newly infected with HIV in 2009. These

cases affect Africa disproportionately, and especially Sub-Saharan Africa,

which accounts for 69% of the new infections (1.8 million in 2009, according

to UNAIDS, 2010). This article is concerned with a demographic explanation

of the differences in the evolution of the epidemic that have been observed

across regions. More precisely, we study the effect of the distribution of age

differences between sexual partners on the long-run dynamics of the epidemic

and on its endemic nature.

The age mixing, or age differences, among marital partners is particularly

widespread in Africa compared to other parts of the world. Spijker (2011)

illustrates this pattern by providing statistics on the distribution of married

couples by age differences using the most recent census data from the In-

tegrated Public Use Microdata Series. In Africa, the proportion of couples

having more than 8 years of age difference ranges from 22.5% (South Africa,

1996) to 80.3% (Guinea, 1996) while the same proportion ranges from 6%

(China, 1990) to 26.2% (Malaysia, 1980) in Asia, and from 17.5% (Chile,

1992) to 28% (Panama, 1990) in Latin America. A large amount of lit-

erature documents the particular frequency of age mixing in Sub-Saharan

Africa. Historically, age mixing has been commonplace in Africa (Casterline

et al., 1986) as a result of practices such as polygamy, the remarrying of

widows and the premature marrying of young girls. Studies have shown that

age differences persist nowadays throughout Africa1 both within marital and

non marital partnerships, and both within casual and regular relationships

(Auvert et al., 2001, Gregson et al., 2002). It has been found that about 40%

1See Luke (2003) for a literature review on age mixing and possible reasons why it is

widespread in the African context.
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to 50% of young girls are involved in partnerships with a partner who is five

to nine years older (Gregson et al., 2002, Kelly et al., 2003, Konde-Lule et

al., 1997). Greater age differences are also common as between 16% to 27%

of the young girls partnerships involving an age difference of ten years or

more (Konde-Lule et al., 1997; Gregson et al., 2002; Kelly et al., 2003). This

age mixing persists for older women as the majority of the married women of

age 15 to 44 years old, studied in Boerma et al. (2003), have a husband who

is at least six years older. Studying male non marital unions, Luke (2005)

finds that 70% of the sampled men are five or more years older than at least

one of their recent partners and 20% are ten years or more older.

Grounded on the empirical evidence that the HIV prevalence rate is much

greater among young women than among young men (e.g. Buvé et al., 2001,

Glynn et al., 2001, Gouws et al., 2008), a growing body of research examines

age differences between partners as a potential risk factor of HIV infection.

Some articles document the association between age difference between sex-

ual partners and the increased risk of HIV infection (Gregson et al., 2002,

Kelly et al., 2003). The increase in risk is significant as documented by Kelly

et al. (2003), who finds that the 15-29 year old women engaged in partner-

ship with a partner 5 to 9 years older or 10 years or more have a respective

risk of infection of 1.1 and 1.28 times higher than that of their counterparts

having partners 0 to 4 years older. Related papers have shown that part-

nerships involving large age differences are less likely to adopt safe practices

than their counterparts, as women in long-term partnerships involving age

difference of more than 5 years (Blanc and Wolff, 2001) and men engaged in

non marital partnerships involving age difference of 10 years or more (Luke,

2005) are less likely to use a condom than their counterparts.

The importance of age differences between partners on the diffusion and

persistence of the epidemic was first brought up by Anderson et al. (1992).

Through numerical simulations, the authors showed that the epidemic spreads

more rapidly when there is infectious contact between generations. An in-

2
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tuition has been proposed by Brouard (1994) who stressed the importance

of the variance of the distribution. The latter could be one of the explana-

tory causes of a markedly higher prevalence of HIV in Africa. Whatever the

mean, if the variance is very low, one can imagine that there would only be

minimal transmission of the virus from the first cohorts of a given gender to

be affected by the epidemic to the younger cohorts of the same sex. Thus,

the dynamics of HIV infection would be epidemic in nature. On the other

hand, if there is a significant variance, transmission of the disease to younger

cohorts is potentially significant and hence the dynamics are likely to be

endemic.

The objective of our article is to propose a formal framework to evaluate

the impact of the distribution of age differences between partners on the

dynamics of the epidemics. We will proceed in three steps. First, we seek

to show that the distribution of age differences between sexual partners has

not been modified by the emergence of HIV. This analysis is performed on

a sample of African countries given data constraint. However one could

argue that if such a scenario has prevailed, that is, if people have changed

their matching preferences as a protective behavior against HIV, it is much

more likely to have occurred in the region that exhibits the highest levels of

prevalence in the world. Using the distribution of age differences for married

couples, we show that its mean and variance have not undergone significant

variation over time.

Secondly, this preliminary evidence is used to establish a theoretical model

in which the distribution of age differences between partners is exogenous

to the path of the epidemic. Our model, which is both age- and gender-

structured, is an extension of Anderson et al.’s (1992) framework, which al-

lows us to take into account the unique nature of epidemics involving sexually

transmitted diseases. We study the stability of the disease-free equilibrium.

One important element of our model is the contact function that incorpo-

rates the distribution of age differences between partners. Unlike most models

3
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in the literature, our function is necessarily non-separable, which makes it

impossible to calculate the basic reproduction number, 0, explicitly. Nev-

ertheless, by using the operators theory, we are able to establish the local

properties as well as some global properties of 0.

Finally, we assume that the distribution of age differences between part-

ners is characterized by a given distribution and we analyze the effect of

both the mean and the variance on 0. Numerical computations show that

variance plays a crucial role as 0 strongly increases with the variance if it

is sufficiently low. Moreover, if the variance is large enough, the mean age

difference barely affects 0. We conclude that, whatever the mean age dif-

ference, the disease-free equilibrium will thus have a greater chance of being

stable if the variance is small.

This paper is organized as follows. Section 2 presents our empirical ev-

idence. Section 3 describes the dynamic model and section 4 presents our

theoretical results. Our numerical results are developed and commented in

section 5. Section 6 concludes.

2 Empirical evidence

This section examines the distribution of age-difference between spouses,

especially the evolution of its mean and variance over time. In industrialized

countries like Sweden, the average age-difference has been found to be stable

among the cohorts born between 1883 and 1942, despite a decrease in the age

at marriage (Bergstrom and Lam, 1994). In Sub-Saharan Africa where the

epidemic has reached tremendously high levels and where the age-difference

has been pointed out as a risk-factor of HIV infection, one might wonder

whether individuals have adjusted their behavior toward a reduction in the

age difference since the onset of the epidemic, as a self-protective device.

Data from the Demographic and Health Surveys2 conducted in Sub-Saharan

2These surveys are publicly available at http://www.measuredhs.com

4
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Africa suggest that this scenario is very unlikely.

In order to find out whether the AIDS epidemic has changed matching

behaviors and shifted individuals’ preferences toward fewer age mixing, we

use the distribution of age differences for married couples. As time series

of spousal age differences are not available, we obtained data from the self-

reported age differences in the most recent Demographic and Health Surveys

conducted in Sub-Saharan Africa. In these surveys, women respondents who

are currently married are asked to report their current age, the current age of

their partner and the year in which they got married. Given the spousal age

difference and the marriage year, we are able to establish the empirical dis-

tribution of spousal age differences for each marriage year. The year in which

the marriage was celebrated is an indicator of the time period in which the

individual made her decision about partner selection. Consequently, it pro-

vides more accurate information about individual behaviors than any cross

sectional analysis.

We restrict the sample to women who married when aged between 15 and

25 years old for two reasons. Firstly, it is the most common age interval in

which women marry. In Lesotho, for instance, this sub-sample accounts for

90% of the total sample. Secondly, and more importantly, this sample re-

striction allows us to rule out heterogeneities in the marital pattern from our

analysis. Indeed, women who were married after reaching age 25 might have

been previously married to someone else, or might have different preferences

in terms of partner selection compared to women who get married at younger

age.

To obtain a first indicator as to whether the spread of AIDS in Africa has

induced changes in the choice of partner, we draw the distribution of spousal

age differences for a low-prevalence and a high-prevalence country and for two

distinct samples: women who married before 1990 and those who married

after 1990. Figure 1 charts the empirical distributions for Lesotho which is

one of most affected countries in Sub-Saharan Africa, since 23.6% of its adult

5
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population was HIV infected in 2009 (UNAIDS, 2010). Similarly, Figure 2

charts the distributions for Niger, a country which has one of the lowest

infection rates on the continent as its adult HIV prevalence rate reached

0.8% in 2009 (UNAIDS, 2010).

Figure 1, about here.

Figure 2, about here.

Taking 1990 as a benchmark year, the two distributions are very similar, sug-

gesting that there was no adjustment in behavior after populations became

informed about the HIV/AIDS epidemic and its ways of transmission.

The Demographic and Health Surveys are standardized nationally rep-

resentative household surveys that collect data in various African countries

based on a standardized questionnaire. We are thus able to generalize our

analysis by using a large set of countries3 in order to test whether the distri-

bution of the spousal age differences is constant over time.

We use the survey to compute the mean and the coefficient of variation

of the distribution of the spousal age differences by country and by marriage

year. Figures 3 and 4 provide the dynamics of the mean and the coefficient

of variation4, respectively, for each country of the sample.

Figure 3, about here.

Figure 4, about here.

There is no clear pattern suggesting a change in the distribution of the age

differences over time, except for Ghana and Malawi, where one could notice

a downward trend in the mean from the mid-1980s onwards. The mean

3The countries, with the date of the DHS survey, are the following: Burkina Faso

(2003), Cameroon (2004), Democratic Republic of Congo (2007), Ethiopia (2005), Ghana

(2003), Guinea (2005), Kenya (2003), Lesotho (2004), Liberia (2007), Mali (2006), Malawi

(2004), Niger (2006), Rwanda (2005), Senegal (2005), Swaziland (2006/07), Zambia (2007)

and Zimbabwe (2005/06).
4The coefficient of variation is the standard deviation divided by the mean.
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of age differences decreases from 1985 in Ghana and from 1986 in Malawi,

but these decreases are not statistically significant. If we go back to the

individual data, and implement a T-test to test for the difference between

the population mean of age differences in these years and at the end of the

period, we find that in both cases, we cannot reject the null hypothesis that

the population mean is equal in 1985 and in 2003 in Ghana (and in 1986 and

in 2005 for Malawi).

To test the stability of the distribution of spousal age differences over

time, we use a linear fixed effects model to successively estimate the mean

and the coefficient of variation of the spousal age differences at the country-

year level using as independent variables the marriage year and a dummy

variable that takes value one if the marriage was celebrated before 1990

and zero otherwise. Empirical results presented in Table 1 suggest that the

marriage year and the act of getting married before the spread of the AIDS

epidemic have no statistically significant effect on the dependent variables,

i.e. the mean (column 1) and the coefficient of variation (column 2).

Dependent variable mean coefficient of variation

Marriage year
−00311
(0021)

00021

(0002)

1 if marriage before 1990
00234

(0244)

00467

(0027)

Constant
706746

(41161)

−3315
(3198)

Country effects Yes Yes

Number of observations 604 600

Number of countries 17 17

Table 1

Linear fixed effects estimates

(in parentheses: robust standard errors, clustered at the country level)

These stylized facts suggest that controlling for country-specific effects,

distributions of spousal age differences are stable over time and that the onset

of the epidemic disease does not imply any adjustment in preferences regard-

7
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ing the age difference between spouses. Therefore, grounded on this empirical

evidence, the next section will consider the dispersion of age differences as

an exogenous parameter of the model.

3 An age-structured mathematical model

3.1 The model

Our model can be seen as an extension of the model developed by Anderson

et al. (1992), which describes the spread of a sexually transmitted epidemic

disease in a multi-group model. Multi-group modeling is due to the gender

specific variables we use. Our main departure from the work of these authors

lies in the definition of the boundary conditions that characterize the birth

process. Indeed, we assume that the latter depends on sexual behaviors and

that, as a consequence, it is intrinsically linked to the spread of the epidemic

disease.

For each gender  ∈ {} where  corresponds to the population of

women while corresponds to the population of men, let  ( ) and  ( )

denote, respectively, the (chronological) age-specific density at time  ∈ R+
of susceptible and infective individuals of age  ∈ [0 ] where   0 denotes

the maximal length of life. Their dynamics are given by the following system

of equations:

 ( )


+

 ( )


= − ( ) [ () +  ( )]  (1)

 ( )


+

 ( )


= − ( ) [ () + 1 ()] +  ( ) ( ) (2)

where  () and 1 () are, respectively, the age-specific mortality rate of

individuals at age  and the over-mortality rate of infected individuals at age

. The probability of an individual of gender  and age  being infected at

time  is modeled by the so-called force of infection denoted by  ( ).

Before discussing the specific form of the force of infection, let us introduce

some notations. Let  ( ) =  ( ) +  ( ) denote the density of

8
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individuals of gender  and age  at time . Using (1) and (2), we obtain:

 ( )


+

 ( )


= − () ( )−  ( )1 ()  (3)

Consider also the per head age-specific variables that are defined as:

 ( ) =
 ( )

 ( )
and  ( ) =

 ( )

 ( )


One important feature of our model is that the probability of being infected

depends on the age of the partner, denoted 0. The minimum age at which

individuals become sexually active is denoted 0 ∈ [0 ). Furthermore, ho-
mosexual relationships are not considered in our model. These assumptions

imply that the force of infection is of criss-cross type and is given by:

 ( ) =

Z 

0

 ( 
0)  (  

0) − ( 
0) 0 (4)

Note that the probability of being infected has three components. The func-

tion  ( 
0) is the infectiousness of the disease, i.e. the probability of being

infected when having an infected partner of age 0. The component that will

be crucial for our analysis is denoted by  (  
0) and represents the aver-

age number of partners of age 0 and of opposite gender − per individual of
age  and gender  (see Anderson et al., 1992). Lastly, the force of infection

depends on − ( 0), the proportion of infectious individuals among those

of age 0 and gender −.
Let us notice that we allow for time-dependence in the average number of

partners. More precisely, we assume that such a function can be characterized

by the product of two functions:  ( ), the rate of partner change for an

individual of age  and gender  at time , and  (  
0), a mixing function

indicating, at time , the probability that an individual of age  and gender

 chooses a partner of age 0. It satisfies
R 2
1

 (  
0) 0 = 1. We hence

have:

 (  
0) =  ( ) (  

0) 

9
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Functions  ( ) and  (  
0) are linked to each other through the fol-

lowing constraint:

 ( ) (  
0) ( ) =  ( 

0) ( 
0 ) ( 

0)  (5)

Following Anderson et al. (1992), we shall assume that function (  
0)

can be non-autonomous (i.e. time dependent) for one gender only, namely for

men. Then assume that, for women, the mixing function is time independent,

and reads as:  (  
0) ≡ ( 

0) As a consequence, the age-specific force

of infection for women takes the following form:

( ) =

Z 

0

 ( 
0) ()( 

0) ( 
0) 0 (6)

It therefore remains to model the age-specific force of infection for men.

Following Anderson et al. (1992), we will assume that the mean rate of

partner change for men is given by:

 ( 
0) =

R 2
1

 () ( 
0) ( ) 

 ( 0)


while the mixing function is computed according to (5). As a consequence,

one obtains that

( ) =

Z 

0

 ( 
0)  (

0) (
0 )

 ( 
0)

( )
 ( 

0) 0 (7)

Let us now describe the boundary conditions that characterize the birth

process. Let  () be the probability of age  susceptible and infected women

who have a sexual partner, to give birth to a child. Furthermore, in order

to simplify the model, assume that there is no vertical transmission of the

disease (i.e. all children are born susceptible). Using the time independence

assumption for ( 
0), the boundary conditions read:⎧⎨⎩  ( 0) = 

R 
0
 () ( )

R 
0
 ( 

0) 0

 ( 0) = 0
(8)

10
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where  is the secondary sex ratio that satisfies  [ ( 0) + ( 0)] =

 ( 0). We thus assume that birth depends on contact behavior, which is

the same as the one involved in the transmission of the disease. Moreover,

the system is described by the following initial data:⎧⎨⎩  (0 ) = 0 () 

 (0 ) = 0 () 
(9)

with 0 ()  
0
 () ∈ 1 (0 ) and 0 ()  

0
 () ≥ 0 a.e. in [0 ].

In summary, the model we consider consists in equations (1), (2), (6) (7),

(8) and initial data (9).

3.2 A simplified model

In order to deal with the above age-structured model, we have to consider

the possibility of an exponentially growing population. This is due to the

linear assumption on the demographic parameter. In the absence of disease,

namely  ≡ 0, the dynamics of the population is driven by the following

linear age-structured system of equations given for each gender:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

()


+

()


= − () ( ) 

 ( 0) = 
R 
0
 () ( )

R 
0
 ( 

0) 0

 (0 ) = 0
 ()  ∈ { }

(10)

For this kind of equations, one can expect a Malthusian growth for the popu-

lation. This remark will allow us to simplify the model considered above and

especially the force of infection for men given by (7). Indeed, if we assume

that for each class of age and each gender, the number of infective ( )

remains small with respect to the age-specific total number of individuals

( ), then ( ) arising in (7) can be approximated by the solution of

the diseased free population (10). The latter system is well known and the

equation for  is referred as the Lotka-McKendrick equation. We refer to

11
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the textbooks of Webb (1984) and of Iannelli (1995) for a complete study of

this kind of equations. The Lotka-McKendrick equation for  reads as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

 ()


+

 ()


= − () ( ) 

 ( 0) = 
R 
0
 () ( )

R 
0
 ( 

0) 0

 (0 ) = 0
 () 

(11)

The equation is well known to satisfy the so-called Asynchronous exponential

growth. This means that if we introduce the Malthusian parameter  ∈ R of
the population, which corresponds to the  ∈ R solution of:

1 = 

Z 

0

 () −
 
0
(()+)

Z 

0

 ( 
0) 0 (12)

one obtains that

lim
→∞

−( ) = 0
−  

0
(()+)

for the topology of 1(0 ). Here 0 ≥ 0 is some given number depending
on 0

 (), through a suitable projector operator. From this asymptotic prop-

erty, one can drive a similar behavior for . Indeed simple computation

shows that

lim
→∞

−( ) = 0
−  

0
(()+)

where 0 is related to 0 through the following relation

0 =



0 (13)

This remark allows us to simplify formally the epidemic system under

consideration and especially (7). Indeed if for each class of ages and each

gender, the number of infective people ( ) remains small with respect

to the age-specific total number of individuals ( ), then one obtains, at

least for large , that

 ( 
0)

( )
≈ 0

−  0
0
(()+)

0
−  

0
(()+)

12
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and therefore the age-specific force of infection for men becomes

( ) =




Z 

0

 ( 
0)  (

0) (
0 ) 

 
0 ()+(−0) ( 

0) 0

(14)

Note that this simplification makes sense for growing populations, i.e. for

positive Malthusian parameter.

This simplification is studied further and validated using numerical sim-

ulations as presented in the figures below. To perform numerical investiga-

tions, we assume that the mixing function takes the following form:⎧⎪⎪⎪⎨⎪⎪⎪⎩
( 

0) = 
− (−

0+)2
22 2

1

− (−+)

2

22 

for  0 ∈ [1 2] 

0 otherwise,

where   0 stands for the mean age difference between men and women

and   0 for the standard deviation that measures the dispersion of age

differences within couples. The function describing the mean rate of partner

change is also taken from Anderson et al. (1992) and reads as:

 () =

⎧⎨⎩  for  ∈ [1 2] 

0 otherwise.

Figures 5 and 6 represent the forces of infection for men computed as a solu-

tion of the system composed of equations (1), (2) and either (4) or (14). More

precisely, the continuous curve describes the 1−norm of (4) with respect to
time while the dotted line corresponds to that of (14). The chosen parame-

ter sets imply an eradication of the disease in Figure 5, and the convergence

towards an endemic equilibrium point in Figure 6. These computations show

that when the time is sufficiently large, the two forces of infection have the

same behavior.

Figure 5, about here.

Figure 6, about here.

13
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Finally, our simplification allows us to deal with age-specific prevalence

( ), to derive an expression for 0 and to study its dependence with

respect to various parameters. Let us also mention that our simplification

keeps some information on the Malthusian parameter of the total popula-

tion, namely parameter , and also on the sex-ratio parameters . More

specifically, using the above simplification and using the independent vari-

ables ( ) and ( ), the system we will consider reduces combining

equations (3) and (10), to the following one:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

()


+

()


= (1−  ( )) [ ( )− 1() ( )]   0  ∈ (0 )

 ( 0) = 0  ∈ { }

 (0 ) = 0 () ∈ 1(0 ;R+)  ∈ { }
(15)

In the above system of equations,  and  are respectively given by (6)

and (14).

4 Basic reproduction number

This section aims at deriving some basic mathematical properties of (15)

together with (6) and (14). The local dynamics are studied by analyzing

the spectral radius of a linear operator of a related system. The difficulty

comes from the fact that in contrast to most papers in the literature, we

do not assume the separability of the rates of infection. It is therefore not

possible to derive an explicit expression for the spectral radius of the next

generation operator. Spectral theory provides however well-known tools to

obtain properties for the spectral radius. We establish some of its properties

that will allow us, in the last part, to obtain some properties about the

dynamics of some specified contact rate functions.

Because of the biological definition of , we introduce the following state

Banach lattice spaces  = 1(0 ;R) × 1(0 ;R) endowed together with

14
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the usual product norm as well as

C =
½µ




¶
∈  : 0 ≤  ≤ 1   ∈ {}

¾
 (16)

In order to derive mathematical properties of (15), let us rewrite the system

of equations using the following form:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

()


+

()


= (1−  ( )) [Λ[−( )]()− 1() ( )] 

 ( 0) = 0 ∀ ∈ { }Ã
 (0 )

(0 )

!
=

Ã
0 ()

0()

!
∈ C

(17)

wherein we have set for each  ∈ {},

Λ[]() =

Z 

0

( 
0)(0)0 ∀ ∈ 1(0 ;R)

for some functions  ≡ ( 
0) coming from (6) and (14). Functions  ≡

 ( 
0) stand for the so-called rate of infection from contacts between an

infective individual of age 0 and a susceptible individual of age  (see Li

et al., 2008). The above system of equations will be studied by using the

following set of assumptions.

Assumption 1 Assume that 1 ∈ ∞+ (0 ;R
+) and, for each  ∈ {},

functions  belong to ∞ ((0 )× (0 );R+).

As a consequence, Λ defined above becomes a bounded linear operator

Λ : 
1(0 ;R) → ∞(0 ;R). Next, the functional framework is defined

as follows. Let us recall first that  = 1(0 ;R)× 1(0 ;R) is a Banach

Lattice partially ordered with its positive cone + defined by:

+ = 1(0 ;R+)× 1(0 ;R+)

Moreover following the standard notion5, for each () ∈  the symbol

 ≤  means that  −  ∈ +. Our first Lemma establishes the existence

5We refer notably to Clément et al. (1987), Grobler (1987, 1995), Meyer-Nieberg

(1991), Schaefer (1974) for some results on linear positive operators and Banach Lattices.
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of a weak solution of system (17). Let   0 be given such that:

  1() + Λ[1]()  ∈ {}   ∈ (0 ) (18)

Then, consider the linear operator  : () ⊂  →  defined by

() =

⎧⎨⎩ =

⎛⎝



⎞⎠ ∈ 11(0 ;R)2 :  (0) = (0 0)

⎫⎬⎭ 

and



⎛⎝



⎞⎠ =

⎛⎝−0
−0

⎞⎠ 

and the nonlinear operator  : C →  defined by



⎛⎝



⎞⎠ =

⎛⎝ ¡
1− 

¢ ¡
Λ []− 1()

¢
(1− )

¡
Λ[ ]− 

¢
⎞⎠ 

Then, using () = (( ) ( )), the system (17) can be rewritten as the

following abstract Cauchy problem:⎧⎨⎩
()


=  () +  ( ())    0

 (0) =  ∈ C
(19)

Note that given the choice of  (see (18)), for each ( ) ∈ C2 such that
 ≤ , one obtains that:

 () +  ≤  () + 

Consequently, system (19) is equivalent to⎧⎨⎩
()


= (− ) () + ( + ) ( ())    0

 (0) =  ∈ C
(20)

We directly deduce the following result.

Lemma 1. Let Assumption 1 be satisfied. Then, the operator (())

is the infinitesimal generator of a 0−positive semigroup {()}≥0 on .

16
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There exists a unique strongly continuous semiflow {(;  ) :  → }≥0
such that for each  ∈  the map  → (;) is a mild solution of system

(19), that is

(;) = ()+

Z 

0

(− ) ((;)  ∀ ≥ 0

Moreover for each () ∈ 2 one has

 ≤  ⇒  (;) ≤  (;)  ∀ ≥ 0

Proof. The proofs of similar results can be found inWebb (1985), Busenberg

et al. (1991) and Feng et al. (2005). A key ingredient is given by the

positivity of the semigroup generated by , namely

()() =

⎧⎨⎩(− ) if   

0 if   

 ∀ ∈ 

¤

Let us now study the local dynamics in the neighborhood of the so-called

disease free equilibrium (DFE, hereafter) that corresponds to the stationary

solution ( ) ≡ 0. We now aim at proving that the linear stability of the

DFE is related to the so-called basic reproduction number. The correspond-

ing linearized equation around the DFE is given by:

( )


+

( )


= −1 () + Λ [( )]()

( )


+

( )


= −1 () + Λ[( )]()

(21)

together with

( 0) = ( 0) = 0

(  ) (0 ) =
¡
0  

0


¢ ∈ 
(22)

In order to study this linear equation, we consider the linear operator b :


³ b´ ⊂  →  and the bounded linear operator  :  ⊂  →  defined

17
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by


³ b´ = () b = µ− 


− 1() 0

0 − 

− 1()

¶


and

 =

µ
0 Λ

Λ 0

¶


Then, by setting () = (( ) ( )), system (21)-(22) can be written as

follows:

()


=
³ b+

´
()   0 (0) = 0 =

µ
0
0

¶
∈ 

In order to study some properties of the above linear problem, let us first

establish the following result:

Theorem 1. The linear operator b+ : () ⊂  →  is the infinitesimal

generator of positive 0−semigroups { +()}≥0 on . We also have the

fixed-point formulation:

( +)() =  () +
Z 

0

 +() ∀ ≥ 0
and

( b+) = −∞ 0( b+) = ( b+) ∈ 
³ b+

´
 (23)

Here, ( b+) denotes the essential growth rate of {( +)()}≥0, while
0( b+) and ( b+) respectively denote the growth rate of  +() and
the spectral bound of ( b+).

Proof. It is easy to see that

 () =
⎧⎨⎩0 if   

−
 
− 1()(− ) if   

This proves that  () is a nilpotent semigroup and therefore, we obtain that


³ b´ = −∞. To prove the other part of (23), using results obtained by
Greiner (1984) as well as Voigt’s perturbation result (Voigt, 1994), we need

to prove that for each   0 the operator  () is weakly compact in .

18
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Recalling that  () = 0 for all  ≥  it is sufficient to consider the case

 ∈ (0 ). Let  ∈ (0 ) be given. Then, we have:

 () =
µ
1 0

0 2

¶


where we have set

1 =

Z 

0

( )1()()
−  

− ()
Z 

0

(−  0)(
0)0

2 =

Z 

0

( )1()()
−  

− ()
Z 

0

 (−  0) (
0) 0

Note that operators 1 and 2 both act on 1(0 ) and are bounded linear

operators. Moreover, they satisfy

0 ≤  ≤

Z 

0

() ∀ ∈ 1+(0 )

for some constant   0 independent of . Using the results of Greiner

(1984), we conclude that 1 and 2 are both weakly compact operators, and

thus () is also weakly compact. ¤

Before establishing the local stability of the DFE, let us propose a formal

definition of the basic reproduction number and make a remark.

Definition 1 (Basic reproduction number). Consider the bounded linear

operator 0 ∈ () defined by 0 =
³
− b´−1 and define the following

quantity

0 =  (0) 

Remark 1. One has the following explicit expression for operator 

0 =

Z 

0

0( )() ∀ ∈ 

where we have set:

0( ) =

Z 

0

−
 
0 1()

µ
0  (

0 )
 (

0 ) 0

¶
0
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The next Theorem establishes the local stability of the DFE.

Theorem 2. Let Assumption 1 be satisfied. Then, the disease free equilib-

rium is locally asymptotically stable if 0  1 and is unstable if 0  1.

To prove Theorem 2, we demonstrate two Lemma. We first notice that

due to Theorem 1, the local stability of the DFE is related to the location of

the real value 
³ b+

´
with respect to zero. Consider for each  ∈ R the

bounded linear operator  :  →  defined by:



µ
 ()

 ()

¶
=

Z 

0

( )

µ
 ()

 ()

¶


where

( ) =

Z 

0

−(−
0)− 

0 1()
µ

0  (
0 )

 (
0 ) 0

¶
0

Then, one has the following Lemma.

Lemma 2. For each  ∈ , the operator  is positive and compact. More-

over, for each  ≤ 0 one has:

0 ≤  ∀ ∈ +

Proof. The positiveness is obvious as well as the decreasing property with

respect to  (see for instance Marek, 1970). The compactness follows by

noticing that for each  ∈ R, operator  is regularizing in the sense that it
maps the unit ball of  into a bounded set of  1∞ (0 ;R2). ¤

Next, consider the map  : R→ [0∞) defined by

() =  ()  ∀ ∈ R

wherein for each  ∈ L(), the quantity  () denotes the spectral radius of
. Then, we obtain the following result.

20

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2012.27



Lemma 3. Let Assumption 1 be satisfied. Then, the map  7→ () is

continuous, decreasing and satisfies

lim
→∞

() = 0

(0) = 0 (see Definition 1) and () = 1 where  := 
³ b+

´
denotes

the spectral bound of operator b+.

Proof. Let us first notice that the map  7→  is continuous from R to

L(). Since  is compact for each  ∈ R we conclude that  7→ ()

is continuous. As a consequence, due to Lemma 2, the map  7→ () is

decreasing. Then, it is easy to check that

lim
→∞

kkL() = 0

which implies that ()→ 0 when →∞. It is also easy to check that

 ∈ R ∩ 
³ b+

´
⇐⇒ 1 ∈  () 

where  denotes the point spectrum. From this and the positivity, it follows

that () = 1. ¤

A direct consequence of Lemma 3 is that if 0  1 then  = 
³ b+

´


0 and if 0  1 then   0. This completes the proof of Theorem 2.

Let us conclude this section with a result on the existence of endemic

equilibria.

Theorem 3. Let Assumption 1 be satisfied. If 0  1 then system (17) has

at least one endemic stationary state, i.e. there exist (  

) ∈ ∩()\{0}

such that : ⎧⎨⎩
()


=
¡
1−  ()

¢ £
Λ[


−]()− 1()


 ()

¤


 (0) = 0 ∀ ∈ { }
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Proof. Let us recall that as 0  1 there exists   0 such that () = 1.

Let  =

µ




¶
∈ + be given such that  =  Consider now the follow-

ing fixed point problem: find  ∈ C\{0} such that  =
³
− b− 

´−1
( + )

Since the operator
³
− b− 

´−1
is positive and  is increasing, one obtains

by setting  = (1 1) that³
− b− 

´−1
( + )  ≤

³
− b− 

´−1
 ≤ 

On the other hand, for each   0 one has³
− b− 

´−1
( + ) []()

= 

Z 

0

(−)
µ¡
1− ()

¢ ¡
Λ []− 1()

¢
+ 

(1− )
¡
Λ[ ]− 1()

¢
+ 

¶


= 

Z 

0

(−)
µ

Λ []− 1() +  − 

¡
Λ []− 1()

¢
Λ[ ]− 1() +  − ()

¡
Λ []− 1()

¢¶ 

This implies that:³
− b− 

´−1
( + ) []()

= () + 

Z 

0

(−)
µ
()

¡
− 

¡
Λ []− 1()

¢¢


¡
− 

¡
Λ [ ]− 1()

¢¢ ¶ 

As a consequence, if   0 is chosen small enough so that

 ≤  and 

µ
Λ []− 1()

Λ [ ]− 1()

¶
≤ 

one obtains that ³
− b− 

´−1
( + ) [] ≥ 

The above inequality allows us to start a monotone iterative procedure to

get complete the proof of the result. ¤

5 The impact of the dispersion of age differ-

ences between partners

In this section, we compute numerically the value of the epidemic threshold,

0, as a function of the mean and the variance of the distribution of age
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differences between partners.

5.1 Parameters and functions of the model

The model is simulated using parameters that are similar to those used in

Anderson et al. (1992), including the age-specific mortality and fertility rates

displayed in Figure 7.

Figure 7, about here.

For mortality, which is supposed to be similar for men and women, we use

the Siler approximation, which is a parametric function that may be used to

fit mortality data, and obtain that life expectancy at birth is 55.069 years.

Concerning fertility, we obtain a Total Fertility Rate of 7.15. The demo-

graphic growth rate of the disease-free population can be computed using

the formula given in equation (12), and is equal to  = 0076. Concerning

the epidemiological parameters, we suppose that the infectiousness of the

disease is age-independent,  ( 
0) =  and that a susceptible woman has

a risk of infection when having a sexual contact with an infected man which

is three times higher than those involving a susceptible man and an infected

woman. The over-mortality rate of infected individuals is also supposed to be

age independent, 1 () = 1, and has been set such that the life expectancy

(ignoring other causes of death) is 5 years.

Parameters are given in Table 2.

Sex ratio at birth,  05

Maximal age at death,  80

Minimal age of sexual activity, 0 15

Lower and upper limits ages for fertility, 1 and 2 15 and 50

Over-mortality rate, 1 02

Infectiousness of the disease,  and  03 and 01

Table 2

Parameters of the simulated model

The mean rates of partner change per year as functions of age are pictured

at the endemic equilibrium. We use the mean values of  and  computed
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among our sample of African countries, namely  = 878 and  = 262. Con-

cerning the parameter of function  (), we follow Anderson et al. (1992) by

using  = 34 and  = 57, as depicted in Figure 8 and Figure 9, respectively.

Figure 8, about here.

Figure 9, about here.

Similarly, we compute the average prevalence at the endemic equilibrium as

well as the age specific prevalence for men and women. Using  = 34 (Figure

10) and  = 57 (Figure 11), we obtain that the prevalence is equal to 1.5%

and 5%, respectively.

Figure 10, about here.

Figure 11, about here.

Two notable features of these figures are that (i) women are proportionally

more infected than men and (ii) the mean age of the infected population is

lower for women than for men. Both conclusions are consistent with empirical

evidence found in previous studies (e.g. Buvé et al.; 2001, Glynn et al., 2001;

Gouws et al., 2008; UNAIDS, 2010, chapter 2).

5.2 Numerical results

The numerical simulations aim at evaluating the effect of both the mean and

the variance of the age differences on the basic reproduction number. The

latter is computed as the exponential of the speed of divergence (or conver-

gence) of the linear system (21). We compute the basic reproduction number

as a function of the mean age difference, , and the standard deviation, 

using two different values of the parameter of function  () used in Ander-

son et al. (1992):  = 34 and  = 57. Results are displayed in Figure 12

and 13 respectively. Both figures clearly show that the epidemic threshold,

0, is an increasing function of  and an increasing and concave function of

. The latter relationship becomes almost flat for values of  greater than 3.
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Figure 12 shows that if the women’s rate of partner change is not too large,

the standard deviation of age differences is a key parameter. Indeed, we find

that if the standard deviation is small enough, the basic reproduction number

remains below 1 whatever the value of the mean age difference. Conversely,

if the standard deviation is large enough, the basic reproduction number is

always greater than 1 even for very low mean age difference.

Figure 12, about here.

Figure 13, about here.

6 Conclusion

In this paper, we have analyzed the effect of a change in the dispersion of

age differences between sexual partners on the endemic nature of the HIV

epidemic. Once we established empirically that the distribution of age dif-

ferences in Sub-Saharan Africa had not been modified since the onset of the

epidemic, we went on to create an age- and gender-structured dynamic model.

We characterized the stability of the epidemic equilibrium and showed that

variance plays a crucial role in the determination of the stability properties

of this equilibrium. Moreover, the mean age difference has barely any impact

on the stability of the disease-free equilibrium if the variance is sufficiently

high.

Importantly, our model constitutes a tool in order to evaluate the impact

of the mean and the variance of the age differences distribution on the as-

ymptotic dynamics of the HIV epidemics. We show that a larger variance

increases the likeliness that the disease-free equilibrium is unstable, and con-

sequently that the epidemic is endemic. This is an asymptotic result that is

not necessarily connected with the prevalence rate at a given point in time.

It cannot be tested using past prevalence rates, be used to forecast the dy-

namics of HIV in the next few years in African countries and is not able to
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evaluate the various policies that have been launched in the countries of our

sample. It rather argues that, everything equal, countries that have a large

variance of age difference between partners should be particularly active in

the fight against the spread of HIV within the population.

Moreover, in order to focus on the age differences, we have not considered

other factors that may influence the dynamics of the epidemics. Our model

builds a framework suitable for incorporating other contextual features that

could allow for more realism. Especially, our model may be extended by

describing precisely the different variables that influence the contact function

between generations. We have, indeed, concentrated on the probabilities of

having some infectious contacts for an exogenous number of contacts per age.

Since this number appears to be important, we must seek to understand the

underlying behaviors, which would be a promising avenue of research.
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Figure 3: Dynamics of the mean of age differences
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Figure 4: Dynamics of the coefficient of variation of the distribution of age differences
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Figure 5: True and approximated forces of infection with asymptotic eradication

4

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2012.27



Figure 6: True and approximated forces of infection with an endemic equilibrium
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Figure 7: Mortality and fecondity as functions of age
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Figure 8: Mean rate of partner change as a function of age for η = 3.4
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Figure 9: Mean rate of partner change as a function of age for η = 5.7
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Figure 10: Prevalence rate as a function of age for η = 3.4
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Figure 11: Prevalence rate as a function of age for η = 5.7
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Figure 12: R0 as a function of ν and σ for η = 3.4
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Figure 13: R0 as a function of ν and σ for η = 5.7
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